

CHEMISTRY A European Journal

FULL PAPER

WILEY-VCH

Trifluoromethanesulfinyl Chloride for Electrophilic Trifluoromethythiolation and Bifunctional Chlorotrifluoromethythiolation

Lvqi Jiang^{‡[a]}, Qiang Yan^{‡[a]}, Rongkang Wang^[a], Tianqi Ding^[a], Wenbin Yi^{*[a]} and Wei Zhang^{*[b]}

Abstract: Trifluoromethanesulfinyl chloride (CF₃SOCl) is introduced as a new reagent for C-H trifluoromethylthiolation of indoles, thiophenes, and ketones under catalyst-free conditions and in the absence of reductant. The disproportionation of CF₃SOCl to CF₃SO₂Cl and CF₃SCl provides two pathways for the trifluoromethylthiolation. Direct trifluoromethylthiolation with CF₃SCl or trifluoromethylsulfoxidation with CF₃SOCl followed by the reduction with CF₃SOCl. This reagent can be used to functionalize benzothiophenes, benzofurans and indenes under the promotion of Ag₂CO₃. It can also be used for trifluoromethylthiolation of thiols and benzeneselenols, and 1,2bifunctional chlorotrifluoromethylthiolation of indoles, styrenes, and alkyens. The method can also be extended for difluorometylthiolation reactions using CF₂HSOCl.

Introduction

Lipophilic trifluoromethylthio (CF₃S) group could be introduced to improve pharmacokinetic and physicochemical properties of medicinally and agrochemically interested compounds,^[1,2] such as Fipronil,^[3] Tiflorex,^[4] Toltrazuril^[5] and Cefazaflur^[6] (Figure 1). Late stage direct C-H trifluoromethylthiolation is a good approach for lead optimization.^[7] Over the years, highly reactive, but very toxic CF₃Sbased reagents such as CF₃SCl^[8] and CF₃SSCF₃^[9] have been introduced as trifluoromethylthiolation reagents. Stable and use-friendly CF₃SNand CF₃SO-based reagents **1a-g**^[10-16] and CF₃SO₂-containing hypervalent idonium ylides **2a-b** have been developed for trifluoromethylthiolation of C_{SP}²-H bonds (Figure 2).^[17,18] However, they generally require several steps to prepare and involve reactions with expensive reagents such as AgSCF₃, (diethylamino)sulfur trifluoride (DAST), or the Ruppert–Prakash reagent (CF₃SiMe₃).

Figure 1. SCF₃-containing biologically active compounds.

Stable and readily available CF_3SO_2Na (Langlois reagent) was recently introduced to generate $CF_3S^+\ in\ situ$ under reductive and

[a] Prof. Dr. W. Yi, L. Jiang, Q. Yan, R. Wang, T. Ding School of Chemical Engineering, Nanjing University of Science and Technology

200 Xiao Ling Wei Street, Nanjing 210094 (China) E-mail: yiwb@njust.edu.cn

[b]Prof. Dr. W. Zhang

Department of Chemistry, University of Massachusetts Boston 100 Morrissey Boulevard, Boston, MA 02125 (USA)

E-mail: wei2.zhang@umb.edu

Supporting information for this article is given via a link at the end of the document.

catalytic conditions for electrophilic trifluoromethylthiolation.^[19] CF₃SO₂Na has also been used to generate CF₃S⁻ for nucleophilic, trifluoromethylthiolation of aryliodides.^[20] More recently, CF₃SO₂Cl was introduced for electrophilic trifluoromethylthiolation by using Ph₃P or (EtO)₂P(O)H.^[21] Even some progresses have been made, CF₃SO₂-based trifluoromethylthiolation still has following limitations: 1) requirement of stoichiometric amount of metal salts; 2) limited scope for electron-rich heterocycles and alkenes such as indoles, pyrroles and enamines.^[19-21]

During the trifluoromethylthiolation reactions with CF₃SO₂Na or CF₃SO₂Cl, reactive species such as CF₃SSCF₃ and CF₃SCl were observed from the reaction process.^[19-21] CF₃SOCl, which could be obtained from commercial suppliers or easily synthesized by the treatment of readily available CF₃SO₂Na and SOCl₂,^[22] has been reported for direct trifluoromethylsulfoxidations.^[23] It was reported that CF₃SOCl could disproportionate into CF₃SOCl and CF₃SO₂Cl.^[24] Thus, we believe it is possible to develop CF₃SOCl as a reagent for trifluoromethylthiolation through dismutation without using an additional reductant.

