

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 5894-5896

A straightforward stereoselective synthesis of *meso-*, (*S*,*S*)and (*R*,*R*)-2,6-diaminopimelic acids from *cis*-1,4-diacetoxycyclohept-2-ene

Yukako Saito, Takumi Shinkai, Yuichi Yoshimura and Hiroki Takahata*

Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai 981-8558, Japan

Received 4 July 2007; revised 24 July 2007; accepted 26 July 2007 Available online 26 August 2007

Abstract—A straightforward synthesis of *meso*-2,6-diaminopimelic acid (DAP) *meso*-1 was developed from 1,4-diacetoxycyclohept-2-ene (2) via an oxidative ring cleavage. Subsequently, an enantio-divergent synthesis of (*S*,*S*)- and (*R*,*R*)-1 was performed using a homochiral monoacetate 7 available from 2 by enzymatic desymmetrization. © 2007 Elsevier Ltd. All rights reserved.

2,6-Diaminopimelic acid (DAP) is a naturally occurring amino acid found in both bacteria and higher plants. It is a symmetrical α, α' -diaminodicarboxylic acid and can therefore exist in three stereoisomeric forms (Fig. 1). meso-DAP and (S,S)-DAP serve as the precursors in the biosynthesis of L-lysine in both bacteria and higher plants and meso-DAP is also an essential component of the peptidoglycan of most pathogenic bacteria (Fig. 2). Since DAP is not a constituent of animal tissue and the DAP biosynthetic pathway is absent in mammals, inhibitors of the diaminopimelate pathway have a good chance of displaying low toxicity toward the mammalian host. Inhibition of either DAP biosynthesis or its utilization, therefore, affords an attractive target for antibacterial chemotherapy.¹ In addition, a number of peptidoglycan fragments featuring the DAP residue exhibit antitumor, immunostimulant, and sleep-inducing biological activity.² The development of efficient routes to the synthesis of DAP stereoisomers and their analogues has recently been the focus of considerable attention.³ In general, most of the methodologies described for the synthesis of DAP start from either α amino acids or chiral glycine templates. In addition, the synthesis of all three stereoisomers of DAP from

0960-894X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.07.106

a common substrate has not been reported. Herein, we describe a convenient synthesis of *meso*-DAP *meso*-1 and an enantio-divergent synthesis of (R,R)-, and (S,S)-DAP as hydrochlorides using 1,4-diacetoxy-cyclohept-2-ene (2) as a common starting material.

Our simple synthetic approach began with the RuCl₃-catalyzed oxidative cleavage of 1,4-diacetoxycyclohept-2-ene (2),⁴ which is readily available from cyclohepta-1,3-diene. Treatment of **2** with catalytic RuCl₃ in the presence of NaIO₄ in a solution of CH₃CN, CCl₄, and H₂O gave the dicarboxylic acid, which was subjected without isolation to dimethylation with TMSCHN₂ to afford the dimethyl ester 3 in 85% yield. Chemoselective hydrolysis of 3 with 0.1 M sodium methoxide in CH₃OH provided the dihydoxide 4 in 71% yield. The diols of 4 were transformed into diazides in a two-step sequence (i, mesylation; ii, azidation) in 72% yield. The azide 5 was reduced with Pd(OH)₂-catalyzed hydrogenation in the presence of di-tert-butyl dicarbonate (Boc₂O) to give N-Boc-DAP dimethylester 6^5 in 83% yield. Finally, deprotection of 6 with 6 N HCl quantitatively furnished the desired meso-DAP as a hydrochloride, which displayed spectroscopic properties consistent with the reported data (Scheme 1).^{3g,6}

With the process for synthesis of *meso*-DAP in hand, we turned our attention to an enantio-divergent synthesis of (R,R)- and (S,S)-DAP from 2. An enzymatic asymmetrization of *meso*-diacetate 2 with Novozyme

Keywords: Amino acid; Enzymatic desymmetrization; Antibacterial chemotherapy; Peptidoglycan.

^{*} Corresponding author. Tel./fax: +81 22 727 0144; e-mail: takahata@tohoku-pharm.ac.jp

Figure 1. Stereoisomers of diaminopimelic acid (DAP).

Figure 2. Peptidoglycan of a bacterial cell wall.

Scheme 1. Reagents and conditions: (a) cat. RuCl₃, NaIO₄, CCl_4 -H₂O-CH₃CN; (b) TMSCHN₂, CH₃OH; (c) 0.1 M NaOCH₃, CH₃OH; (d) CH₃SO₂Cl, pyridine, CH₂Cl₂; (e) NaN₃, DMF; (f) H₂, cat. Pd(OH)₂, Boc₂O, CH₃OH; (g) 6 N HCl.

