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Abstract—A straightforward synthesis of meso-2,6-diaminopimelic acid (DAP) meso-1 was developed from 1,4-diacetoxycyclohept-
2-ene (2) via an oxidative ring cleavage. Subsequently, an enantio-divergent synthesis of (S,S)- and (R,R)-1 was performed using a
homochiral monoacetate 7 available from2 by enzymatic desymmetrization.
� 2007 Elsevier Ltd. All rights reserved.
2,6-Diaminopimelic acid (DAP) is a naturally occur-
ring amino acid found in both bacteria and higher
plants. It is a symmetrical a,a 0-diaminodicarboxylic
acid and can therefore exist in three stereoisomeric
forms (Fig. 1). meso-DAP and (S,S)-DAP serve as
the precursors in the biosynthesis of LL-lysine in both
bacteria and higher plants and meso-DAP is also an
essential component of the peptidoglycan of most
pathogenic bacteria (Fig. 2). Since DAP is not a con-
stituent of animal tissue and the DAP biosynthetic
pathway is absent in mammals, inhibitors of the dia-
minopimelate pathway have a good chance of display-
ing low toxicity toward the mammalian host.
Inhibition of either DAP biosynthesis or its utiliza-
tion, therefore, affords an attractive target for antibac-
terial chemotherapy.1 In addition, a number of
peptidoglycan fragments featuring the DAP residue
exhibit antitumor, immunostimulant, and sleep-induc-
ing biological activity.2 The development of efficient
routes to the synthesis of DAP stereoisomers and their
analogues has recently been the focus of considerable
attention.3 In general, most of the methodologies de-
scribed for the synthesis of DAP start from either a-
amino acids or chiral glycine templates. In addition,
the synthesis of all three stereoisomers of DAP from
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a common substrate has not been reported. Herein,
we describe a convenient synthesis of meso-DAP
meso-1 and an enantio-divergent synthesis of (R,R)-,
and (S,S)-DAP as hydrochlorides using 1,4-diacetoxy-
cyclohept-2-ene (2) as a common starting material.

Our simple synthetic approach began with the
RuCl3-catalyzed oxidative cleavage of 1,4-diacetoxy-
cyclohept-2-ene (2),4 which is readily available from
cyclohepta-1,3-diene. Treatment of 2 with catalytic
RuCl3 in the presence of NaIO4 in a solution of
CH3CN, CCl4, and H2O gave the dicarboxylic acid,
which was subjected without isolation to dimethyla-
tion with TMSCHN2 to afford the dimethyl ester 3
in 85% yield. Chemoselective hydrolysis of 3 with
0.1 M sodium methoxide in CH3OH provided the
dihydoxide 4 in 71% yield. The diols of 4 were trans-
formed into diazides in a two-step sequence (i, mesy-
lation; ii, azidation) in 72% yield. The azide 5 was
reduced with Pd(OH)2-catalyzed hydrogenation in the
presence of di-tert-butyl dicarbonate (Boc2O) to give
N-Boc-DAP dimethylester 65 in 83% yield. Finally,
deprotection of 6 with 6 N HCl quantitatively fur-
nished the desired meso-DAP as a hydrochloride,
which displayed spectroscopic properties consistent
with the reported data (Scheme 1).3g,6

With the process for synthesis of meso-DAP in hand,
we turned our attention to an enantio-divergent syn-
thesis of (R,R)- and (S,S)-DAP from 2. An enzymatic
asymmetrization of meso-diacetate 2 with Novozyme
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Scheme 1. Reagents and conditions: (a) cat. RuCl3, NaIO4,

CCl4AH2OACH3CN; (b) TMSCHN2, CH3OH; (c) 0.1 M NaOCH3,

CH3OH; (d) CH3SO2Cl, pyridine, CH2Cl2; (e) NaN3, DMF; (f) H2,

cat. Pd(OH)2, Boc2O, CH3OH; (g) 6 N HCl.
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Figure 1. Stereoisomers of diaminopimelic acid (DAP).
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Figure 2. Peptidoglycan of a bacterial cell wall.
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Scheme 2. Reagents and conditions: (a) Novozyme 435, phosphate buffer;

CH3OH; (d) PhCOOH, DCC, DMAP, toluene; (e) cat. RuCl3, NaIO4, CCl4A
(h) CH3SO2Cl, pyridine, CH2Cl2; (i) NaN3, DMF; (j) H2, cat. Pd(OH)2, Bo
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435 in phosphate buffer solution gave a single enantio-
mer of monoacetate (1S,4R)-77 in 81% yield (99% ee)
together with the diol 8 (10%). The Mitsunobu reac-
tion of 7 with acetic acid using diisopropyl azodicarb-
oxylate (DIPAD) and triphenylphosphine in THF
furnished C2-symmetric diacetate (1S,4S)-9 in 83%
yield, which was converted into dibenzoate 10 in a
two-step sequence (i, deacetylation; ii, benzoylation).
The ee of 10 was determined to be 99% with chiral
HPLC. Having a homochiral C2-symmetric diacetate
(1S,4S)-9 obtained, an enantio-controlled synthesis of
(R,R)-DAP was accomplished, as shown in Scheme 2
according to a similar procedure described for the syn-
thesis of meso-DAP from 2.8,9

The ultimate goal was the synthesis of (S,S)-DAP.
Treatment of (1S,4R)-7 with pivaloyl chloride in the
presence of pyridine gave pivaloate 13, which was che-
moselectively hydrolyzed to provide the monoester 14
in a two-step 96% yield. The Mitsunobu inversion of
14 afforded trans-diacylate 15 (95%), which was quanti-
tatively transformed into a homochiral diacetate
(1R,4R)-9 via a C2-symmetric diol in a two-step
sequence (i, reductive deprotection with LiAlH4; ii, acet-
ylation). Similarly, (S,S)-DAP10 was obtained from
(1R,4R)-9 as described in Scheme 3.

In conclusion, a concise synthesis of meso-, (S,S)-, and
(R,R)-2,6-diaminopimelic acids 1 as hydrochlorides
was accomplished from an achiral cis-1,4-diacetoxy-
cyclohept-2-ene (2) as a common educt. This proce-
dure can apply to the synthesis of meso-DAP
homologues such as diaminoadipic acid11 and diami-
nosuberic acid.12 The homochiral monoacetate
(1S,4R)-7 can be used as a building block for prepara-
tion of differently protected DAP analogues13 for
Ac
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incorporation into peptides.14 To accomplish this, fur-
ther studies are in progress.
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