Figure 2. Electrophilic trifluoromethylthiolation reagents.

Results and Discussion

Indole is a well-studied substrate for trifluoromethylthiolation.^[19,21] A reaction of 1:1.5:1.5 indole/CF3SOCl/(EtO)2P(O)H in MeCN was carried out at 90 °C for 6 h. This condition is similar to our previous reported for the CF3SO2Cl/(EtO)2P(O)H system.^[21b] Product 4a was obtained in 36% yield (Table 1, entry 1), together with 9% yield of trifluoromethylsulfoxidation product 4a'. After testing other reductants (Table 1, entries 2-4), it was found that the reaction with PPh₃ gave a good yield of 86%. Considering CF3SOC1 has disproportionation capability to generate CF3SCl by self reduction,[24] a reaction of CF₃SOCl (1.5 equiv) without using phosphorus as a reductant was conducted (Table 1, entry 5). To our delight, 26% yield of 4a was observed. Increased the amounts of CF3SOC1 from 1.5 to 3 equiv, the yield of 4a steadily increased from 26% to 83% (Table 1, entries 6-8). It is worth noting that a significant amount of trifluoromethylsulfoxidation product 4a' was observed from the reaction mixture, especially from the reactions with a low loading of CF₃SOC1. The screening of solvents revealed that MeCN is better than ClCH₂CH₂Cl (DCE), PhMe and DMF for the reaction of indole (Table 1, entries 9-11).

FULL PAPER

Table 1: Optimization of trifluoromethylthiolation with CF3SOCl[a]

N	+ CF ₃ SOCI 3	with or without reductant	$ \begin{array}{c} $	S(O)CF ₃
Entry	3 (equiv)	Solvent	Reductant (1.5 equiv)	4a/4a' (%) ^[b]
1	1.5	MeCN	(EtO) ₂ P(O)H	36/9
2	1.5	MeCN	(MeO) ₂ P(O)H	31/10
3	1.5	MeCN	PPh ₂ Cl	66/8
4	1.5	MeCN	PPh ₃	86/5
5	1.5	MeCN	-	26/40
6	2	MeCN	-	44/31
7	2.5	MeCN	-	65/20
8	3	MeCN	-	83/8
9	3	DCE	-	32/10
10	3	PhMe	-	44/21
11	3	DMF	-	trace

 $^{^{[}a]}$ Reaction conditions: indole (0.2 mmol), solvent (1 mL), under N₂ at 90 °C for 6 h; $^{[b]}$ Yield determined by 19 F NMR using PhCF₃ as an internal standard.

Results in Table 1 show that reactions using CF₃SOCI (1.5 equiv)/PPh3 (1.5 equiv) or using CF3SOC1 (3 equiv) without an additional reductant gave similar results (Table 1, entries 4 and 8). Previously reported CF₃SO₂Cl/(EtO)₂P(O)H^[21b] and CF₃SO₂Cl/PPh₃^[21a] reaction systems both generated CF3S⁺ as a reactive species for trifluoromethylthiolation. To confirm if CF₃SCl was generated from the reaction of CF₃SOCl in the absence of a reductant, a sample of CF₃SOCl in MeCN was heated at the reaction temperature of 90 °C for 1 h. 19F NMR analysis of the sample gave two new signals at δ -46.27 and -75.64 ppm for CF₃SCl and CF₃SO₂Cl, respectively. A control reaction of indole using only 1.0 equiv of CF₃SOCl was also conducted (Scheme 1a). Trifluoromethylsulfoxidation product 4a' was obtained in 63% yield. Compound 4a' was then reacted with 1 equiv of CF₃SOCl at 90 °C for 1 h to afford trifluoromethylthiolation product 4a in 41% yield (Scheme 1b). The yield of 4a was increased to 60% if 2 equiv of CF₃SOCl was used.

