Synthesis and Anticancer Activity of Thiophene-2-carboxamide Derivatives and *In Silico* Docking Studies

K. C. Gulipalli^{*a*}, P. Ravula^{*b*}, S. Bodige^{*a*}, S. Endoori^{*a*}, P. K. R. Cherukumalli^{*a*}, J. N. Narendra Sharath Chandra^{*c*}, and N. Seelam^{*a**}

^a Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, 522502 India *e-mail: nareshvarma.klu@gmail.com

> ^b Department of Pharmaceutical Chemistry, Gurunanak Institutions Technical Campus, School of Pharmacy, Hyderabad, 501506 India

^c Department of Pharmaceutical Chemistry, Guruktupa Institute of Pharmacy, Maharashtra, 431129 India

Received March 31, 2019; revised June 28, 2019; accepted revised June 30, 2019

Abstract—A novel series of thiophene-2-carboxamide derivatives are designed and synthesized, and their structures are confirmed by ¹H and ¹³C NMR, and mass spectra. The synthesized compounds are evaluated for their *in vitro* cytotoxic activity by MTT assay. Among the tested compounds, the derivative with 4-Cl-phenyl ring exhibits potent inhibitory activity against MCF-7, K562, HepG2, and MDA-MB-231. The molecular docking study performed for the synthesized compounds against PTP1B exhibits essential key interactions.

Keywords: synthesis, thiophene-2-carboxamide, anticancer, molecular docking, protein tyrosine phosphatase inhibitor

DOI: 10.1134/S1070363219070211

INTRODUCTION

Protein tyrosine phosphatase 1B (PTP1B) has been reported to function as an oncogene in breast cancer making its inhibitors to be potentially important targets in treatment of cancer [1]. In the earlier studies [2] we designed a new series of thiophene analogues that acted against human PTP1B active site and exhibited potent to moderate activity against cancer cell lines, such as MCF-7, MDA-MB-231, K562, HepG2, and HeLa. Among the tested molecular structures, the compound **5b** (Fig. 1) demonstrated the potent cyto-toxicity (IC₅₀ = 0.096 μ M) against MCF-7 cell line, and also showed the highest PTP1B inhibitory activity (IC₅₀ = 5.25 μ M).

Many heterocyclic diamides (Fig. 2) were characterized by various biological activities such as anticystic fibrosis [3], antibacterial [4, 5], anti HIV-1 [6], antifungal [7], and anti-cancer [8–10].

Based on the above, we have designed the target molecules by attaching various alicyclic, aliphatic and aromatic amide linkages to the 2nd position of biologically active molecule **5b** for promoting its activity. The designed compounds were synthesized and characterized by ¹H and ¹³C NMR, and mass spectra. All the synthesized compounds were evaluated for their *in vitro* cytotoxicity against cancer cell lines, such as MCF-7, MDA-MB-231, K562, HepG2, HeLa, and HEK293. The following molecular docking study was performed for the synthesized compounds against PTP1B.

RESULTS AND DISCUSSION

Synthesis of methyl 4-[4-(2-naphthamido)phenyl]-3-methoxythiophene-2-carboxylate **5b** was carried out by using the protocol described in our previous paper [2] (Scheme 1). Compound **5b** was treated with $LiOH \cdot H_2O$

MCF-7 cell line: $IC_{50} = 0.09 \ \mu M$ PTP1B: $IC_{50} = 5.25 \ \mu M$ Fig. 1. Active compound 5b.

Fig. 2. Biologically active diamides: (a) L-lysine derivative, (b) 11-(piperazin-1-yl)dibenzo[b_i /][1,4]thiazepine, and (c) furazan-3,4-diamide.

to afford the acid intermediate **6**, formation of which was confirmed by a broad singlet at 13.01 in its ¹H NMR spectrum.

The intermediate 6 was introduced in the reaction with different amines to afford the corresponding amide derivatives 7a-7p (Scheme 2, Table 1). Their structures were confirmed by ¹H and ¹³C NMR and mass spectra.

The coupling reaction of acid compound **6** with aromatic amines was carried out under HATU/DIPEA conditions. Reaction of aliphatic amines with HATU/ DIPEA in DMF, even after lengthy process contained a high rate of initial compounds identified by LC-MS. The alternative coupling reaction of aliphatic amines with acid was carried out using EDC and HOBT in DMF, but it did not proceed to completion. Upon the action of TBTU the presence of starting material was recorded after 12 h. Eventually, the coupling went smoothly to completion with T_3P and Et_3N in THF at room temperature within 12 h.

Anticancer activity. The synthesized compounds **7a–7p** were evaluated for their anticancer activity against MCF-7, MDA-MB-231, K562, HepG2, HeLa, and HEK293 cell lines using the MTT assay [11, 12]. Doxorubicin was used as a standard drug. The calculated IC_{50} (μ M) and presented in Table 2. The synthesized compounds showed potent to moderate anticancer activity. Among the tested compounds, the product **7m** with 4-Clphenyl ring exhibited potent inhibitory activity against MCF-7, K562, HepG2, and MDA-MB-231 cell lines with IC_{50} values of 2.25, 5.83, 6.43, and 5.36 μ M respectively. Replacement 4-Cl-phenyl ring with 4-CH₃O-phenyl in 6g led to decrease in anticancer activity, but essentially it still retained. Compounds with F-phenyl ring (**7n** and **70**) exhibited moderate antiproliferative activity against

Scheme 1. Synthesis of the active core 5b.

