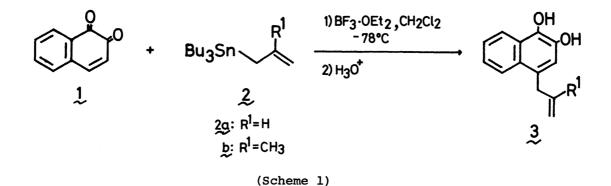
A CONVENIENT ALLYLATION OF ORTHO-QUINONES. AN EXTENSION ON THE UTILITY OF ALLYLTIN REAGENTS

Kazuhiro MARUYAMA, Akio TAKUWA, Yoshinori NARUTA, Kuniaki SATAO, and Osamu SOGA


*Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606 ** Department of Chemistry, Faculty of Science, Shimane University, Matsue 690

Lewis acid catalyzed allylation of 1,2-naphthoquinones and o-benzoquinones with allyltributyltins gave monoallylation products in reasonable to high yields.

Introduction of an isoprenoid functionality into a quinone ring is an essential problem in the synthesis of isoprenoid quinones which play a pivotal role in the electron transport chain in both photosynthetic and respiratory processes.¹⁾ Several methods have been employed to synthesis of these biological active isoprenyl quinones.²⁾ However, these methods remains fundamentally limited by the aspects of yields, regio- and stereoselectivity, and the difficulty of preparing a starting materials. Recently, we reported the direct introduction of allyl or prenyl group into p-quinones using allyltin reagents overcomes such limitations.³⁾ Thus, coenzyme Q series, vitamin K series, and plastoquinone-1 were prepared satisfactorily by this method.^{3),4)} In addition, we revealed that the reaction appeared to proceed through allylquinol intermediates which underwent [1,2]rearrangement under influence of BF₃ to give allylhydroquinones.⁴⁾ Since little is known about the allylation of o-quinones, extension of this allylating method to o-quinones will open an important route to the synthesis of natural products.

We wish to report here the allylation of 1,2-naphthoquinone and o-benzoquinones with allyltributyltin reagent in the presence of BF_3OEt_2 . Thus, the reaction of allyltributyltins⁵⁾ (2) with 1,2-naphthoquinones in dichloromethane gave allyl substituted 1,2-naphthalenediols (3) in fair to good yields (Scheme 1).

Typically the reaction was carried out by dropwise addition of an allyltributyltin (2) (0.6 mmol) to a stirred dichloromethane solution (10 ml) of quinone (1) (0.5 mmol) and $BF_{3}OEt_{2}$ (0.75 mmol) under nitrogen at -78°C. After the addition, the resulting mixture was stirred continuously and allowed to stand at

room temperature. The reaction was quenched by addition of 2N-HCl and products were extracted with ether. Since 4-allyl-1,2-naphthalenediols (3) were very airsensitive, the dried ethereal extract was quickly concentrated by evaporator *in vacuo*, and treated with acetic anhydride-pyridine under nitrogen or otherwise treated with silver oxide to give quinones. Thus obtained diacetates or quinones were purified by preparative thin layer chromatography on silica gel(developing solvent: benzene). The products and their isolated yields are summarized in Table 1.

Marked contrast of the present reaction compared with those reported²⁾ is exemplified in the allylation of 1,2-naphthoquinone. The reaction with π -2-methallylnickel bromide complexes gave 2:1 mixture of the mono-(49%) and diallylated(29%) products. By the present method monoallylated product was afforded exclusively.

o-Benzoquinones also reacted with allyltributyltin to give the corresponding monoallylcatechols in very high yields (Table 1). Thus, o-benzoquinone, and its 4-methyl, and 4-*tert*-butyl derivatives produced the corresponding 5-allyl substituted catechols. In contrast, 3,5-dimethyl-o-benzoquinone afforded exclusively 4-allyl-3,5-dimethylcatechol. Remarkable thing is that halogen atoms and cyano group as the substituent on quinone ring are inert to this allylation.

To clarify the initial stage of the reaction of o-quinone with allyltin reagent, the reactions of 4-substituted 1,2-naphthoquinones and sterically hindered 3,5-di*tert*-butyl-o-benzoquinone were examined. Thus, 4-cyano-1,2-naphthoquinone, 4-methoxy-1,2-naphthoquinone,⁶⁾ and 3,5-di-*tert*-butyl-o-benzoquinone gave the corresponding 1,2-addition products to carbonyl in high yields, i.e., <u>4</u>, <u>5</u>, and <u>6</u> given in Table 1. In the allylation of 4-cyano-1,2-naphthoquinone the 1,2-addition took place at 2-carbonyl, but in that of 4-methoxy-1,2-naphthoquinone at 1-carbonyl, probably because of the influence of the mesomeric effect of the substituents. Therefore, initial site of the allylation may be governed with electron density of carbonyl carbon at position 1 or 2 of quinone.

