

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Argentination of Fluoroform: Preparation of Stable AgCF3 Solution with Diverse Reactivities

Authors: Feng-Ling Qing, Jia-Xiang Xiang, Yao Ouyang, and Xiu-Hua Xu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201905782 Angew. Chem. 10.1002/ange.201905782

Link to VoR: http://dx.doi.org/10.1002/anie.201905782 http://dx.doi.org/10.1002/ange.201905782

WILEY-VCH

Argentination of Fluoroform: Preparation of Stable AgCF₃ Solution with Diverse Reactivities

Jia-Xiang Xiang, Yao Ouyang, Xiu-Hua Xu, and Feng-Ling Qing*

Abstract: The transformation of large-volume industrial by-product and stable greenhouse gas fluoroform (HCF₃) to useful products has recently received significant attention. Herein, we disclose a simple and scalable preparation of AgCF₃ by treatment of HCF₃ with *t*-BuOK and AgOAc. The reactivity of the HCF₃-derived AgCF₃ has been demonstrated by hydrotrifluoromethylation of alkenes and C–H trifluoromethylation of (hetero)arenes. This work not only provides a new avenue for the utilization of HCF₃, but also presents a reliable and easy-to-execute synthesis of the relatively stable AgCF₃ solution.

Fluoroform (HCF₃) is a large-volume by-product from fluoropolymer manufacturing and has high greenhouse effect.^[1] The utilization of fluoroform as a feedstock for the preparation of valuable fluorinated compounds is a clearly preferred alternative to the destruction of fluoroform. Obviously, the application of fluoroform for trifluoromethylation reaction is a highly attractive and much-sought-after goal,^[2] as it is the cheapest and most atom-economical but low reactivity CF₃ source.

The common strategy to use HCF₃ in trifluoromethylation reactions is based on deprotonation with strong bases. Several groups have reported the nucleophilic trifluoromethylation of carbonyl compounds with HCF₃ in the presence of electrogenerated bases or alkali metal bases in DMF (Scheme 1a).^[3] The solvent DMF traps the *in situ* generated CF₃ anion, which easily decomposes to fluoride anion and difluorocarbene,[4] producing a reservoir of trifluoromethylating hemiaminolate species. Prakash (Scheme 1b)^[5] and Shibata (Scheme 1c)^[6] described the nucleophilic trifluoromethylation with HCF₃ in common organic solvents such as THF, ether, and toluene using KHMDS or P4-t-Bu respectively as the base. Very recently, Szymczak disclosed that hexamethylborazine (B₃N₃Me₆) could act as a suitable Lewis acid to stabilize CF₃ anion.^[7] This HCF₃-derived borazine CF_3^- adduct is highly nucleophilic and reacts with a broad variety of inorganic and organic electrophiles (Scheme 1d).

In 2011, Grushin discovered a methodologically different approach to activation of HCF₃ through direct cupration of HCF₃ with *t*-BuOK and CuCl in DMF (Scheme 1e).^[8a] This HCF₃-derived CuCF₃ not only reacts with electrophiles, but also trifluoromethylates aryl halides, boronic acids, and diazonium

[a] J.-X. Xiang, Y. Ouyang, Dr. X.-H. Xu, Prof. Dr. F.-L. Qing Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

E-mail: <u>flq@mail.sioc.ac.cn</u> [b] Prof. Dr. F.-L. Qing

Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China

Supporting information for this article is given via a link at the end of the document.

salts.^[8] Following Grushin's pioneering work, several groups further extended the application of HCF₃-derived CuCF₃ for Cupromoted trifluoromethylation of a wider range of substrates.^[9] Beside cupration of HCF₃, the direct metallation of HCF₃ with other metals (Zn,^[10] Ir,^[11] and Pd^[12]) has also been reported. However, the synthetic applications of these metal-CF₃ complexes are limited.^[10-12]