Reagents and conditions: (*a*) NaH (1.2 eq.), MeI (3.0 eq.), THF, 0°C, 16 h; (*b*) (4-nitrophenyl)boronic acid (1.2 eq.), K₂CO₃ (3.0 eq.), Pd(PPh₃)₄ (0.05 eq.), DME, 85°C; (*c*) Zn (3.0 eq.), NH₄Cl (3.0 eq.), EtOH, 85°C, 16 h; (*d*) 2-Naphthoic acid (1.2 eq.), HATU (1.5 eq.), DIPEA (3.0 eq.), CH₂Cl₂, room temperature, 3 h.

Scheme 2. Synthesis of the title compounds.

Reagents and conditions: (e) $\text{LiOH} \cdot \text{H}_2\text{O}$ (1.5 eq., MeOH : THF = 1 : 1), room temperature, 4 h; (f) R-NH₂ (1.2 eq., 50% T₃P in EtOAc (2.0 eq.), Et₃N (2.5 eq.), THF, room temperature, 12 h; (g) HATU (1.5 eq.), DIPEA (2.0 eq.), DMF, room temperature, 5 h.

cancer cell lines. Replacement of F-phenyl ring with saturated cycles (7f, 7g, 7h) led to decreased anti-cancer activity. The aryl ring, when replaced with aliphatic side chain 7a-7e, caused decrease in inhibitory activity.

All the synthesized compounds were assessed against non-cancerous HEK293 cells. It is evident from Table 2 that none of the compounds displayed significant toxic effect on HEK293 cells, indicating their specific toxicity towards the cancer cells and possible safety against normal cells.

Molecular docking. In the present study, the synthesized compounds were docked into PTP1B (PDB code: 4y14) to explore their docking interactions at the active site. Docking studies revealed that the compounds 7a–7p interacted with key amino acid residues of PTB1B such as ASP 48, TYR 46, ARG 24, and GLN 262 [13].

Compound **7m** showed effective interactions with ASP 48 of 27.0% binding at a distance of 1.38 Å, ARG 24 of 29.4% binding at 2.95 Å distance and ARG 24 of 10.9% binding at 3.48 Å distance through water. The compound was surrounded by PHE 182, ALA 27, GLN 262, TYR

46, and HIS 25. The extent of docking interactions of 7c was also equally good, its naphthyl amide N–H group was likely to participate in polar interactions with ASP 48 of amino acid residues with 40.5% binding at a distance of 1.32 Å. The naphthyl amide C=O group interacted with GLN 262 of 42.9% binding at 2.12 Å distance through water. The propyl amide carbonyl group interacted with ALA 217 of 35.9% binding at a distance of 2.51 Å and with SER 216 of 32.9% binding at a distance of 2.72 Å. The samples of two- and three-dimensional structures of compounds 7m and 7c are showed in Figs. 3, 4.

EXPERIMENTAL

All chemicals were purchased from Sigma–Aldrich, Merck and Combi blocks, and used without further purification. Melting points were uncorrected and determined in open capillary tubes on a Guna Digital Melting Point apparatus. ¹H and ¹³C NMR spectra were measured on a Bruker AMX 300 spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C NMR using TMS as an internal standard and DMSO- d_6 as a solvent. Mass spectra were

Comp. no.	R	Time, h	Yield, %	mp, °C	Comp. no.	R	Time, h	Yield, %	mp, °C
7a	H	12	81	131–133	7i	- Strage	5 h	79	131–135
7b	H John Stranger	12	83	127–129	7j	O V	5 h	80	125–230
7c	- Show	12	76	120–124	7k	-O	5 h	82	121–124
7d	- C-	12	71	131–136	71	1 million and the second secon	5 h	77	122–226
7e	F F	12	73	135–139	7m	³ ³ ³ ³ ³	5 h	68	136–140
7f	F F	12	71	126–129	7n	F Stra	5 h	71	156–160
7g	- in	12	81	135–240	70	F	5 h	70	145–148
7h	0 - row	12	72	199–205	7p	F	5 h	65	135-139

Table 1. Protocol for the synthesis of the title compounds 7a-7p

measured on an Agilent technologies mass spectrometer. Elemental analysis was performed on a Perkin-Elmer 240 CHN analyzer.

Methyl 4-bromo-3-methoxythiophene-2-carboxylate (2). To a suspension of 60% NaH (1.00 g, 25 mmol) in THF (15 mL), a solution of methyl 4-bromo-3-hydroxythiophene-2-carboxylate 1 (5.00 g, 21 mmol) in THF (60 mL) was added. The reaction mixture was stirred at 0°C for 30 min, and then MeI (9.00 g, 63.4 mmol) was added. The reaction mixture was stirred at room temperature for 16 h, quenched with cold water and extracted with ethyl acetate (3× 60 mL). The organic layer was washed with H₂O (60 mL), brine solution (50 mL), dried over Na₂SO₄, and concentrated under reduced pressure to afford the product 2 as an off white solid. Yield 64%, mp 74–78°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 3.12 s (3H), 3.22 s (3H), 7.32 s (1H). ¹³C NMR spectrum, δ, ppm: 165.1, 163.1, 133.9, 121.2, 112.7, 67.3, 57.3. MS: *m/z*: 252 [*M*+H]⁺. Found, %: C 33.58; H 2.92. C₇H₇BrO₃S. Calculated, %: C 33.48; H 2.81.