435 in phosphate buffer solution gave a single enantiomer of monoacetate (1S,4R)-7⁷ in 81% yield (99% ee) together with the diol **8** (10%). The Mitsunobu reaction of **7** with acetic acid using diisopropyl azodicarboxylate (DIPAD) and triphenylphosphine in THF furnished C₂-symmetric diacetate (1S,4S)-9 in 83% yield, which was converted into dibenzoate **10** in a two-step sequence (i, deacetylation; ii, benzoylation). The ee of **10** was determined to be 99% with chiral HPLC. Having a homochiral C₂-symmetric diacetate (1S,4S)-9 obtained, an enantio-controlled synthesis of (R,R)-DAP was accomplished, as shown in Scheme 2 according to a similar procedure described for the synthesis of *meso*-DAP from **2**.^{8,9}

The ultimate goal was the synthesis of (S,S)-DAP. Treatment of (1S,4R)-7 with pivaloyl chloride in the presence of pyridine gave pivaloate 13, which was chemoselectively hydrolyzed to provide the monoester 14 in a two-step 96% yield. The Mitsunobu inversion of 14 afforded *trans*-diacylate 15 (95%), which was quantitatively transformed into a homochiral diacetate (1R,4R)-9 via a C₂-symmetric diol in a two-step sequence (i, reductive deprotection with LiAlH₄; ii, acetylation). Similarly, (S,S)-DAP¹⁰ was obtained from (1R,4R)-9 as described in Scheme 3.

In conclusion, a concise synthesis of *meso-*, (S,S)-, and (R,R)-2,6-diaminopimelic acids **1** as hydrochlorides was accomplished from an achiral *cis*-1,4-diacetoxy-cyclohept-2-ene (**2**) as a common educt. This procedure can apply to the synthesis of *meso*-DAP homologues such as diaminoadipic acid¹¹ and diaminosuberic acid.¹² The homochiral monoacetate (1S,4R)-7 can be used as a building block for preparation of differently protected DAP analogues¹³ for

Scheme 2. Reagents and conditions: (a) Novozyme 435, phosphate buffer; (b) AcOH, PPh₃, ${}^{i}Pr_{2}OOCN=NCOO^{i}Pr_{2}$, THF; (c) 0.1 M NaOCH₃, CH₃OH; (d) PhCOOH, DCC, DMAP, toluene; (e) cat. RuCl₃, NaIO₄, CCl₄—H₂O—CH₃CN; (f) TMSCHN₂, CH₃OH; (g) 0.1 M NaOCH₃, CH₃OH; (h) CH₃SO₂Cl, pyridine, CH₂Cl₂; (i) NaN₃, DMF; (j) H₂, cat. Pd(OH)₂, Boc₂O, CH₃OH; (k) 6 N HCl.

Scheme 3. Reagents and conditions: (a) (CH₃)₃CCOCl, pyridine; (b) 0.1 M NaOCH₃, CH₃OH; (c) AcOH, PPh₃, ⁱPr₂OOCN=NCOOⁱPr₂, THF; (d) LiAlH₄, THF; (e) Ac₂O, pyridine; (f) cat. RuCl₃, NaIO₄, CCl₄-H₂O-CH₃CN; (g) TMSCHN₂, CH₃OH; (h) 0.1 M NaOCH₃, CH₃OH; (i) CH₃SO₂Cl, pyridine, CH₂Cl₂; (j) NaN₃, DMF; (k) H₂, cat. Pd(OH)₂, Boc₂O, CH₃OH; (l) 6 N HCl.

incorporation into peptides.¹⁴ To accomplish this, further studies are in progress.

Acknowledgments

This work was supported, in part, by the High Technology Research Program from the Ministry of Education, Culture, Sports, Sciences, and Technology of Japan.

References and notes

- 1. Recent reviews: (a) Cox, R. J.; Sutherland, A.; Vederas, J. C. Bioorg. Med. Chem. 2000, 8, 843; (b) Cox, R. J. Nat. Prod. Rep. 1996, 13, 29.
- 2. (a) Johannsen, L.; Wecke, J.; Obal, F.; Krueger, J. M. Am. J. Phys. 1991, 260, R126; (b) Luker, K. E.; Tyler, A. N.; Marshall, G. R.; Goldman, W. E. Mol. Microbiol. 1995, 16, 733; (c) Takada, H.; Kawabata, Y.; Kawata, S.; Kusumoto, S. Infect. Immun. 1996, 64, 657; (d) Gotoh, T.; Nakahara, K.; Iwami, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1982, 35, 1280; (e) Hemmi, K.; Takeno, H.; Okada, S.; Nakaguchi, O.; Kitaura, Y.; Hashimoto, M. J. Am. Chem. Soc. 1981, 103, 7026; (f) Kitaura, Y.; Nakaguchi, O.; Takeno, H.; Okada, S.; Yonishi, S.; Hemmi, K.; Mori, J.; Senoh, H.; Mine, Y.; Hashimoto, M. J. Med. Chem. 1982, 25, 335; (g) Gotoh, T.; Nakahara, K.; Nishiura, T.; Hashimoto, M.; Kino, T.; Kuroda, Y.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. J. Antibiot. 1982, 35, 1286.
- 3. Syntheses of meso-DAP (a) Roberts, J. L.; Chan, C. Tetrahedron Lett. 2002, 43, 7679; (b) Wang, W.; Xiong, C.; Yang, J.; Hruby, V. J. Synthesis 2002, 94; (c) Co, S.; Sier, P. N.; Campbell, A. D.; Patel, I.; Raynham, T. M.; Taylor, R. J. K. J. Org. Chem. 2002, 67, 1802; (d) Co, S.; Sier, P. N.; Patel, I.; Taylor, R. J. K. Tetrahedron Lett. 2001, 42, 5953; (e) Davis, F. A.; Srirajan, V. J. Org. Chem. 2000, 65, 3248; (f) Gao, Y.; Lane-Bell, P.; Vederas, J. C. J. Org. Chem. 1998, 63, 2133; (g) Arakawa, Y.; Goto, T.; Kawase, K.; Yoshifuji, S. Chem. Pharm. Bull. 1998, 46, 674; (h) Syntheses of (S,S)-DAP^{3b}; (i) Paradisi, F.; Porzi, G.; Rinaldi, S.; Sandri, S. Tetrahedron: Asymmetry 2000, 11, 1259; (j) Bold, G.;

