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ABSTRACT: The facile synthesis of functionalized azetidines
has been an ongoing challenge. Here, we report a general
method to directly alkylate 1-azabicyclo[1.1.0]butane (ABB)
with organometal reagents in the presence of Cu(OTf)2 to
rapidly prepare bis-functionalized azetidines. This method
allows for the preparation of azetidines bearing alkyl, allyl,
vinyl, and benzyl groups. This catalyst system was extended to
aziridines and spirocycles. Several building blocks and drug-
like compounds were prepared in rapid fashion and in good
yield.

In comparison to common rings such as piperidines which
are prevalent in marketed drugs, the presence of azetidines

as a core scaffold is scarce.1,2 It can be reasoned that the
absence of azetidines as a privileged motif is due to low
synthetic tractability.2 An in-depth search of chemical literature
revealed a lack of methods to install carbon atoms at the 3-
position of azetidines (Figure 1A). Methodologies to prepare
azetidines are in high demand due to their potential application
in the pharmaceutical and agrochemical fields.2 It was
envisaged that the invention of a rapid and robust synthesis
of azetidines could lead to an increase in their use in
biomedical research. It has been shown that 1-
azabicyclo[1.1.0]butanes can serve as powerful intermediates
to prepare bis-functionalized azetidines in short order.3 Nagao
and others have shown that ABB can be intercepted with
various nucleophiles to prepare functionalized azetidines.4,5

Recently, Baran has shown that ABB can be aminated with
“turbo amides” in a one-pot fashion.6 The aforementioned
studies inspired us to ponder whether ABB could be
functionalized with carbon nucleophiles. A method to rapidly
prepare libraries of alkylated azetidines would allow medicinal
chemists to quickly investigate structure−activity relationships
(SARs). Thus, we sought to develop a method to functionalize
ABB with alkyl nucleophiles. Due to the ability of nucleophiles
to break the C−N bond and functionalize the C-3 position, we
sought to find a suitable carbon species that could attack ABB
to afford 3-substituted azetidines. Initial experiments were
conducted with different tert-butyl nucleophiles. Tosyl chloride
(1 M in THF) was used to trap the resulting functionalized
azetidine for ease of isolation and characterization to provide
compound 3. Attempts to functionalize ABB with t-BuLi, t-
BuZnBr, and t-BuMgCl led to either no reaction or trace
observable product (Figure 1B, entries 1−3). Also, it should be
noted that attempts to functionalize ABB with phenyl-
magnesium bromide (and other aryl-metal reagents) led to
isolation of complex mixtures that contained the desired

product.7 Seeking a method to increase the reactivity of the
metal species, a Gilman-type cuprate was reacted with ABB
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Figure 1. (A) Azetidines as a scaffold in medicinal chemistry. (B)
Invention of a copper catalyzed synthesis of azetidines (catalysts
shown as mol %).
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which drastically increased the yield to 56% (Figure 1B, entry
4). While this result was encouraging, the reaction required
100 mol % CuCN copper. The main challenges in the
development of this reaction were to render the reaction
catalytic, increase the yields, and expand the scope. Several
reactions were conducted in an effort to optimize this reaction
including a scan of additives and catalysts. A sampling of our
efforts is shown in Figure 1B (see Supporting Information for
more details). In the end, Cu(OTf)2 (3 mol %) was found to
be the optimal catalyst for this transformation (Figure 1B,
entry 16). With these optimal conditions in hand, we sought to
explore the scope of the reaction with different Grignard
reagents. To our delight, the scope consisted of primary (3−5,
14, 26−27), secondary (6, 10−12), and tertiary alkyl groups
(3, 7−9, 13). Also, other metal species such as the i-PrMgCl·
LiCl complex (6) and 1-adamantylZnBr (13) were tolerated.
In addition, products from vinyl and allyl Grignard reagents
performed in good yield (15−17). Additionally, a variety of
benzylic Grignard reagents were reactive and most products
were isolated in good yield (18−25). It is important to note
that this reaction can be conducted on gram-scale (26) and
tolerates a variety of electrophiles such as tosyl (3−6, 9−18,