Methyl 3-methoxy-4-(4-nitrophenyl)thiophene-2-carboxylate (3). To a solution of methyl 4-bromo-3-methoxythiophene-2-carboxylate 2 (3.40 g, 13.5 mmol) in dimethoxy ethane (60 mL), were added 4-nitro phenylboronic acid(2.78 g, 16.4 mmol), K_2CO_3 (2.87 g, 20.8 mmol), and H_2O (8 mL) at room temperature. The reaction mixture was degassed by purging Ar for 15 min, then Pd(PPh₃)₄ (800 mg, 0.7 mmol) was slowly added. The reaction mixture was stirred at 80°C under the atmosphere of Ar for 16 h, and the product was further extracted with ethyl

Commound	IC ₅₀ , μΜ									
Compound	MCF-7	K562	HepG2	MDA-MB 231	HeLa	HEK293				
7a	37.34	39.12	42.34	>50	>50	Not determined				
7b	29.26	27.31	29.42	35.23	28.26	Not determined				
7c	22.38	12.26	16.83	17.23	>50	Not determined				
7d	19.34	25.59	Not determined	18.64	Not determined	43.35				
7e	24.30	19.23	24.36	25.64	>50	Not determined				
7f	19.57	28.63	25.18	36.56	>50	>50				
7g	23.25	19.87	33.42	24.23	>50	Not determined				
7h	33.63	28.15	>50	35.28	27.53	>50				
7i	19.32	Not determined	29.89	19.22	25.36	Not determined				
7j	14.57	28.58	26.27	17.37	33.82	48.23				
7k	8.42	10.28	9.29	8.19	14.43	>50				
71	12.25	14.69	16.52	8.24	12.65	42.68				
7m	2.25	5.83	6.43	5.36	22.36	Not determined				
7n	12.35	10.36	12.73	16.18	15.32	Not determined				
70	15.53	8.23	22.53	28.23	17.33	>50				
7p	36.27	26.22	42.78	34.43	29.28	Not determined				
Doxorubicin	0.41	0.07	5.00	0.60	0.37					

Table 2. In vitro anti cancer activity of the synthesized compounds

acetate (3×100 mL). The organic layer was washed with H_2O (80 mL), brine solution (80 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The obtained crude product was purified by column chromatography (ethyl acetate–hexane) to afford com-pound **3** as an off white solid. Yield 85%, mp 135–140°C. ¹H NMR (CDCl₃) spectrum, δ , ppm: 3.88 s (3H), 3.92 s (3H), 7.61 s (1H), 7.79 d (2H, J = 9 Hz), 8.27 d (2H, J = 9 Hz). ¹³C NMR spectrum, δ , ppm: 161.6, 160.3, 149.1, 137.4, 128.7, 126.1, 121.5, 116.7, 114.4, 62.1, 52.4. MS: m/z: 294 [M + H]⁺. Found, %: C 54.01; H 3.89; N 4.86. C₁₃H₁₁NO₅S. Calculated, %: C 53.24; H 3.78; N 4.78.

Methyl 4-(4-aminophenyl)-3-methoxythiophene-2-carboxylate (4). To a solution of methyl 3-methoxy-4-(4-nitrophenyl) thiophene-2-carboxylate 3 (3.00 g, 10.2 mmol) in ethanol (30 mL) were added zinc powder (2.00 g, 30.6 mmol), NH₄Cl (1.60 g, 30.6 mmol) and catalytic amount of acetic acid at room temperature, and the reaction mixture was stirred at 80°C for 16 h. The obtained compound was extracted with ethyl acetate (3×70 mL). The combined organic layers were washed with H₂O (70 mL), brine solution (70 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (ethyl acetate–hexane) to afford compound **4** as an off white solid. Yield 76.5%, mp 115–120°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.76 s (3H), 3.80 s (3H), 5.26 br.s (2H), 6.61 d (2H, J = 8.4 Hz), 7.29 d (2H, J = 8.4 Hz), 7.71 s (1H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 160.9, 159.6, 148.4, 136.7, 128.0, 125.4, 120.8, 116.0, 113.7, 61.4, 51.7. MS: m/z: 264.1 [M + H]⁺. Found, %: C 59.46; H 5.06; N 5.29. C₁₃H₁₃NO₃S. Calculated, %: C 59.30; H 4.98; N 5.32.

Methyl 4-[4-(2-naphthamido)phenyl]-3-methoxythiophene-2-carboxylate (5b). To a solution of 2-naphthoic acid (1.30 g, 7.6 mmol) in dichloromethane (20 mL) were added HATU (3.46 g, 9.10 mmol) and DIPEA (3.31 mL, 19.0 mmol) at room temperature and the mixture was stirred for 20 min. Then, methyl(4-aminophenyl)-3-methoxythiophene-2-carboxylate 4 (2.00 g, 7.6 mmol) was added and stirring was continued at room temperature for 4 h. The reaction mixture was diluted with water (40 mL) and extracted with dichloromethane (3×40 mL). The organic layer was washed with H₂O (50 mL), brine solution (50 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (ethyl acetate–hexane) to afford the title compound

Fig. 3. (a) Two-dimensional representation of the interacting mode of 7m on PTP1B enzyme and (b) three-dimensional structural model of compound 7m (purple) on PTP1B enzyme.