Allmendinger, T.; Herold, P.; Moesch, L.; Schaer, H. P.; Duthaler, R. O. Helv. Chim. Acta 1992, 75, 865 ; (k) Bouchaudon, J.; Dutruc-Rosset, G.; Farge, D.; James, C. J. Chem. Soc. Perkin Trans. 1989, 1, 695; (1) Syntheses of (R,R)-DAP ^{3c}; (m) Williams, R. M.; Yuan, C. J. Org. Chem. 1992, 57, 6519.

- 4. Bäckvall, J. E.; Granberg, K. L.; Hopkins, R. B. Acta Chem. Scand. 1990, 44, 492
- 5. Hernández, N.; Martín, V. S. J. Org. Chem. 2001, 66, 4934.
- 6. For meso-1. Mp 250-2 °C (dec.); 1H NMR (400 MHz, D₂O) δ: 1.40 (1H, m), 1.54 (1H, m), 1.86 (4H, m), 3.95 (2H, t, J = 6.6 Hz). ¹³C NMR (150 MHz, D₂O) δ : 21.1, 30.2, 53.6, 173.0.
- 7. For a review of enantioselective enzymatic desymmetrizations in organic synthesis, see: (a) Garcia-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313; (b) Ou, J.; Hashimoto, M.; Berova, N.; Nakanishi, K. Org. Lett. 1999, 1, 51.
- 8. Spectral data of 11 were in accordance with those described by the literature.^{3c} $[\alpha]_D^{23} 9.7^{\circ}$ (c 1.00, CHCl₃),
- lit.^{3m} $[\alpha]_D = 8.6^{\circ}$ (c 0.4, CHCl₃). 9. Specific rotation of (R, R)-1. $[\alpha]_D^{23} = 45.1^{\circ}$ (c 0.95, 1 N HCl), lit.^{3e} (S, S)-1, $[\alpha]_D^{23} 42.7^{\circ}$ (c 1.1, 1 N HCl). 10. Specific rotation of (S, S)-1. $[\alpha]_D^{23} 44.7^{\circ}$ (c 0.95, 1 N HCl), lit.^{3m} $[\alpha]_D^{23} 44.5^{\circ}$ (c 0.95, 1 N HCl).
- 11. (a) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S. Tetrahedron Lett. 2003, 44, 2137; (b) Hiebl, J.; Blanka, M.; Guttman, A.; Ko, S.; Smann, H.; Leitner, K.; Mayrhofer, G.; Rovenszky, F.; Winkler, K. Tetrahedron 1998, 54, 2059.
- 12. (a) Elaridi, J.; Patel, J.; Jackson, W. R.; Robinson, A. J. J. Org. Chem. 2006, 71, 7538; (b) Robinson, A. J.; Elaridi, J.; Patel, J.; Jackson, W. R. Chem. Commun. 2005, 5544; (c) Aguilera, B.; Wolf, L. B.; Nieczypor, P.; Rutjes, F. P. J. T.; Overkleeft, H. S.; van Hest, J. C. M.; Schoemaker, H. E.; Wang, B.; Mol, J. C.; Füerstner, A.; Overhand, M.; van der Marel, G. A.; van Boom, J. H. J. Org. Chem. 2001, 66, 3584.
- 13. (a) Nolen, E. G.; Fedorka, C. J.; Blicher, B. Synth. Commun. 2006, 36, 1707; (b) Chowdhury, A. R.; Boons, G.-J. Tetrahedron Lett. 2005, 46, 1675; (c) Del Valle, J. R.; Goodman, M. J. Org. Chem. 2004, 69, 8946.
- 14. (a) Roychowdhury, A.; Wolfert, M. A.; Boons, G.-J. Chem. Bio. Chem. 2005, 6, 2088; (b) Kubasch, N.; Schmidt, R. R. Eur. J. Org. Chem. 2002, 2710.