Recently, our group^[13] and others^[14,15] developed a series of Ag-promoted trifluoromethylation reactions, in which AgCF₃ was formed as the reactant^[14] or reaction intermediate.^[13,15] Due to the thermal and light sensitivity, normally AgCF3 needs to be freshly prepared^[14] or *in situ* generated^[13,15] from TMSCF₃ and AgF. On the other hand, although the stable ligand-supported AqCF₃ complexes^[14d,15b,16] are available, they are only used as transmetalating agents. Therefore, the synthesis of stable AgCF₃ with diverse reactivities is highly desirable. As part of our research interest in the development of trifluoromethylation reaction using cheap CF_3 sources, $^{[17]}$ herein we disclose a practical preparation of the stable AgCF₃ solution from simple and inexpensive materials HCF₃, t-BuOK, and AgOAc (Scheme 1f). The synthetic utility of the HCF₃-derived AgCF₃ is exemplified by hydrotrifluoromethylation of alkenes and C-H trifluoromethylation of (hetero)arenes. Notably, it is difficult to achieve these transformations directly from the HCF₃-derived CuCF₃.

Our investigation started with the preparation of AgCF₃ by treatment of excess of HCF₃ with *t*-BuOK in the presence of Ag^I salts using DMF as the solvent (Table 1). The use of AgCI afforded the [AgCF₃] (resonates at $\overline{\delta}$ = -20.7 ppm, d, $J(^{107/109}$ Ag-F) = 109.0/124.1 Hz)^[14a,18] in 41% yield along with [Ag(CF₃)₂]⁻ (resonates at $\overline{\delta}$ = -25.4 ppm, d, $J(^{107/109}$ Ag-F) = 86.5/101.5 Hz)^[14a,18] in 8% yield (entry 1). Then, other Ag^I salts were screened to improve the yield of AgCF₃. Among all the Ag^I salts

(entries 2-6), AgOAc was optimal to afford $AgCF_3$ in highest yield (entry 5). Reducing the reaction time from 8 to 1 h further improved the yield (entry 7). The use of stoichiometric amount of CF_3H also led to satisfactory yield (entry 8). Notably, this reaction can be easily scaled up to 40.0 mmol in 87% yield (entry 9).

Table 1. Preparation of AgCF₃ from HCF₃^[a]

HCF ₃ + Ag salt $\xrightarrow{t-BuOK}$ [AgCF ₃] + [Ag(CF ₃) ₂] ⁻			CF_3] + $[Ag(CF_3)_2]^-$
Entry	Ag salt	Yield ([Ag CF₃], %) ^[b]	Yield ([Ag(CF ₃) ₂] ⁻ , %) ^[b]
1	AgCl	41	4
2	AgBr	20	28
3	AgNO ₃	0	22
4	AgBF ₄	0	23
5	AgOAc	59	12
6	AgOCOCF ₃	48	8
7 ^[c]	AgOAc	80	4
8 ^[c,d]	AgOAc	80	4
9 ^[e]	AgOAc	87	3

[a] Reaction conditions: HCF₃ (excess), Ag salt (0.2 mmol), *t*-BuOK (1.0 mmol), DMF (2.0 mL), N₂, rt, 8 h. [b] Yields determined by ¹⁹F NMR spectroscopy using trifluorotoluene as an internal standard. [c] The reaction was performed for 1 h. [d] HCF₃ (0.2 mmol), *t*-BuOK (0.4 mmol). [e] HCF₃ (40.0 mmol), AgOAc (40.0 mmol), *t*-BuOK (80.0 mmol), DMF (40.0 mL), N₂, rt, 1 h.

Like the HCF₃-derived CuCF₃,^[8a] HCF₃-derived AgCF₃ also exhibited high stability. The solution of HCF₃-derived AgCF₃ in DMF was stored under N₂ atmosphere in the refrigerator for months without noticeable decomposition. Even a solution of AgCF₃ in DMF (0.55 M) was placed under air at room temperature, only slow decomposition of AgCF₃ was detected (Table 2). Furthermore, the thermal stability of the HCF₃-derived AgCF₃ solution was probed. This solution was found to have reasonable stability at 60 °C for hours (Table 2).

Table 2. Stability of HCF3-derived AgCF3 solution

Entry	Time	in air at rt M ([Ag CF ₃] + [Ag(CF ₃) ₂] ^[a]	under N ₂ at 60 $^{\circ}$ C M ([Ag CF ₃] + [Ag(CF ₃) ₂] ^[a]
1	0 h	0.53 + 0.02	0.53 + 0.02
2	4 h	0.52 + 0.02	0.32 + 0.03
3	12 h	0.50 + 0.02	0.25 + 0.02
4	24 h	0.44 + 0.02	0.15 + 0.01
5	48 h	0.41 + 0.02	0.08 + 0.01

[a] Concentrations determined by ¹⁹F NMR spectroscopy using trifluorotoluene as an internal standard.