5b as an off white solid. Yield 80%, mp 122–129°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 3.82 s (6H), 7.65–7.63 m (5H), 7.78 d (1H, J = 6.0 Hz), 7.91 d (2H, J = 7.6 Hz), 7.98 s (1H), 8.03 s (1H), 8.09 d (1H, J =8.6 Hz), 8.21 d (1H, J = 5.2 Hz), 10.71 s (1H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 167.3, 160.8, 159.6, 138.8, 159.5, 135.7, 134.6, 133.1, 130.1, 129.6, 128.7, 128.3, 127.8, 127.0, 126.3, 125.4, 125.0, 125.0, 119.7, 116.4, 61.8, 51.9. MS (MM): m/z: 418 [M + H]⁺. Found, %: C 57.72; H 3.79; N 4.89. C₂₄H₁₉NO₄S. Calculated, %: C 57.69; H 3.85; N 4.84.

4-[4-(2-Naphthamido)phenyl]-3-methoxythiophene-2-carboxylic acid (6). To a solution of methyl 4-[4-(2-naphthamido)phenyl]-3-methoxythiophene-2-carboxylate (**5b**) (2.00 g, 4.79 mmol) in MeOH : THF (1 : 1, 20.0 mL) was added LiOH·H₂O (0.24 g, 5.75 mmol) in H₂O (2 mL) and the reaction mixture was stirred at room temperature for 16 h, then concentrated and the crude mixture was washed with EtOAc (1×10.0 mL). Aqueous layer pH was adjusted to 2 with 1 N HCl and extracted with EtOAC (2× 20.0 mL). The combined organic layers were washed with H₂O (10.0 mL), brine solution (10.0 mL), dried over Na₂SO₄, and concentrated to afford the title compound as white solid. Yield 88%, mp 185–187°C. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 13.01 br.s (1H), 10.57 s (1H), 8.62 s (1H), 8.12–8.10 m (1H), 8.06 br.s (2H), 8.04–8.01 m (1H), 7.95–7.94 m (1H), 7.92 br.s (2H), 7.66–7.63 m (4H), 3.83 s (3H). ¹³C NMR spectrum (DMSO-*d*₆), δ , ppm: 165.6, 161.9, 159.0, 138.7, 135.7, 134.2, 132.2, 132.0, 128.9, 128.03, 128.01,

Fig. 4. (a) Two-dimensional representation of the interacting mode of 7c on PTP1B enzyme and (b) three-dimensional structural model of compound 7c (purple) on PTP1B enzyme.

127.8, 127.6, 126.9, 126.8, 124.4, 120.3, 118.1, 61.78. MS (MM): m/z: 404.1 [M + H]⁺. Found, %: C 68.37; H 4.16; N 3.58. C₂₃H₁₇NO₄S. Calculated, %: C 68.47; H 4.25; N 3.47.

General procedure for the synthesis of title compounds (7a–7h). To a solution of compound 6 (0.24 mmol) in THF (5.00 mL) was added Et₃N (0.6 mmol) at room temperature and stirred for 15 min. Then, a solution of 50% T₃P in EtOAc (0.48 mmol) and an appropriate amine (0.27 mmol) were added and stirred at room temperature for 12 h. The reaction mixture was quenched with saturated NaHCO₃ solu-tion (10.0 mL) and extracted with EtOAC (2× 10.0 mL). The combined organic layers were washed with H₂O (5.00 mL), brine solution (5.00 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (methanol–dichloromethane) to afford the corresponding title compound **7a–7h**.

4-[4-(2-Naphthamido)phenyl]-3-methoxythiophene-2-carboxamide (7a). Off white solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.67 br.s (1H), 8.67 br.s (1H), 8.11–7.97 m (6H), 7.85 br.s (1H), 7.75–7.65 m (5H), 7.39 s (1H), 3.64 s (3H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.69, 165.62, 154.4, 152.2, 138.9, 138.6, 134.8, 134.3, 133.6, 132.1, 132.0, 129.2, 129.1, 128.9, 128.08, 128.01, 127.7, 127.6, 127.3, 126.8, 125.9, 124.7, 124.4, 122.4, 120.5, 120.3, 118.3, 61.36. MS (MM): m/z: 403.1 $[M+H]^+$. Found, %: C 68.74; H 4.41; N 6.88. C₂₃H₁₈N₂O₃S. Calculated, %: C 68.64; H 4.51; N 6.96.

4-[4-(2-Naphthamido)phenyl]-3-methoxy-*N***-methylthiophene-2-carboxamide (7b).** Off white solid. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 10.58 br.s (1H), 8.61 s (1H), 8.12–8.09 m (6H), 8.06–8.02 m (3H), 7.96–7.93 m (2H), 7.86–7.84 m (1H), 7.80 br.s (1H), 7.66–7.62 m (4H), 3.61 s (3H), 2.85 d (3H, *J* = 4.4 Hz). ¹³C NMR spectrum (DMSO-*d*₆), δ , ppm: 165.6, 160.9, 153.9, 138.8, 134.7, 134.2, 132.1, 132.0, 129.1, 128.9, 128.02, 128.00, 127.8, 127.6, 127.3, 126.8, 125.3, 124.4, 124.2, 120.3, 61.37, 26.20. MS (MM): *m/z*: 417.0 [*M* + H]⁺. Found, %: C 69.33; H 4.74; N 6.61. C₂₄H₂₀N₂O₃S. Calculated, %: C 69.21; H 4.84; N 6.73.