Scheme 1. Formation of 4a' and its reaction with CF₃SOCl for 4a

Results from the control experiment and literature^[21,24] allowed us to propose two possible pathways for CF₃SOCl trifluoromethylthiolation (Scheme 2). Heating CF₃SOCl with indole at the reaction temperature of 90 °C resulted trifluoromethylsulfoxylated compound **4a'**. It is then reduced with CF₃SOCl to form product **4a**. CF₃SOCl could also undergo disproportionation to form CF₃SO₂Cl and CF₃SCl. The CF₃SCl reacts with indole to give the direct trifluoromethylthiolation product **4a**. Reactions of a series of substituted indoles under the optimized conditions were conducted (Table 2). Reactions of indoles bearing Me, MeO, halogen, or ester groups at the 5-position generated corresponding products **4b-f** in high yields. Reactions of indoles with Me or halogen groups at 6- or 7-position gave **4g-m** also in good yields. Reactions with

Scheme 2. Proposed Mechanism for trifluoromethylthiolation of indole

two thiophenes were conducted in DCE gave better results than in MeCN to afford **4p** and **4q** in 72% and 64% yields, respectively.

Table 2. Trifluoromethylthiolation of indoles and thiophenes

Reaction conditions: Indole (or thiophene) (0.2 mmol), **3** (0.6 mmol), in MeCN or DCE (1 mL) under N₂ at 90 °C for 6 h; isolated yields; ^[a] Yield was determined by ¹⁹F NMR using PhCF₃ as an internal standard.

A reaction of benzothiophene under the standard conditions only gave product **4r** in less than 10% yield (Table 2, entry 1). It was suggested that a catalyst may needed for a better conversion. After screening of Cu and Ag catalysts as well as solvents, it was found that the reaction with 0.2 equiv of Ag₂CO₃ in PhMe at 110 °C for 12 h resulted **4r** in 84% yield (Table 2, entry 7). We speculated that Ag₂CO₃ acts as a base to remove the trace amount of HCl which could be generated from CF₃SOCl or SOCl₂ by reacting with residual water in hygroscopic CF₃SO₂Na. Under the siliver-promoted conditions, reactions of halogen-substituted benzothiophenes, 2-butylbenzofuran, and indene gave the products **4s-v** in 63-78% yields (Table 3).

 α -Trifluoromethylthiolated carbonyl compounds have gained growing interest in recent years due to special properties imparted by the trifluoromethylthio group.^[25] Extension for the scope of CF₃SOCI reaction for ketones was attempted (Table 4). The synthesis of **5a-c** from indanone derivatives, **5d-e** from tetralone derivatives, **5f** from

FULL PAPER

Table 2: Metal-catalyzed trifluoromethylthiolation of benzothiophene

	- CF ₃ SOCI - CF ₃ SOCI - 110 °C, 12 h	SCF ₃ 4r
Entry	Cat. (0.2 equiv)	Yield ^[a]
1	-	<10%
2	CuCl	22%
3	CuI	26%
4	Cu ₂ O	17%
5	AgNO ₃	78%
6	AgF	67%
7	Ag ₂ CO ₃	84%

Conditions: benzothiophene (0.2 mmol), 3 (0.6 mmol), PhMe (1 mL), under $N_2;\ [a]$ Yields were determined by ^{19}F NMR using PhCF3 as an internal standard.

Reaction conditions: benzothiophene, benzofuran or indene (0.2 mmol), **3** (0.6 mmol), Ag₂CO₃ (0.04 mmol) in toluene (1 mL) under N₂ at 110 °C for 12 h; Isolated yields

Table 4. Trifluoromethylthiolation of ketones

Reaction conditions: ketone (0.2 mmol), 3 (0.6 mmol), in toluene (1 mL) under N_2 at 110 °C for 12 h, isolated yields; ^[a] 0.2 equiv Ag₂CO₃ was used.

1-benzosuberone, and **5g** from 1-phenyl-1,3-butanedione all gave >80% yields, but only 49% yield for **5h** from acetophenone. However, addition of 0.2 equiv of Ag₂CO₃ increased the yield of **5h** to 81%. Thus, under the siliver-promoted conditions, reactions of seven acetophenone derivatives afforded products **5h-n** in >70% yields. Reactions of

benzylacetones also processed smoothly to afford products **50-p**. Trifluoromethylthiolation of ketones with CF₃SOCl shown in Table 4 would not be achieved by previously reported reactions with CF₃SO₂Na or CF₃SO₂Cl.^[19,21]

We have previously reported CF₃SO₂Cl-based reaction of thiols in the synthesis of trifluoromethylthiolated disulfides.^[21b] CF₃SOCl was also able to react with thiols to generate disulfides in CH₂Cl₂ (Table 5). In addition to the reaction of substituted thiophenols for **6a-i**, benzyl thiol and naphthalene-1-thiol also gave products **6j** and **6k** in good yields. Under the same conditions, reaction of benzeneselenol afforded trifluoromethylthiolated product **6l** in 90% yield.

