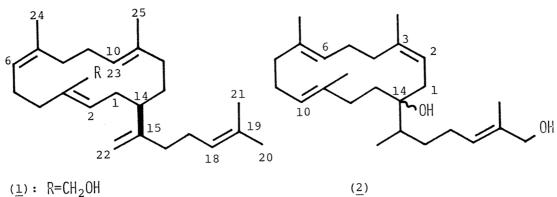
REVISED STRUCTURE OF CERIFERIC ACID

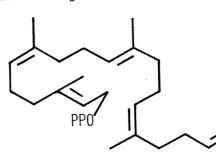

Yoko NAYA*, Fumiko MIYAMOTO, Keiko KISHIDA, Takenori KUSUMI † , Hiroshi KAKISAWA⁺, and Koji NAKANISHI Suntory Institute for Bioorganic Research**, Shimamoto-cho, Mishima-gun, Osaka 618 [†]Department of Chemistry, The University of Tsukuba, Niihari-gun, Sakura-mura, Ibaraki 300-31

The structure of ceriferic acid, a scale insect sesterterpene secretion, has been revised from 10 to 5. Naturally occurring ceriferol has been correlated with ceriferic acid.

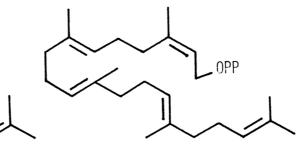
We recently reported the structures of a series of 14-membered monocyclic sesterterpenoids isolated from the secretion of a Japanese scale insect Ceroplastes ceriferus Anderson (Coccidae).^{1,2} Eight of these possess the 2-t/6c/10-t skeletal framework as exemplified by cericerol-I (1), $[\alpha]_{D}^{27}$ -84.1°, for which the absolute configuration at C-14 was established by chemical correlations;¹ two minor congenors possibly have 2-t/6-c/10-c and 2-t/6-t/10-t skeletons.²

The arrangement of annular double bonds in these compounds is in contrast to that of albocerol (2) which was isolated from the Mexican species C. albolineatus by Veloz et al.³ It should be noted that the skeletons of 1 and 2 are derived, respectively, from two opposing cyclization modes of the biogenetic precursor geranylfarnesyl pyrophosphate (3) and (4).^{2,3} It was thus quite remarkable that spectral data of ceriferic acid isolated from the Japanese species C. ceriferus (collected in Tokyo area) led to the albocerol- or Mexican-type structure (10);⁴ it even implied necessity for a taxonomic reinvestigation. In the following, however, we show that ceriferic acid should after all be represented by the cericerol-I type structure (5).

The evidence leading to the revised structure is as follows: 1) Ceriferic acid showed no CD Cotton effect. Therefore, the α , β -unsaturated carboxylic acid group, which from ¹H- and ¹³C-NMR data is clearly part of a *cis*

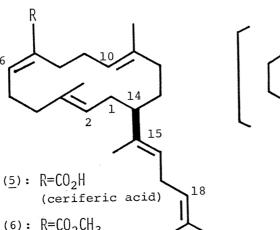


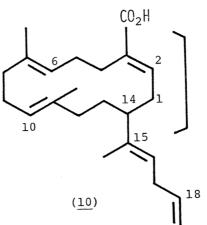
(2) (albocerol)


(<u>11</u>): R=CH₃

R

6




(cericerol-I)

(<u>4</u>)

(<u>3</u>)

- $(\underline{6}): R=CO_2CH_3$
- (<u>7</u>): R=CH₂OH (ceriferol)
- (<u>8</u>): R=CH₂OTs
- (<u>9</u>): R=CH₃

<u>Table 1.</u> ¹³C-NMR chemical shifts of methyl ceriferate (<u>6</u>), ceriferol (<u>7</u>), " α cericerene" (<u>9</u>), and cericerene (<u>11</u>) in CDCl₃. Peak assignments are based
on measurements of T₁ and ¹³C-NOE¹ in addition to the more conventional
techniques.