4-[4-(2-Naphthamido)phenyl]-3-methoxy-N-propylthiophene-2-carboxamide (7c). White solid. ¹H NMR spectrum, (DMSO- d_6) δ , ppm: 10.59 br.s (1H), 8.60 s (1H), 8.12–8.02 m (5H), 7.93 br.s (1H), 7.81 s (1H), 7.65–7.62 m (5H), 3.63 s (3H), 3.31–3.26 m (2H), 1.59–1.54 m (2H), 0.91 t (3H, J = 7.6 Hz). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 160.3, 153.8, 138.8, 134.6, 134.2, 132.1, 132.0, 129.0, 128.9, 128.0, 127.9, 127.8, 127.7, 127.6, 127.3, 126.8, 125.3, 124.4, 120.3, 61.34, 42.96, 22.49, 11.30. MS (MM): m/z: 445.1 [M + H]⁺. Found, %: C 69.33; H 4.74; N 6.61. C₂₄H₂₀N₂O₃S. Calculated, %: C 69.21; H 4.84; N 6.73.

4-[4-(2-Naphthamido)phenyl]-*N*-(**2**,**2**-difluoroethyl)-**3-methoxythiophene-2-carboxamide (7d).** Off white solid. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 10.62 br.s (1H), 8.64 s (1H), 8.20–8.17 m (1H), 8.13–8.11 m (3H), 8.03–7.94 m (3H), 7.89 s (1H), 7.74–7.66 m (4H), 6.36–6.07 m (1H), 3.84–3.76 m (2 H), 3.65 s (3H). ¹³C NMR spectrum (DMSO-*d*₆), δ , ppm: 165.7, 160.9, 154.7, 138.9, 134.8, 134.3, 132.2, 132.0, 128.94, 128.91, 128.0, 127.7, 127.6, 127.4, 126.8, 126.4, 124.4, 120.4, 120.2, 117.0, 114.6, 112.3, 61.51, 41.14. MS (MM): *m/z*: 467.0 [*M* + H]⁺. Found, %: C 64.25; H 4.41; N 6.11. C₂₅H₂₀F₂N₂O₃S. Calculated, %: C 64.37; H 4.32; N 6.01.

4-[4-(2-Naphthamido)phenyl]-*N*-(2,2,2-trifluoroethyl)-3-methoxythiophene-2-carboxamide (7e). White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.58 br.s (1H), 8.61 s (1H), 8.12–8.02 m (5H), 7.97–7.95 m (2H), 7.66–7.62 m (5H), 4.20–4.11 m (2 H), 3.64 s (3H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 160.9, 155.0, 138.9, 134.8, 134.2, 132.1, 132.0, 128.9, 128.0, 127.8, 127.7, 127.6, 127.4, 126.8, 124.4, 123.4, 122.7, 122.5, 120.3, 61.56, 60.42. MS (MM): m/z: 485.1 [M + H]⁺. Found, %: C 61.88; H 3.86; N 5.88. C₂₅H₁₉F₃N₂O₃S. Calculated, %: C 61.98; H 3.95; N 5.78.

4-[4-(2-Naphthamido)phenyl]-*N*-(1-cyanocyclopropyl)-3-methoxythiophene-2-carboxamide (7f). White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.57 br.s (1H), 8.68 s (1H), 8.12–8.01 m (5H), 7.93–7.91 m (2H), 7.66–7.61 m (5H), 3.62 s (3H), 1.60–1.56 m (2H),1.37–1.32 m (2H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 170.9, 165.7, 166.8, 160.6, 144.1, 140.0, 139.5, 137.2, 134.1, 134.0, 133.2, 133.0, 132.9, 132.7, 132.1, 132.0, 129.6, 127.7, 127.5, 126.1, 125.6, 125.4, 66.80, 65.67, 25.56, 21.70. MS (MM): *m/z*: 468.1 [*M* + H]⁺. Found, %: C 69.47; H 4.44; N 8.89. C₂₇H₂₁N₃O₃S. Calculated, %: C 69.36; H 4.53; N 8.99.

4-[4-(2-Naphthamido)phenyl]-*N*-cyclohexyl-3-methoxythiophene-2-carboxamide (7g). Off white solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.57 br.s (1H), 8.61 s (1H), 8.11–8.01 m (4H), 7.96–7.94 m (2H), 7.83 br.s (1H), 7.67–7.62 m (4H), 7.60–7.58 m (1H), 3.81 br.s (1H), 3.63 s (3H), 1.85 br.s (2H), 1.69 br.s (2H), 1.58–1.55 m (1H), 1.42–1.35 m (4 H),1.23–1.21 m (1H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 159.4, 153.7, 138.8, 134.6, 134.2, 132.1, 132.0, 128.9, 128.0, 127.9, 127.8, 127.6, 127.3, 126.8, 125.3, 124.4, 120.3, 61.23, 47.33, 32.15, 24.29, 20.61. MS (MM): *m/z*: 485.0 [*M* + H]⁺. Found, %: C 71.97; H 5.73; N 5.69. C₂₉H₂₈N₂O₃S. Calculated, %: C 71.87; H 5.82; N 5.78.