Table 5. Trifluoromethylthiolation of thiols and benzeneselenol

Reaction conditions: thiol or benzeneselenol (0.2 mmol), 3 (0.6 mmol), in DCE (1 mL) under N_2 at 90 $^{\circ}C$ for 1 h; isolated yields.

Bifunctionalization is an atom economic way to introduce functional groups to alkenes and alkynes.^[26] Several CF₃SO₂Cl-initiated bifunctionalization reactions have been reported in the literature.^[27] After successful trifluoromethylthiolation of heterocycles and thiols with CF₃SOCl, we explored CF₃S-based bifunctionalization with this reagent. To our surprise, by simply increasing the reaction time from 6 h to 20 h, 2-chloro-3-trifluoromethylthio-substituted indole 7a was obtained in 52% yield. Reactions of various indoles under this condition afforded 7b-k in good yields, except for 7l which has a NO₂ group to deactivate the indole ring (Table 6). The structure of bifunctionalized product 7d was confirmed by single crystal x-ray analysis. Very recently, the Liu group reported a similar transformation using POCl3 as chlorination reagent.^[28] We attempted to gain some insights into the reaction mechanism. ¹⁹F NMR analysis of this reaction process showed that 4a is an intermediate piror to the Chlorotrifluoromethylthiolated product 7a, which means that 7a was formed by chlorination of 4a. To gain more insights, especially for the chlorination of 4a, several control experiments conducted (Scheme 3). The results showed that both CF₃SO₂Cl and CF₃SOCl contributed to the chlorination, and their mixture were more efficient.

In addition to the bifunctionalization of indoles, we also explored bifunctionalization of alkenes and alkynes through 1,2-addition. We have noticed that Shen group's report on formoxy-, acetoxy-, or hydroxy-trifluoromethylthiolation of styrenes with *N*-trifluoromethylthiodibenzenesulfonimide **1d** in different reaction solvents.^[13] It was determined that the solvent was crucial for the reaction, and DMF is favorable for the chlorotrifluoromethylthiolation reaction of styrene with CF₃SOC1. Thus, reaction of a series of styrene

FULL PAPER

Reaction conditions: Indole (0.2 mmol), 3 (0.6 mmol), in MeCN (1 mL) under N_2 at 90 °C for 20 h; isolated yields.

Scheme 3. Chlorination of 4a under different conditions

derivatives with CF₃SOCl in DMF at 90 °C for 1 h afforded **8a-k** in good yields (Table 7). Reaction of two nonstyrene-type alkenes afforded **81** and **8m** in >80% yields. The regiochemistry of the bifunctionalized products was confirmed by ¹H NMR analysis,^[21e] **8a-81** were Markovnikov products while **8m** was produced in high anti-Markovnikov selectivity. The regiochemistry was similar to our previous CF₃SO₂Cl/PPh₃/DMF system,^[21e] which made us believe that the process of bifunctionalization of alkenes is also an electrophilic addition by the decomposition product CF₃SCl.

The extension of the scope of bifunctionalization for alkynes was also achieved using DMF as a solvent. Reactions of a series of phenylacetylenes and other alkynes with CF₃SOCl under catalyst-free conditions at 90 °C for 6 h afforded products **9a-o** in 52-92% yields (Table 8). It seems that the CF₃SOCl system was more efficient than our previously reported CF₃SO₂Cl/PPh₃ system and higher yields were obtained. Similar to alkenes, **9a-91** were found to be Markovnikov products while **9m** and **9n** were anti-Markovnikov products by ¹H NMR analysis.^[21e] Different from our previous report, internal alkyens, for example, 1,2-diphenylethyne, was also applicable to give the product 90 in 70% yield (**9o**).

The SCF₂H-containing molecules have also shown to be uniquely effective in bioactive compounds.^[29] To our delight, CF₂HSOCl was successfully synthesized by using CF₂HSO₂Na (see Experimental Section for details). Next, we sought to extended the reaction scope for difluoromethylthiolation (Table 9). Reactions of a series of indole

Reaction conditions: styrene derivative (0.2 mmol), 3 (0.6 mmol), in DMF (1 mL) under N_2 at 90 °C for 1 h; isolated yields.