20−26, 28−29), Fmoc (7), benzoyl (19, 27), and Boc (30).
Also, this reaction can be paired with an SNAr reaction to
rapidly build molecular complexity in one pot (8). It should be
noted that Boc can be used as an electrophile, but tosyl was
chosen in many cases due to ease of visualization and
purification. In addition, a method was developed for the direct
coupling of heterocycles, such as pyridine and quinoline, to
ABB (Figure 2C, entries 28−30).
In our efforts to expand the method to provide products of

other strained scaffolds, 31 was identified as a suitable
precursor to append ethyl amines onto carbon atoms. A
literature search revealed that similar reactions have been
successful on C-2 functionalized aziridines with various
combinations of organometal and copper catalysts.8 Thus, it
was envisioned that our conditions could be utilized to
perform a strain−release type reaction on N-Boc aziridines to
demonstrate the flexibility of our conditions. In fact, when 31
was allowed to react under our conditions with benzylmagne-
sium bromide in the presence of BF3·(OEt)2, the desired
product was isolated in 43% yield (32). Additionally, other
Grignard reagents performed well in this reaction (33−34).

Figure 2. Scope of the reaction between nucleophiles, ABB, and N-Boc aziridine. a Reaction conditions (all reactions conducted on 1 mmol scale
unless otherwise noted): 1 (1 equiv), PhLi (1.9 M in dibutyl ether, 3 equiv), RMgCl (2 equiv), Cu(OTf)2 (3 mol %), −78 °C to rt, then E+ (2
equiv) 5−24 h. bWith iPrMgCl·LiCl. cWith adamantylzinc bromide. d At 3.36 mmol scale. e Reaction conditions: Heterocycle (2 equiv), BuLi
(2.05 M in hexanes, 2 equiv), Cu(OTf)2 (3 mol %), 2 (1 equiv) −78 °C to rt, then E+ (2 equiv) 5−24 h. f Reaction conditions: Grignard (2 equiv),
31 (1 equiv), BF3·OEt2 (1 equiv), Cu(OTf)2 (3 mol %), −78 °C to rt, 16 h.
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During the course of our investigation, we became aware
that a method to prepare spirocycles would be extremely useful
to the medicinal chemistry community. Carreira has
extensively reviewed and demonstrated the importance of
azaspiro compounds in medicinal chemistry.9 In particular,
spirocycles have shown to impart similar properties to their
monocyclic congeners while increasing the number of vectors
that can be explored.9a Thus, we sought to develop a quick and
efficient route to azetidine-containing spirocycles.
Intermediate 35 was synthesized in short order from

cyclohexanone using previously reported methods.10 Treat-
ment of 35 with HBr and bromine afforded 36 which was
directly converted to spirocycle 39 in 50% yield using our
conditions and trapping with 2-naphthoyl chloride (Scheme
1). The structure of 39 was unambiguously confirmed by X-ray
crystallography. We propose that the formation of 39 proceeds
through the intermediacy of 37 although 37 was not isolated.
In conclusion, this research describes methods to function-

alize azabicyclobutanes and aziridines with carbon nucleophiles
in rapid fashion. The methods described herein allow for the
preparation of molecules that are difficult to prepare using
current methods. It is envisioned that these methods will be
widely adopted by medicinal chemists. Lastly, proof of concept
for the synthesis and the opening of strained spirocycles was
established and the scope of strained rings and nucleophiles are
under investigation.
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Knust, H.; Rogers-Evans, M.; Carreira, E. M. Synthesis and Structural
Analysis of a New Class of Azaspiro[3.3]heptanes as Building Blocks
for Medicinal Chemistry. Org. Lett. 2010, 12, 1944−1947.
(c) Burkhard, J. A.; Wagner, B.; Fischer, H.; Schuler, F.; Müller, K.;
Carreira, E. M. Synthesis of Azaspirocycles and their Evaluation in
Drug Discovery. Angew. Chem., Int. Ed. 2010, 49, 3524−3527.
(d) Burkhard, J. A.; Carreira, E. M. 2,6-Diazaspiro[3.3]heptanes:
Synthesis and Application in Pd-Catalyzed Aryl Amination Reactions.
Org. Lett. 2008, 10, 3525−3526.
(10) (a) Chen, S.; Zhao, Y.; Wang, J. Preparation of Cyclic N-tert-
Butylsulfonyl Enamines by Rh(II)-Mediated Ring Expansion of α-
Diazoesters. Synthesis 2006, 2006, 1705−1710. (b) Armanino, N.;

Carreira, E. M. Ruthenium-Catalyzed Intramolecular Hydrocarba-
moylation of Allylic Formamides: Convenient Access to Chiral
Pyrrolidones. J. Am. Chem. Soc. 2013, 135, 6814−6817.

Organic Letters Letter

DOI: 10.1021/acs.orglett.9b00321
Org. Lett. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/acs.orglett.9b00321