This HCF₃-derived AgCF₃ solution represents a rare example of stable AgCF₃ reagents. It is much more stable than the common AgCF₃ reagent prepared from TMSCF₃ and AgF in MeCN (Table 3, entries 1 and 2). When DMF was used as solvent instead of CH₃CN for the formation of AgCF₃ from TMSCF₃ and AgF, the stability of AgCF₃ reagent was slightly improved, but still significantly lower than that of HCF₃-derived AgCF₃ solution (entry 3). Furthermore, the effect of additive on the stability of AgCF₃ generated from TMSCF₃ and AgF was investigated. Among these additives including KOAc, *t*-BuOK,

and *t*-BuOH, it was found that *t*-BuOK was crucial to the stability of $AgCF_3$ (entries 4-6).

Table 3. Comparison of $\mathsf{HCF}_3\text{-}\mathsf{derived}\ \mathsf{AgCF}_3$ with those prepared from TMSCF_3

Entry	Preparation of Ag CF ₃	%	% remained in air at rt ^[a]		
		0 h	4 h	12 h	24 h
1	H CF₃ <i>t-</i> BuOK/AgOAc/DMF	100	98	95	84
2	TMS CF₃ AgF/MeCN	100	68	39	trace
3	TMS CF ₃ AgF/DMF	100	70	46	trace
4	TMS CF₃ AgF/DMF/KOAc	100	76	66	18
5	TMS CF₃ AgF/DMF/ <i>t-</i> BuOK	100	83	73	53
6	TMS CF₃ AgF/DMF/ <i>t-</i> BuOH	100	74	11	trace

[a] Percentages determined by ¹⁹F NMR spectroscopy using trifluorotoluene as an internal standard.

HCF₃-derived With the AgCF₃ in hand. the hydrotrifluoromethylation of alkenes was then examined using methyl undec-10-enoate (1a) as the model substrate.[19] The reaction of 1a with a solution of AgCF₃ in DMF in the presence of 1.4-cvclohexadiene (1.4-CHD) failed to afford the desired product 2a (Table 4, entry 1). As HCF₃-derived AqCF₃ is too stable to spontaneously collapse to form CF₃ radical, the extra oxidant was used to oxidize AqCF₃ to generate CF₃ radical. Accordingly, when PhI(OAc)₂ was added to the reaction mixture, the desired product 2a was formed in 50% yield (entry 2). Switching the oxidant to PhI(OCOCF₃)₂ led to lower yield (entry 3). Subsequently, different additives including N- or O-containing donors were added to further improve the yield of 2a (entries 4-9). Among them, HOAc was optimal to furnish 2a in 85% yield (entry 7). The role of HOAc might be to activate t-BuOH- and/or DMF-coordinated AgCF₃ complex through ligand exchange.^[9m,20]

Table 4. Optimization of reaction conditions for hydrotrifluoromethylation of alkene $\mathbf{1a}^{[a]}$

MeO	Ha (from HCF₃	1,4-CHD oxidant, additive DMF, rt	→ MeO H Za
Entry	Oxidant	Additive	Yield (%) ^[b]
1	—	_	0
2	PhI(OAc) ₂	—	50
3	PhI(OCOCF ₃) ₂	—	43
4	PhI(OAc) ₂	pyridine	42
5	PhI(OAc) ₂	NEt ₃	48
6	PhI(OAc) ₂	t-BuOH	60
7	PhI(OAc) ₂	HOAc	85
8	PhI(OAc) ₂	CF ₃ CO ₂ H	70
9	PhI(OAc) ₂	CF₃SO₃H	75

[a] Reaction conditions: **1a** (0.2 mmol), AgCF₃ (0.4 M, 2.0 mL, 0.8 mmol), 1,4-CHD (0.4 mmol), oxidant (0.8 mmol), additive (0.2 mmol), DMF (2.0 mL), N₂, rt, 12 h. [b] Yields determined by ¹⁹F NMR spectroscopy using trifluorotoluene as an internal standard.