C- <u>a</u> tom	<u>6</u>	<u>7</u>	<u>9</u>	11
C-1	29.8 ^a	29.6 ^a	29.4 ^a	30.5 ^a
C-2	125.3 ^b	125.0 ^b	125.2 ^b	125.1 ^b
C-3	133.7 ^C	133.2 ^C	133.8 ^C	134.1 ^C
C-4	31.2 ^a	29.9 ^a	30.4 ^a	31.1 ^a
C-5	26.9	27.2	31.0 ^a	31.4 ^a
C-6	142.4	127.6	124.9 ^b	125.1 ^b
C-7	131.3 ^d	137.6	133.1 ^C	132.9 ^C
C-8	36.0	35.8	35.8	36.2
C-9	26.0	24.6 ^d	24.5	24.6
C-10	125.4 ^b	125.0 ^b	124.9 ^b	125.0 ^b
C-11	132.9 ^C	133.1 ^C	132.9 ^C	133.0 ^C
C-12	40.3	30.2	40.2	40.3
C-13	24.5	24.5 ^d	24.5	24.6
C-14	49.9	46.4	46.6	44.6
C-15	136.4	136.8	137.1	153.0
C-16	123.4	123.5	123.7	33.7
C-17	26.9	26.9	26.8	26.6
C-18	124.6	124.8 ^b	124.5	124.6 ^b
C-19	131.1 ^d	131.2	131.0	131.3
C-20	25.7	25.6	25.6	25.7
C-21	17.7	17.7	17.7	17.8
C-22	12.3	12.0	12.0	108.9
C-23	15.6 ^e	15.6 ^e	15.6 ^d	15.6 ^d
C-24	168.4	66.6	22.4	22.5
C-25	15.3 ^e	15.4 ^e	15.4 ^d	15.5 ^d
-coo <u>c</u> h ₃	51.3			

a-e) Assignments denoted by same alphabet are interchangeable.

<u>skeleton framework, ⁴ must be remote from the sole chiral center at C-14</u>; if it were as in <u>10</u>, the CD should have shown a Cotton effect at the λ_{max} of ceriferic acid. Of the two 14-membered skeletal possibilities, <u>5</u> (or <u>1</u>) and <u>10</u>, it is only structure <u>5</u> which satisfies the two criteria underscored above. 2) Reduction of methyl ceriferate (<u>6</u>) with LiAlH₄ gave "ceriferol" (<u>7</u>), which was further converted into the tosylate (<u>8</u>) by careful treatment with TsCl/py at 0 °C. Tosylate <u>8</u> with its strongly absorbing chromophore also lacked a CD Cotton effect, thus confirming the deductions described above.

3) Acid treatment of tosylate $\underline{8}$ simply resulted in hydrolysis to alcohol $\underline{7}$. In contrast, acid treatment of the tosylate derived from cericerol-I $\underline{1}$ underwent transannular cyclization to a bicyclocericerene.⁵

4) The neutral fraction of *C. ceriferus* collected around Kyoto in 1979 has given, in addition to cericerol-I $\underline{1}$, an alcohol, $[\alpha]_D^{24}$ -83.5° (c, 1.33), the physical constants (MS, NMR, IR, and rotation) of which were identical with those of allyl alcohol $\underline{7}$ (ceriferol). Furthermore, the acidic fraction gave ceriferic acid, $[\alpha]_D^{26}$ -97.6° (c, 1.02); these findings are in line with the taxonomical identify of the Tokyo and Kyoto species.

5) The ¹³C-NMR data of ceriferic acid $\underline{5}$ derivatives are in good agreement with cericerol-I $\underline{1}$ derivatives, a further support for the skeletal identity. This is exemplified by a comparison of the data for hydrocarbons (9), $[\alpha]_D^{19}$ -28.8° (c, 0.24) (derived from tosylate $\underline{8}$ by LiAlH₄ treatment) and $(\underline{11})_D^1$ $[\alpha]_D^{27}$ -48.3° (c, 0.48) (derived from cericerol-I) (Table 1). The data for methyl ceriferate $\underline{6}$ and ceriferol $\underline{7}$ given in Table 1 are in accord with the structural variations.

Finally, in analogy with other cericerol-I $\underline{1}$ derivatives, we assign an R-configuration (or " β " as depicted) to the C-14 of ceriferic acid $\underline{5}$.

REFERENCES

F. Miyamoto, H. Naoki, T. Takemoto, and Y. Naya, Tetrahedron, <u>35</u>, 1913 (1979).
 F. Miyamoto, H. Naoki, Y. Naya, and K. Nakanishi, Tetrahedron in press.
 R. Veloz, L. Quijano, J.S. Calderon, and T. Rios, J.C.S. Chem. Commun., <u>1975</u>, 191.
 T. Kusumi, T. Kinoshita, K. Fujita, and H. Kakisawa, Chem. Lett., <u>1979</u>, 1129.
 To be published elsewhere.

** Previous name: The Institute of Food Chemistry

(Received May 6, 1980)