Table 8. Chlorotrifluoromethylthiolation of alkynes

Reaction conditions: alkyne (0.2 mmol), 3 (0.6 mmol), in DMF (1 mL) under N₂ at 90 °C for 6 h, isolated yields.

derivatives with CF₂HSO₂Cl afforded **10a-10f** in good yields. Ketones were also tested under similar conditions. Research on direct difluoromethylthiolation of kentones are very limited up to now. Reactions of a series of indanone derivatives with CF₂HSO₂Cl gave difluoromethylthiolated **11a-10f** in 73-90% yields. Other ketones like 1-tetralone and 1-acenaphthenone also afforded corresponding products **11g** and **11h** in 82% and 73% yields, respectively.

Conclusions

In summary, CF₃SOCl is introduced as a new reagent for electrophilic trifluoromethylthiolation and bifunctionalization. The new reaction process is different from previously reported methods using CF₃SO₂-based reagents such as CF₃SO₂Na and CF₃SO₂Cl. The SOCF₃ intermediate was first generated and then reduced by CF₃SOCl to form

FULL PAPER

Table 9. Difluoromethylthiolation using CF₂HSOC1

Reaction conditions: indole or ketone (0.2 mmol), CF₂HSOCl (0.6 mmol), in MeCN (1 mL) under N₂ at 90 °C for 6 h (for indole) or in toluene (1 mL) under N₂ at 110 °C for 12 h (for ketone), isolated yields; isolated yields.

SCF₃ product. Meanwhile, CF₃SOCl also generates reactive CF₃S⁺ through self-disproportionation. Under catalyst-free conditions, CF₃SOCl is able to trifluoromethylthiolate indoles, ketones, thiols and benzeneselenols effectively without an additiona reductant. In the present of Ag₂CO₃ catalyst, CF₃SOCl reacts with benzothiophenes, benzofurans and indenes. In addition, by simply increasing the reaction time or changing the reaction solvent, 1,2-bifunctional chlorotrifluoromethylthiolation could be achieved for indoles, alkenes and alkyens. CF₂HSOCl was also successfully synthesized and used for difluoromethylthiolation under the catalyst-free conditions.

Experimental Section

General Procedure for Reaction of Indoles for 4a-o

A 10 mL oven-dried reaction vessel was charged with an indole (0.2 mmol) and trifluoromethansulfinyl chloride (**3**, 0.6 mmol). Acetonitrile (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N₂ at 90 °C for 6 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding trifluoromethylthiolation substituted products.

General Procedure for Reaction of Thiophenes for 4p, 4q

A 10 mL oven-dried reaction vessel was charged with a thiophene (0.2 mmol) and trifluoromethansulfinyl chloride (**3**, 0.6 mmol). Dichloroethane (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N₂ at 90 0C for 6 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding trifluoromethylthiolation substituted products.

General Procedure for the synthesis of 4r-v

A 10 mL oven-dried reaction vessel was charged with a benzothiophene, benzofuran or indene (0.2 mmol), trifluoromethansulfinyl chloride (3, 0.6 mmol) and silver carbonate (Ag₂CO₃, 0.04 mmol). Toluene (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N₂ at 110 °C for 12 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding trifluoromethylthiolated product.

General procedure for Trifluoromethylthiolation of Kentones (5a-5p).

A 10 mL oven-dried reaction vessel was charged with a ketone (0.2 mmol), trifluoromethansulfinyl chloride (3, 0.6 mmol) (for 5i-5p, silver carbonate (Ag₂CO, 0.04 mmol) was also added). Toluene (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N₂ at 110 $^{\circ}$ C for 12 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding trifluoromethylthiolated product.

General Procedure for Reaction of Thiols and Benzeneselenol for 6a-1

A 10 mL oven-dried reaction vessel was charged with a thiol or benzeneselenol (0.2 mmol) and trifluoromethansulfinyl chloride (3, 0.6 mmol). Dichloroethane (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N₂ at 90 0 C for 1 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding trifluoromethylthiolated product.