WILEY-VCH

COMMUNICATION

The scope of this oxidative hydrotrifluoromethylation was then investigated using HCF₃-derived AgCF₃ under optimized reaction conditions. As shown in Scheme 2, various alkenes were converted to the hydrotrifluoromethylated products in moderate to excellent yields. Interestingly, the reaction of **1a** was scaled up to 6.0 mmol with good efficiency. A wide range of functional groups, such as ether, ester, sulfonate, amide, and halogen atoms well tolerated under the reaction conditions. It should be noted that alkene **1j** bearing thienyl moiety was compatible with the reaction protocol. Furthermore, **1**,1disubstituted alkene **1m** delivered **2m** in 81% yield, whereas **1**,2disubstituted alkene **1n** furnished **2n** in 40% yield. The synthetic utility of this reaction was also demonstrated by late-stage hydrotrifluoromethylation of estrone derivative (**1o**).

Scheme 2. Hydrotrifluoromethylation of alkenes with AgCF₃. Reaction conditions: **1** (0.6 mmol), AgCF₃ (0.4 M, 6.0 mL, 2.4 mmol), 1,4-CHD (1.2 mmol), PhI(OAc)₂ (2.4 mmol), HOAc (0.6 mmol), DMF (6.0 mL), N₂, rt, 12 h, isolated yields. [b] The reaction was performed on 6.0 mmol. [c] Diastereomeric ratio was determined by ¹⁹F NMR analysis of the reaction mixture.

This HCF₃-derived AgCF₃ was applied to other types of trifluoromethylation reactions. For instance, the C–H trifluoromethylation of arene **3** and heteroarene **4** with AgCF₃ afforded trifluoromethylated products **5** and **6** in moderate yields (Scheme 3a). Furthermore, treatment of 2,3-dicyano-5,6-dichlorobenzoquinone (DDQ, **7**) with AgCF₃ using PhOH as a proton donor furnished 1,6-hydrotrifluoromethylated^[21] product **8** in 57% yield (Scheme 3b). The 1,6-hydrotrifluoromethylation of quinones is previously unknown and might find applications for the preparation of novel 4-trifluoromethoxyphenols.

Scheme 3. Trifluoromethylation of (hetero)arenes and quinone with AgCF₃.

To extend the application of this protocol, $AgCF_2CF_3$ was prepared from HCF_2CF_3 (HFC-125, fire extinguishing agent) and applied to the hydropentafluoroethylation of alkenes (Scheme 4). Being different from the preparation of $AgCF_3$ along with formation of minor $[Ag(CF_3)_2]^-$ (Table 1), $[AgCF_2CF_3]$ was solely formed when HCF_2CF_3 was treated with *t*-BuOK and AgOAc.^[22] The oxidative hydropentafluoroethylation of alkenes in the presence of PhI(OAc)_2, 1,4-CHD, and HOAc also proceeded efficiently to give the pentafluoroethylated products in moderate to excellent yields.^[23]

Scheme 4. Hydropentafluoroethylation of alkenes with AgCF₂CF₃. Reaction conditions: 1 (0.6 mmol), AgCF₂CF₃ (0.4 M, 6.0 mL, 2.4 mmol), 1,4-CHD (1.2 mmol), PhI(OAc)₂ (2.4 mmol), HOAc (0.6 mmol), DMF (6.0 mL), N₂, rt, 12 h, isolated yields.

In conclusion, we have described a new protocol for the utilization of fluoroform through the transformation to the synthetically useful AgCF₃. The HCF₃-derived AgCF₃ solution exhibited unique stability and diverse reactivities. Furthermore, HCF₂CF₃ was also converted to AgCF₂CF₃ solution for the preparation of pentafluoroethylated products. Further developments of new applications of R_fH-derived R_fAg are under investigation in our laboratory.

Acknowledgements

National Natural Science Foundation of China (21332010, 21421002), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), and Youth

Innovation Promotion Association CAS (No. 2016234) are greatly acknowledged for funding this work.