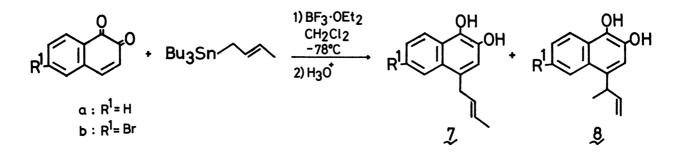

Quinone ^a	Allyltin	Product ^b		
			(%)	
1,2-NQ	2a	4-Allyl-1,2-naphthalenediol	78 ^d	
	20	4-(2-Methyl-2-propenyl)-1,2-naphthalenediol	78 ^d 68 ^d	
6-Bromo-1,2-NQ	2a	4-Allyl-6-bromo-1,2-naphthalenediol		
	2b	4-(2-Methyl-2-propenyl)-6-bromp-1,2-naphthalenediol		
3-Methoxy-1,2-NQ	2a	4-Ally1-3-methoxy-1,2-naphthalenediol		
	210	3-Methoxy-4-(2-methyl-2-propenyl)-1,2-naphthalenediol		
3-Chloro-1,2-NQ	26	3-Chloro-4-(2-methyl-2-propenyl)-1,2-naphthalenediol		
4-Cyano-1,2-NQ	2a	4		
4-Methoxy-1,2-NQ	2a	5		
o-BQ	2a	4-Allylcatechol		
4-Methyl-o-BQ	2a	4-Allyl-5-methylcatechol		
4- <i>tert-</i> Butyl-o-BQ	2a	4-Allyl-5-tert-butylcatechol		
3,5-Dimethyl-o-BQ	2a	4-Allyl-3,5-dimethylcatechol		
3,5-di- <i>tert</i> -Butyl-o-BQ	-	¢		

Table 1. Allylation of Ortho-quinones with Allyltributyltins

^a1,2-NQ: 1,2-Naphthoquinone; o-BQ: o-Benzoquinone. ^bCharacterized by infrared and nmr spectra after acetylation or oxidation to quinone. ^CYields refer to isolated products, based on used quinone. ^dYields after acetylation with acetic anhydride-pyridine. ^eYields after oxidation with silver oxide.

In addition, we examined the reaction of 1,2-naphthoquinones with unsymmetrical allylic reagent, i.e., 2-butenyltributyltin,⁷⁾ under the same reaction conditions (Scheme 2).

(Scheme 2)

When 4-cyano-1,2-naphthoquinone was treated with crotyltin reagent and quenched at -30°C, α -adduct (1,2-addition product) (9) was obtained exclusively(isolated

yield: 91%). This indicates that addition of allyltin reagent to carbonyl of 1,2-naphthoquinone occurs at the α allyl terminus. However, 1,2-naphthoquinone and 6-bromo-1,2-naphthoquinone gave a mixture of rearranged products, 7_{α} (α -adduct) and 8_{α} (γ -adduct) as shown in scheme 2, and their distributions were shown in

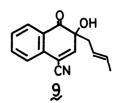


Table 2. This is a quite interesting difference compared with the results in the reactions of p-quinones,⁴⁾ but the due course of the reaction will be written in future.

Quinone	Product	Yield ^b (%)	Product distribution ^C (%)	
		(0)	α -adduct($\frac{7}{2}$)	γ-adduct(8)
1,2-Naphthoquinone	7a and 8a	85	54	46
6-Bromo-1,2-naphthoquinone	7b and 8b	91	73	27

Table 2. Reaction of 2-butenyltributyltin with 1,2-naphthoquinone^a

^aReactions were performed in 0.5 mmol scale under standard conditions. ^bIsolated yield after acetylation, based on used quinone. ^cDetermined by ¹H-nmr.

References and Notes

- 1)R.M.Bentley and I.M.Campbell in "The Chemistry of Quinonoid Compounds", part 2, S.Patai, Ed., Wiley, New York, N.Y., 1974, pp 683-736.
- 2) For example, L.S.Hegedus, B.R.Evans, D.E.Korte, E.L.Watermann, and K.Sjöberg,
 J. Am. Chem. Soc., <u>98</u>, 3901 (1976) and references cited theirin.
- 3) K.Maruyama and Y.Naruta, Chem. Lett., <u>1978</u>, 431; Y.Naruta, ibid., <u>1979</u>, 881;
 Y.Naruta, S.Ushida, and K.Maruyama, ibid, <u>1979</u>, 919; K.Maruyama and Y.Naruta,
 J. Org. Chem., 43, 3796 (1978); Y.Naruta and K.Maruyama, Chem. Lett., 1979, 885.

4) Y.Naruta, J. Am. Chem. Soc., <u>102</u>, 3774 (1980); Y.Naruta, J. Org. Chem., in press.

- 5) Allyltributyltin(2a) and 2-methyl-2-propenyltributyltin(2b) were prepared according to the literature: cf. E.A.Abel and R.J.Rowley, J. Organomet. Chem., 84, 199 (1975).
- 6) When 2 equiv. of BF₃OEt₂ to 4-methoxy-1,2-naphthoquinone was used, the reaction did not occur, and the quinone was recovered almost quantitatively, but use of 10 equiv. BF₃OEt₂ to the quinone accomplished the reaction to give 5.
- 7)2-Butenyltributyltin was prepared from tributyltin lithium and 1-chloro-2-butene: cf. E.Matarasso-Tchiroukhine and P.Cadiot, J. Organomet. Chem., <u>121</u>, 155 (1976) and Ref. (4).