General Procedure for Chlorotrifluoromethylthiolation of Indoles for 7a-k

A 10 mL oven-dried reaction vessel was charged with an indole (0.2 mmol) and trifluoromethansulfinyl chloride (**3**, 0.6 mmol). Acetonitrile (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N_2 at 90 0C for 20 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding chlorotrifluoromethylthiolated product.

General Procedure for Chlorotrifluoromethylthiolation of Alkenes for 8a-m

A 10 mL oven-dried reaction vessel was charged with an alkene (0.2 mmol) and trifluoromethansulfinyl chloride (**3**, 0.6 mmol). DMF (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N₂ at 90 0 C for 1 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding chlorotrifluoromethylthiolated product.

General Procedure for Chlorotrifluoromethylthiolation of Alkynes for 9a-0

A 10 mL oven-dried reaction vessel was charged with an alkyne (0.2 mmol) and trifluoromethansulfinyl chloride (**3**, 0.6 mmol). DMF (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N₂ at 90 0 C for 6 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding chlorotrifluoromethylthiolated product.

Synthesis of CF₂HSOCl

A 10 mL oven-dried reaction vessel was charged with CF₂HSO₂Na (10g, 72.5 mmol) and benzyltriethylammonium chloride (0.5g, 2.2 mmol). Toluene (30 mL) was added to the sealed reaction vessel by syringe. Thionyl chloride (SOCl₂) was added dropwise under vigorous stirring at room temperature, and the mixture was kept for 18 h. The ¹⁹F NMR showed that the conversion ratio was about 70%.

For the isolation of CF₂HSOCl, the crude mixture was filtered by Silica gel, and the residue was washed by toluene (20 ml). The collected liquid contains CF₂HSOCl and toluene, which cannot be separated by small-scale distillation. The sample of CF₂HSOCl containing traces of toluene was obtained by fractional distillation through a 15-cm column with glass filling.

FULL PAPER

General Procedure for Difluoromethylthiolation of Indoles for 10a-f

A 10 mL oven-dried reaction vessel was charged with an indole (0.2 mmol) and difluoromethansulfinyl chloride (0.6 mmol). Acetonitrile (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N_2 at 90 0 C for 6 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding difluoromethylthiolation substituted products.

General Procedure for Difluoromethylthiolation of Kentones for 11a-h

A 10 mL oven-dried reaction vessel was charged with a ketone (0.2 mmol), difluoromethansulfinyl chloride (0.6 mmol). Toluene (1 mL) was added to the sealed reaction vessel by syringe. The resulting solution was stirred under N₂ at 110 0 C for 12 h. After cooling to room temperature the volatiles were removed under vacuum and the residue was purified by column chromatography to give the corresponding difluoromethylthiolated product.

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (21776138, 21476116), Fundamental Research Funds for the Central Universities (30916011102, 30918011314), Natural Science Foundation of Jiangsu Province (BK20180476), Qing Lan and Six Talent Peaks in Jiangsu Province, Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Centre for Green Chemistry at the University of Massachusetts Boston and the Center for Advanced Materials and Technology in Nanjing University of Science and Technology for financial support. We also acknowledge the Bruker DRX 500 at Analysis and Test Center Nanjing University of Science and Technology for the help in obtaining NMR data.

Author Contributions

‡ L. Jiang and Q. Yan contributed equally

Keywords: Trifluoromethanesulfinyl Chloride • Reductant-free • Trifluoromethythiolation• Bifunctional Chlorotrifluoromethythiolation