Keywords: fluoroform • trifluoromethylation • alkene • silver • pentafluoroethylation

- [1] W. Han, Y. Li, H. Tang, H. Liu, J. Fluorine Chem. 2012, 140, 7.
- [2] V. V. Grushin, Chim. Oggi 2014, 32, 81.
- [3] a) T.; Shono, M. Ishifune, T. Okada, S. Kashimura, J. Org. Chem. 1991, 56, 2; b) R. Barhdadi, M. Troupel, J. Perichon, Chem. Commun. 1998, 1251; c) B. Folléas, I. Marek, J.-F. Normant, L. Saint-Jalmes, Tetrahedron Lett. 1998, 39, 2973; d) J. Russell, N. Roques, Tetrahedron 1998, 54, 13771; e) B. Folleas, I. Marek, J.-F. Normant, L. Saint-Jalmes, Tetrahedron 2000, 56, 275; f) S. Large, N. Roques, B. R. Langlois, J. Org. Chem. 2000, 65, 8848; g) T. Billard, S. Bruns, B. R. Langlois, Org. Lett. 2000, 2, 2101; h) S. Mukhopadhyay, A. T. Bell, R. V. Srinivas, G. S. Smith, Org. Process Res. Dev. 2004, 8, 660; i) D. van der Born, J. D. M. Herscheid, R. V. A. Orru, D. J. Vugts, Chem. Commun. 2013, 49, 4018; j) E. Carbonnel, T. Besset, T. Poisson, D. Labar, X. Pannecoucke, P. Jubault, Chem. Commun. 2017, 53, 5706.
- [4] a) C. S. Thomoson, W. R. Dolbier, Jr. J. Org. Chem. 2013, 78, 8904; b)
 C. S. Thomoson, L. Wang, W. R. Dolbier, J. Fluorine Chem. 2014, 168, 34; c) S. Okusu, E. Tokunaga, N. Shibata, Org. Lett. 2015, 17, 3802; d)
 M. Köckinger, T. Ciaglia, M. Bersier, P. Hanselmann, B. Gutmann, C. O. Kappe, Green Chem. 2018, 20, 108; e)
 M. Köckinger, C. A. Hone, B. Gutmann, P. Hanselmann, M. Bersier, A. Torvisco, C. O. Kappe, Org. Process Res. Dev. 2018, 22, 1553.
- [5] a) G. K. S. Prakash, P. V. Jog, P. T. D. Batamack, G. A. Olah, *Science* 2012, 338, 1324; b) G. K. S. Prakash, F. Wang, Z. Zhang, R. Haiges, M. Rahm, K. O. Christe, T. Mathew, G. A. Olah, *Angew. Chem. Int. Ed.* 2014, *53*, 11575; *Angew. Chem.* 2014, *126*, 11759.
- [6] a) H. Kawai, Z. Yuan, E. Tokunaga, N. Shibata, Org. Biomol. Chem. 2013, 11, 1446; b) Y. Zhang, M. Fujiu, H. Serizawa, K. Mikami, J. Fluorine Chem. 2013, 156, 367; c) S. Okusu, K. Hirano, E. Tokunaga, N. Shibata, ChemistryOpen 2015, 4, 581; d) N. Punna, T. Saito, M. Kosobokov, E. Tokunaga, Y. Sumii, N. Shibata, Chem. Commun. 2018, 54, 4294.
- a) J. B. Geri, N. K. Szymczak, J. Am. Chem. Soc. 2017, 139, 9811; b) J.
 B. Geri, M. M. W. Wolfe, N. K. Szymczak, Angew. Chem., Int. Ed. 2018, 57, 1381; Angew. Chem. 2018, 130, 1395.
- [8] a) A. Zanardi, M. A. Novikov, E. Martin, J. Benet-Buchholz, V. V. Grushin J. Am. Chem. Soc. 2011, 133, 20901; b) P. Novák, A. Lishchynskyi, V. V. Grushin, Angew. Chem. Int. Ed. 2012, 51, 7767; Angew. Chem. 2012, 124, 7887; c) P. Novák, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2012, 134, 16167; d) A. Lishchynskyi, M. A. Novikov, E. Martin, E. C. Escudero-Adán, P. Novák, V. V. Grushin, J. Org. Chem. 2013, 78, 11126; e) A. Lishchynskyi, G. Berthon, V. V. Grushin, Chem. Commun. 2014, 50, 10237; f) Z. Mazloomi, A. Bansode, P. Benavente, A. Lishchynskyi, A. Urakawa, V. V. Grushin, Org. Process Res. Dev. 2014, 18, 1020; g) A. Lishchynskyi, Z. Mazloomi, V. V. Grushin, Synlett 2015, 26, 45.
- a) D. van der Born, C. Sewing, J. D. M. Herscheid, A. D. Windhorst, R. V. A. Orru, D. J. Vugts, Angew. Chem. Int. Ed. 2014, 53, 11046; Angew. Chem. 2014, 126, 11226; b) P. Ivashkin, G. Lemonnier, J. Cousin, V. Grégoire, D. Labar, P. Jubault, X. Pannecoucke, Chem. Eur. J. 2014, 20, 9514; c) S. Potash, S. Rozen, J. Org. Chem. 2014, 79, 11205; d) S. Potash, S. Rozen, J. Fluorine Chem. 2014, 168, 173; e) L. He, G. C. Tsui, Org. Lett. 2016, 18, 2800; f) L. He, X. Yang, G. C. Tsui, J. Org. Chem. 2017, 82, 6192; g) X. Yang, L. He, G. C. Tsui, Org. Lett. 2018, 83, 8150; i) Y. Ye, K. P. S. Cheung, L. He, G. C. Tsui, Org. Chem. 2018, 83, 8150; i) Y. Ye, K. P. S. Cheung, L. He, G. C. Tsui, Org. Chem. Front. 2018, 5, 1151; j) X. Yang, G. C. Tsui, Org. Lett. 2018, 20, 1179; k) Y. Ye, K. P. S. Cheung, L. He, G. C. Tsui, Org. Lett. 2018, 20, 1676; l) X. Yang, G. C. Tsui, Chem. Sci. 2018, 9, 8871; m) Q. Ma, G. C. Tsui, Org. Chem. Front. 2019, 6, 27.