4-[4-(2-Naphthamido)phenyl]-*N*-(tetrahydro-2*H*pyran-4-yl)-3-methoxythiophene-2-carboxamide (7h). White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.57 br.s (1H), 8.61 s (1H), 8.12–8.09 m (1H), 8.06–8.02 m (3H), 7.96–7.93 m (2H), 7.84 br.s (1H), 7.71–7.68 m (1H), 7.65–7.63 m (4H), 4.06–4.02 m (1H), 3.87–3.85 m (2H), 3.65 s (3H), 3.45–3.40 m (2H), 1.83–1.80 m (2H), 1.67–1.57 m (2H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 159.6, 153.9, 138.8, 134.6, 134.2, 132.1, 132.0, 128.9, 128.0, 127.8, 127.6, 127.4, 126.8, 125.4, 124.4, 120.3, 65.82, 61.27, 45.10, 32.98. MS (MM): *m/z*: 487.0 [*M* + H]⁺. Found, %: C 69.21; H 5.28; N 5.66. C₂₈H₂₆N₂O₄S. Calculated, %: C 69.11; H 5.39; N 5.76.

General procedure for the synthesis of title compounds 7i–7p. To a solution of compound 6 (0.24 mmol) in DMF (5.00 mL) were added HATU (0.29 mmol) and DIPEA (0.49 mmol) at room temperature and stirred for 15 min. Then, the appro-priate amine (0.27 mmol) was added, and the mixture was stirred at room temperature for 5 h. Upon completion of the process the reaction mixture was diluted with water (10.0 mL) and extracted with EtOAC (2×10.0 mL). The combined organic layers were washed with H₂O (5.00 mL), brine solution (5.00 mL), dried over Na₂SO₄, and concentrated. The crude product was purified by column chromatography (methanol–dichloromethane) to afford the correspond-ing title compound 7i–7p.

4-[4-(2-Naphthamido)phenyl]-*N*-(**4-methylbenzyl)**-**3-methoxythiophene-2-carboxamide (7i).** White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.60 br.s (1H), 8.60 s (1H), 8.38–8.35 m (1H), 8.12–8.09 m (1H), 8.07–8.02 m (3H), 7.94 br.s (3H), 7.67–7.62 m (4H), 7.26–7.24 m (2H), 7.16–7.14 m (2H), 4.50 d (2H, J = 6.0 Hz), 3.69 s (3H), 2.28 s (3H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 162.4, 154.1, 138.7, 136.3, 135.8, 134.7, 134.2, 132.08, 132.01, 129.0, 128.9, 128.8, 128.0, 127.9, 127.8, 127.6, 127.3, 127.1, 126.8, 125.8, 124.3, 124.0, 120.5, 61.43, 42.15, 20.60. MS (MM): m/z: 507.0 [M +

H]⁺. Found, %: C 73.59; H 5.06; N 5.64. $C_{31}H_{26}N_2O_3S$. Calculated, %: C 73.49; H 5.17; N 5.53.

N-(2-Methoxybenzyl)-4-[4-(2-naphthamido)phenyl]-3-methoxythiophene-2-carboxamide (7j). White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.62 br.s (1H), 8.60 s (1H), 8.28–8.25 m (1H), 8.12–7.92 m (6H), 7.89–7.84 m (1H), 7.67–7.64 m (4H), 7.31–7.24 m (2H), 7.05–6.92 m (2H), 4.52 d (2H, J = 6.0 Hz), 3.87 s (3H), 3.72 s (3H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.79, 165.71, 160.3, 156.8, 154.0, 138.7, 134.6, 134.2, 132.07, 132.02, 129.0, 128.9, 128.4, 128.0, 127.9, 127.8, 127.7, 127.6, 127.3, 126.8, 126.3, 125.9, 124.3, 124.1, 120.5, 120.3, 120.2, 110.5, 61.38, 55.35, 38.33. MS (MM): *m/z*: 523.0 [*M* + H]⁺. Found, %: C 71.34; H 5.12; N 5.24. C₃₁H₂₆N₂O₄S. Calculated, %: C 71.24; H 5.01; N 5.36.

4-[4-(2-Naphthamido)phenyl]-*N*-(**4-methoxybenzyl)-3-methoxythiophene-2-carboxamide (7k).** Off-white solid. ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 10.57 br.s (1H), 8.60 s (1H), 8.31–8.30 m (1H), 8.11–8.09 m (1H), 8.06–8.01 m (3H), 7.94 d (2H, *J* = 8.8 Hz), 7.84 br.s (1H), 7.66–7.62 m (4H), 7.29 d (2H, *J* = 8.8 Hz), 6.91 d (2H, *J* = 8.4 Hz), 4.45 d (2H, *J* = 6.0 Hz), 3.73 s (3H), 3.60 s (3H). ¹³C NMR spectrum (DMSO-*d*₆), δ , ppm: 166.09, 162.7, 154.5, 139.0, 136.6, 136.2, 135.0, 134.5, 132.4, 132.3, 129.3, 129.2, 129.1, 128.3, 128.2, 128.1, 127.9, 127.7, 127.5, 127.2, 126.1, 124.6, 124.4, 120.8, 61.76, 55.37, 42.47, 20.92. MS (MM): *m/z:* 523.0 [*M* + H]⁺. Found, %: C 71.35; H 5.11; N 5.25. C₃₁H₂₆N₂O₄S. Calculated, %: C 71.24; H 5.01; N 5.36.