- a) C. Hansch, Leo, A. R.W. Taft, *Chem. Rev.* **1991**, *91*, 165; b) T. Hiyama, Organofluorine Compounds: Chemistry and Properties; Springer: Berlin, 2000; c) K. Uneyama, Organofluorine Chemistry; Blackwell: Oxford, U.K., **2006**; (d) D. O'Hagan, *Chem. Soc. Rev.* **2008**, *37*, 308.
- [2] a) P. Laczay, G. Voros, G. Semjen, Int. J. Parasitol. 1995, 25, 753; b) P. Pommier, A. Keïta, S. W. Robert, B. Dellac, H. C. Mundt, Rev. Med. Vet. 2003, 154, 416; c) J. N. Andre, L. G. Dring, G. Gillet, Mas-Chamberlin, C. Br. J. Pharmacol. 1979, 66, 506P; d) T. Silverstone, J. Fincham, J. Br. Plumley, J. Clin. Pharmacol. 1979, 7, 353; e) G. W. Counts, D. Gregory, D. Zeleznik, M. Turck, Antimicrob. Agents Chemother. 1977, 11, 708; f) N. Aswapokee, H. C. Neu, Antimicrob. Agents Chemother. 1979, 15, 444; g) C. Hansch, A. Leo, Substituent constants for correlation analysis in chemistry and biology; Wiley: New York, 1979; p339; h) J. Wang, M. S. Rosello, J. Acena, C. Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432.
- [3] A. Aajoud, M. Raveton, D. Azrou-Isghi, M. Tissut, P. J. Ravanel, Agric. Food Chem. 2008, 56, 3732.
- [4] T. Silverstone, J. Fincham, J. Plumley, Br. J. Clin. Pharmacol. 1979, 7, 353.
- [5] L. M. Yagupolskii, I. I. Maletina, K. I. Petko, D. V. Fedyuk, R. Handrock, S. S. Shavaran, B. M. Klebanov, S. Herzig, J. Fluorine Chem. 2001, 109, 87.
- [6] R. B. Strelkov, L. F. Semenov, Radiobiologiya 1964, 4, 756.
- [7] a) V. N. Boiko, Beilstein J. Org. Chem. 2010, 6, 880; b) A. Tlili, T. Billard, Angew. Chem. Int. Ed. 2013, 52, 6818; c) X. H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 2015, 115, 731; d) X. Shao, C. Xu, L. Lu, Q. Shen, Acc.

Chem. Res. 2015, 48, 1227; e) K. Zhang, X. H. Xu, F. L. Qing, Chin. J. Org. Chem. 2015, 35, 556; f) J. H. Lin, Y. L. Ji, J. C. Xiao, Curr. Org. Chem. 2015, 19, 1541.