- [10] I. Popov, S. Lindeman, O. Daugulis, J. Am. Chem. Soc. 2011, 133, 9286.
- [11] J. Choi, D. Y. Wang, S. Kundu, Y. Choliy, T. J. Emge, K. Krogh-Jespersen, A. S. Goldman, *Science* 2011, 332, 1545.
- [12] S. Takemoto, V. V. Grushin, J. Am. Chem. Soc. 2013, 135, 16837.
- a) X. Wu, L. Chu, F.-L. Qing, Angew. Chem. Int. Ed. 2013, 52, 2198; Angew. Chem. 2013, 125, 2254; b) J.-B. Liu, C. Chen, L. Chu, Z.-H. Chen, X.-H. Xu, F.-L. Qing, Angew. Chem. Int. Ed. 2015, 54, 11839; Angew. Chem. 2015, 127, 12005; c) J.-B. Liu, X.-H. Xu, F.-L. Qing, Org. Lett. 2015, 17, 5048.
- [14] a) Y. Zeng, L. Zhang, Y. Zhao, C. Ni, J. Zhao, J. Hu, J. Am. Chem. Soc. 2013, 135, 2955; b) X. Wang, Y. Xu, F. Mo, G. Ji, D. Qiu, J. Feng, Y. Ye, S. Zhang, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2013, 135, 10330; c) C. F. Harris, C. S. Kuehner, J. Bacsa, J. D. Soper, Angew. Chem. Int. Ed. 2018, 57, 1311; Angew. Chem. 2018, 130, 1325; d) S. M. Salinas, A. L. Mudarra, J. Benet-Buchholz, T. Parella, F. Maseras, M. H. Pérez-Temprano, Chem. Eur. J. 2018, 24, 11895.
- [15] a) Y. Ye, S. H. Lee, M. S. Sanford, Org. Lett. 2011, 13, 5464; b) Z. Weng, R. Lee, W. Jia, Y. Yuan, W. Wang, X. Feng, K.-W. Huang, Organometallics 2011, 30, 3229; c) A. Hafner, S. Bräse, Angew. Chem., Int. Ed. 2012, 51, 3713; Angew. Chem. 2012, 124, 3773; d) Z. Mao, F. Huang, H. Yu, J. Chen, Z. Yu, Z. Xu, Chem. Eur. J. 2014, 20, 3439; e) J.-S. Lin, X.-G. Liu, X.-L. Zhu, B. Tan, X.-Y. Liu, J. Org. Chem. 2014, 79, 7084; f) F. Teng, J. Cheng, C. Bolm, Org. Lett. 2015, 17, 3166; g) Y.-B. Wu, G.-P. Lu, T. Yuan, Z.-B. Xu, L. Wan, C. Cai, Chem. Commun. 2016, 52, 13668.
- [16] B. K. Tate, A. J. Jordan, J. Bacsa, J. P. Sadighi, Organometallics 2017, 36, 964.
- [17] a) L. Chu, F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513; b) X.-Y. Jiang,
 F.-L. Qing, Angew. Chem. Int. Ed. 2013, 52, 14177; Angew. Chem.
 2013, 125, 14427; c) Y. Ouyang, X.-H. Xu, F.-L. Qing, Angew. Chem.
 Int. Ed. 2018, 57, 6926; Angew. Chem. 2018, 130, 7042; d) B. Yang, D.
 Yu, X.-H. Xu, F.-L. Qing, ACS Catal. 2018, 8, 2839.
- [18] a) D. Naumann, W. Tyrra, J. Organomet. Chem. 1987, 334, 323; b) D. Naumann, W. Wessel, J. Hahn, W. Tyrra, J. Organomet. Chem. 1997, 547, 79.