4-[4-(2-Naphthamido)phenyl]-3-methoxy-*N*-**phenethylthiophene-2-carboxamide (7l).** Off-white solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.59 br.s (1H), 8.62 s (1H), 8.12–8.10 m (1H), 8.07–8.02 m (3H), 7.96 d (2H, J= 8.4 Hz), 7.86–7.83 m (1H), 7.81 br.s (1H), 7.68–7.61 m (4H), 7.34–7.28 m (4H), 7.24–7.20 m (1H), 3.62–3.57 m (2H), 3.47 s (3H), 2.88 br.s (2H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 162.2, 153.9, 139.2, 138.8, 134.6, 134.2, 132.2, 132.0, 129.0, 128.9, 128.6, 128.4, 128.0, 127.8, 127.6, 127.3, 126.8, 126.1, 125.6, 124.4, 124.2, 120.4, 61.18, 40.16, 34.99. MS (MM): *m/z*: 507.0 [*M* + H]⁺. Found, %: C 73.59; H 5.26; N 5.63. C₃₁H₂₆N₂O₃S. Calculated, %: C 73.49; H 5.17; N 5.53.

4-[4-(2-Naphthamido)phenyl]-*N*-(**4-chlorophenyl)**-**3-methoxythiophene-2-carboxamide (7m).** White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.61 br.s (1H), 9.84 s (1H), 8.62 s (1H), 8.12–8.10 m (1H), 8.07 br.s (2H), 8.04–8.02 m (1H), 7.99–7.95 m (3H), 7.79 d (2H, J = 8.8 Hz), 7.69–7.62 m (4H), 7.44 d (2H, J = 8.8 Hz), 3.75 s (3H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 162.2, 154.6, 138.9, 137.1, 134.7, 134.2, 132.1, 132.0,128.9, 128.8, 128.6, 128.4, 128.0, 127.8, 127.6, 127.5, 126.5, 124.4, 123.2, 121.8, 120.4, 115.1, 61.70. MS (MM): m/z: 513.0 [M + H]⁺. Found, %: C 67.82; H 4.23; N 5.35. C₂₉H₂₁ClN₂O₃S. Calculated, %: C 67.90; H 4.13; N 5.46.

4-[4-(2-Naphthamido)phenyl]-*N*-(2-fluorophenyl)-**3-methoxythiophene-2-carboxamide (7n).** White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.61 br.s (1H), 9.82 s (1H), 8.62 s (1H), 8.29–8.25 m (1H), 8.12–8.10 m (1H), 8.07 br.s (2H), 8.04–8.02 m (1H), 8.00–7.90 m (3H), 7.69–7.62 m (4H), 7.38–7.33 m (1H), 7.27–7.16 m (2H), 3.74 s (3H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 158.7, 154.5, 153.8, 151.4, 139.1, 134.8, 134.2, 132.1, 132.0, 128.9, 128.6, 128.0, 127.8, 127.6, 127.5, 126.8, 126.1, 126.0, 124.8, 124.7, 124.4, 123.6, 122.1, 120.4, 115.3, 115.1, 61.67. MS (MM): *m/z*: 496.9 [*M* + H]⁺. Found, %: C 70.25; H 4.16; N 5.53. C₂₉H₂₁FN₂O₃S. Calculated, %: C 70.15; H 4.26; N 5.64.

4-[4-(2-Naphthamido)phenyl]-*N*-(**3-fluorophenyl)**-**3-methoxythiophene-2-carboxamide (70).** White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.62 br.s (1H), 9.91 s (1H), 8.64 s (1H), 8.13 br.s (1H), 8.04–7.93 m (5H), 7.78–7.41 m (8H), 7.00–6.95 m (1H), 3.76 s (3H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.6, 159.3, 154.7, 139.0, 134.8, 134.3, 134.2, 132.2, 132.0, 130.4, 130.3, 128.9, 128.8, 128.0, 127.6, 127.5, 126.8, 126.7, 124.4, 123.1, 120.4, 120.2, 61.75. MS (MM): *m/z*: 496.9 [*M* + H]⁺. Found, %: C 70.26; H 4.15; N 5.54. C₂₉H₂₁FN₂O₃S. Calculated, %: C 70.15; H 4.26; N 5.64.

4-[4-(2-Naphthamido)phenyl]-3-methoxy-*N*-(pyridin-3-yl)thiophene-2-carboxamide (7p). White solid. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 10.65 br.s (1H), 9.91 s (1H), 8.94 s (1H), 8.37–8.36 m (1H), 8.23–8.20 m (1H), 8.13–8.09 m (2H), 8.03–8.01 m (3H), 7.97 br.s (1H), 7.74–7.65 m (6H), 7.44–7.41 m (1H), 3.77 s (3H). ¹³C NMR spectrum (DMSO- d_6), δ , ppm: 165.7, 165.6, 163.2, 162.2, 159.5, 152.2, 144.8, 142.0, 139.0, 138.5, 134.9, 134.8, 134.2, 133.6, 132.1, 132.0, 129.2, 128.9, 128.8, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 126.8, 124.4, 123.5, 123.0, 122.4, 120.4, 118.3, 61.74. MS (MM): *m/z*: 480.1 [*M* + H]+. Found, %: C 70.22; H 4.31; N 8.66. C₂₈H₂₁N₃O₃S. Calculated, %: C 70.13; H 4.41; N 8.76.

In vitro evaluation of anticancer activity. MCF-7, MDA-MB-231, K562, HepG2, HeLa, and HEK293 were procured from National Centre for Cell Sciences, Pune, India. All tumour cells were grown in DMEM

media supplemented with 10% heat inactivated foetal bovine serum (FBS), 100 mg/mL streptomycin, 100 IU/mL penicillin, and 2 mM-glutamine. All cell lines were maintained under humidified atmosphere with 5% CO₂ at 37°C. Cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells (5×10^3 cells/well) were inoculated in 96-well culture plate and cultured with or without compounds at different concentrations (10, 5, 1, 0.5, 0.1, and 0.01 µM for dose response study) in duplicates for 24 h in a final volume of 200 µl. Afterwards, the medium was removed and 20 μ L of MTT (5 mg/mL in PBS) were added. After 3 h of incubation at 37°C, 100 µL of DMSO were added to each well, and plates were agitated for 1 min. The absorbance was measured at 570 nm with a multi-well plate reader (Victor3, Perkin Emler). Percent inhibition of proliferation was calculated as a fraction of control.