- [8] a) W. A. Sheppard, J. Org. Chem. 1964, 29, 895; b) T. S. Croft, J. J. McBrady,
 J. Heterocycl. Chem. 1975, 12, 845; c) A. Haas, M. Lieb, Y. Zhang, J.
 Fluorine Chem. 1985, 29, 311.
- [9] T. R. Sharpe, S. C. Cherkofsky, W. E. Hewes, D. H. Smith, W. A. Gregory, S. B. Haber, M. R. Leadbetter, J. G. Whitney, J. Med. Chem. 1985, 28, 1188.
- [10] T. Bootwicha, X. Liu, R. Pluta, I. Atodiresei, M. Rueping, Angew. Chem. Int. Ed. 2013, 52, 12856.
- [11] C. Xu, B. Ma, Q. Shen, Angew. Chem. Int. Ed. 2014, 53, 9316.
- [12] S. Alazet, L. Zimmer, T. Billard, Chem. Eur. J. 2014, 20, 8589.
- [13] P. Zhang, M. Li, X. S. Xue, C. Xu, Q. Zhao, Y. Liu, H. Y. Wang, Y. Guo, L. Lu, Q. Shen, J. Org. Chem. 2016, 81, 7486.
- [14] a) X. Shao, X. Q. Wang, T. Yang, L. Lu, Q. Shen, Angew. Chem. Int. Ed. 2013, 52, 3457; b) E. V. Vinogradova, P. Muller, S. L. Buchwald, Angew. Chem. Int. Ed. 2014, 53, 3125
- [15] F. Baert, J. Colomb, T. Billard, Angew. Chem. Int. Ed. 2012, 51, 10382.
- [16] A. Ferry, T. Billard, B. R. Langlois, E. Bacqu, Angew. Chem. Int. Ed. 2009, 48, 8551.
- [17] a) Y. D. Yang, A. Azuma, E. Tokunaga, M. Yamasaki, M. Shiro, N. Shibata, J. Am. Chem. Soc. 2013, 135, 8782; b) Z. Huang, Y. D. Yang, E. Tokunaga, N. Shibata, Org. Lett. 2015, 17, 1094; c) S. Arimori, M. Takada, N. Shibata, Org. Lett. 2015, 17, 1063.
- [18] Z. Huang, K. Okuyama, C. Wang, E. Tokunaga, X. Li, N. Shibata, *ChemistryOpen* **2016**, DOI: 10.1002/open.201500225.
- [19] a) L. Jiang, J. Qian, W. Yi, G. Lu, C. Cai, W. Zhang, Angew. Chem. Int. Ed. **2015**, 54, 14965; b) Q. Yan, L. Jiang, W. Yi, W. Zhang, Q. Liu, Adv. Synth. Catal. **2017**, 359, 2471; c) M. Bu, G. Lu, C. Cai, Org. Chem. Front., **2017**, 4, 266; d) D.-W. Sun, X. Jiang, M. Jiang, Y. Lin, J.-T. Liu, Eur. J. Org. Chem. **2017**, 3505; e) X. Zhao, A. Wei, B. Yang, T. Li, Q. Li, D. Qiu, K. Lu, J. Org. Chem. **2017**, 82, 9175.
- [20] Y. Yang, L. Xu, S. Yu, X. Liu, Y. Zhang, D. A. Vicic, *Chem. Eur. J.* 2016, 22, 858.
- [21] a) H. Chachignon, M. Maeno, H. Kondo, N. Shibata, D. Cahard, Org. Lett. **2016**, 18, 2467; b) L. Jiang, W. Yi, Q. Liu, Adv. Synth. Catal. **2016**, 358, 3700; c) K. Lu, Z. Deng, M. Li, T. Li, X. Zhao, Org. Biomol Chem. **2017**, 15, 1254; d) X. Zhao, T. Li, B. Yang, D. Qiu, K. Lu, Tetrahedron **2017**, 73, 3112; e) L. Jiang, T. Ding, W. Yi, X. Zeng, W. Zhang, Org. Lett. **2018**, 20, 2236.
- [22] H. Han, Z. Zhou, J. Nie, X. Cheng, S. Gong; Patent CN102916096, 2012.
- [23] a) O.D. Gupta, W. A. Kamil, J. M. Shreeve, Inorg. Chem. 1985, 24, 2127;
 b) V. D. Romanenko, C. Thoumazet, V. Lavallo, F. S. Tham, G. Bertrand, Chem. Commun. 2003, 1680; c) L. J. Liu, L. J. Chen, P. Li, X. B. Li, J. T. Liu, J. Org. Chem. 2011, 76, 4675.
- [24] C. T. Ratcliffe, J. M. Shreeve, J. Am. Chem. Soc. 1968, 90, 5403.
- [25] a) Q. Lefebvre, E. Fava, P. Nikolaienko, M. Rueping, *Chem. Commun.* 2014, 50, 6617; b) M. Y. Hu, J. Rong, W. J. Miao, C. F. Ni, Y. X. Han, J. B. Hu, *Org. Lett.* 2014, *16*, 2030; c) S. Alazet, E. Ismalaj, Q. Glenadel, D. Le Bars, T. Billard, *Eur. J. Org. Chem.* 2015, *4607*; d) W. Wu, X. Zhang, F. Liang, S. Cao, *Org. Biomol. Chem.* 2015, *13*, 6992.
- [26] a) F. Cardona, A. Goti, *Nat. Chem.* 2009, *1*, 269; b) R. I. McDonald, G. Liu,
 S. S. Stahl, *Chem. Rev.* 2011, *111*, 2981. c) J. P. Wolfe, *Angew. Chem. Int. Ed.* 2012, *51*, 10224.
- [27] a) X.-J. Tang, W. R. Dolbier, Jr., Angew. Chem. Int. Ed. 2015, 54, 4246; b)
 H. S. Han, Y. J. Lee, Y.-S. Jung, S. B. Han, Org. Lett. 2017, 19, 1962.
- [28] D.-W. Sun, X. Jiang, M. Jiang, Y. Lin, J.-T. Liu, Eur. J. Org. Chem. 2018, 18, 2078.
- [29] J. Hu, J. Fluorine Chem. 2009, 130, 1130.

FULL PAPER

Entry for the Table of Contents

FULL PAPER

Trifluoromethanesulfinyl chloride (CF₃SOCl) is introduced as a new reagent for C-H trifluoromethylthiolation of indoles, thiophenes, ketones, thiols and benzeneselenols, as well as 1,2-chlorotrifluoromethylthiolation of indoles, styrenes, and alkyens.

Lvqi Jiang, Qiang Yan, Rongkang Wang, Tianqi Ding, Wenbin Yi* and Wei Zhang*

Page No. – Page No.

Trifluoromethanesulfinyl Chloride for Electrophilic Trifluoromethythiolation and Bifunctional Chlorotrifluoromethythiolation