- [19] For selected examples of hydrotrifluoromethylation of alkenes, see: a)
 S. Mizuta, S. Verhoog, K. M. Engle, T. Khotavivattana, M. O'Duill, K. Wheeelhouse, G. Rassias, M. Médebielle, V. Gouverneur, *J. Am. Chem. Soc.* 2013, *135*, 2505; b)
 S. Choi, Y. J. Kim, S. M. Kim, J. W. Yang, S. W. Kim, E. J. Cho, *Nat. Commun.* 2014, *5*, 4881; c)
 P. Yu, S.-C. Zheng, N.-Y. Yang, B. Tan, X.-Y. Liu, *Angew. Chem. Int. Ed.* 2015, *54*, 4041; *Angew. Chem.* 2015, *127*, 4113; d)
 N. J. W. Straathof, S. E. Cramer, V. Hessel, T. Noël, *Angew. Chem. Int. Ed.* 2016, *55*, 15549; *Angew. Chem.* 2016, *128*, 15778; e)
 G. H. Lonca, D. Y. Ong, T. M. H. Tran, C. Tejo, S. Chiba, F. Gagosz, *Angew. Chem. Int. Ed.* 2017, *56*, 11440; *Angew. Chem.* 2017, *129*, 11598; f)
 W. Zhang, Z. Zou, Y. Wang, Y. Wang, Y. Liang, Z. Wu, Y. Zheng, Y. Pan, *Angew. Chem. Int. Ed.* 2019, *58*, 624; *Angew. Chem.* 2019, *131*, 634.
- [20] A. I. Konovalov, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2014, 136, 13410.
- [21] a) A. Bose, P. Mal, J. Org. Chem. 2015, 80, 11219; b) Q.-Y. Wu, G.-Z.
 Ao, F. Liu, Org. Chem. Front. 2018, 5, 2061.
- [22] For the preparation and characterization of AgCF₂CF₃ solution, see the Supporting Information.
- [23] For selected examples of pentafluoroethylation reactions, see: a) A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2013, 135, 12584; b) L.
 I. Panferova, F. M. Miloserdov, A. Lishchynskyi, M. M. Belmonte, J. Benet-Buchholz, V. V. Grushin, Angew. Chem. Int. Ed. 2015, 54, 5218; Angew. Chem. 2015, 127, 5307; c) L. Li, C. Ni, Q. Xie, M. Hu, F. Wang, J. Hu, Angew. Chem. Int. Ed. 2017, 56, 9971; Angew. Chem. 2017, 129, 10103; d) M. Ohashi, N. Ishida, K. Ando, Y. Hashimoto, A. Shigaki, K. Kikushima, S, Ogoshi, Chem. Eur. J. 2018, 24, 9794.

WILEY-VCH

COMMUNICATION

The direct argentination of fluoroform with *t*-BuOK and AgOAc in DMF provided a practical approach to AgCF₃. The HCF₃-derived AgCF₃ solution exhibited unique stability and diverse reactivities, such as the hydrotrifluoromethylation of alkenes and C–H trifluoromethylation of arenes.

Jia-Xiang Xiang, Yao Ouyang, Xiu-Hua Xu, Feng-Ling Qing*

Page No. – Page No.

Argentination of Fluoroform: Preparation of Stable AgCF₃ solution with Diverse Reactivities