Molecular docking. Docking was performed on Windows 2002, MOE 2008.10 version. Protein tyrosine phosphatase 1B was retrieved from the protein data bank (PDB code: 4y14), and the enzyme was visualized using sequence option, and further co-factors were deleted. The partial charge of the protein was adjusted with the help of force field method AMBER 99. Later, the protein was subjected to 3D protonation at cut off 12.0, and further hydrogen was added according to standard geometry and the receptor was energy minimized using force field MMFF94x at 0.01 kJ/mol gradients. The ligand structures were written by using a builder module, and adjusting the partial charges using Hamilton MMFF94 force field method and subsequently 3D protonation and hydrogen addition was performed according to standard geometry. Ligands were energy minimized at cut off 12 using force field MMFF94x at 0.01 kJ/mol gradient and 6.0 Å grid was generated on the active site of the enzyme. Docking was performed using the option simulation followed by dock on selected active site amino acids using sequence option, and eventually docked using setting options such as receptor and solvent, alpha triangle, selected residues, affinity dG, force field refinement, and best 30 poses. After obtaining docking results, the best pose was retained. The resultant best pose score values in the series were used for analysis of docking and interaction.

CONCLUSIONS

A novel series of thiophene-2-carboxamide derivatives is synthesized and the molecular structures confirmed by ¹H and ¹³C NMR, and mass spectra. The synthesized compounds are evaluated for their *in vitro* cytotoxic activity by MTT assay. The compound **7m** containing the 4-Clphenyl substituent exhibits the potent inhibitory activity against MCF-7, K562, HepG2, and MDA-MB-231 cell lines. The molecular docking study performed for the synthesized compounds against PTP1B indicates their possible binding interactions at the active site. The accumulated data indicate that the tested compounds may lead to potent anticancer agents.

The authors would like to thank the management of AMRI Hyderabad research centre for giving an opportunity to carry out this research. The authors are also thankful to Sai Innotech labs Pvt. Ltd. for providing synthesis facility.

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

- Basu, S., Prasad, U.V., Barawkar, D.A., De, S., Palle, V.P., Menon, S., Patel, M., Thorat, S., Singh, U.P., Sarma, K.D., Waman, Y., Niranjan, S., Pathade, V., Gaur, A., Reddy, S., and Ansari, S., *Bioorg. Med. Chem. Lett.*, 2012, vol. 22, p. 2843. doi 10.1016/j.bmcl.2012.02.070
- Gulipalli, K.C, Bodige, S., Ravula, P., Endoori, S., Vanaja, G.R., Suresh, B.G., Narendra Sharath Chandra, J.N., and Seelam, N., *Bioorg. Med. Chem. Lett.*, 2017, vol. 27, p. 3558. doi 10.1016/j.bmcl.2017.05.047
- Hirth, B.H., Qiao, S., Cuff, L.M., Cochran, B.M., Pregel, M.J., Gregory, J.S., Sneddon, S.F., and Kane, Jr., J.L., *Bioorg. Med. Chem. Lett.*, 2005, vol. 15, p. 2087. doi 10.1016/j.bmcl.2005.02.041
- Chohan, Z.H., Farooq, M.A., Scozzafava, A., and Supuran, C.T., *J. Enzyme Inhib. Med. Chem.*, 2002, vol. 17, p. 1. doi 10.1080/14756360290005598
- Hosseini, Z., Akbari, N., Gholivand, K., Farshadian, S., and Khajeh, K., *Appl. Organomet. Chem.*, 2010, vol. 24, p. 700. doi 10.1002/aoc.1669
- Mahmood, N., Jhaumeer-Lauloo, S., Sampson, J., and Houghton, P.J., *J. Pharm. Pharmacol.*, 1998, vol. 50, p. 1339. doi 10.1111/j.2042-7158.1998.tb03356.x
- Pejchalová, M., Havelek, R., Královec, K., Růžičková, Z., and Pejchal, V., *Med. Chem. Res.*, 2017, vol. 26, p. 1847. doi 10.1007/s00044-017-1894-x
- Fun, H.K., Pai, K.S.R., Shetty, P., Isloor, A.M., and Sankappa, R.U., *Arab. J. Chem.*, 2014, vol. 8, p. 317. doi 10.1016/j.arabjc.2014.01.018

- Li, W.S., More, S.V., Wang, C.H., Jen, Y.C., Yao, C.F., Wang, T.F., Hung, C.C., and Jao, S.C., *Bioorg. Med. Chem. Lett.*, 2010, vol. 20, p. 1148. doi 10.1016/j. bmcl.2009.12.017
- Mou, J., Fang, H., Jing, F., Wang, Q., Liu, Y., Zhu, H., Shang, L., Wang, X., and Xu, W., *Bioorg. Med. Chem.*, 2009, vol. 17, p. 4666. doi 10.1016/j.bmc.2009.04.056
- 11. Bodige, S., Ravula, P., Gulipalli, K.C., Endoori, S., Narendra Sharath Chandra, J.N., Cherukumalli, P.K.R.,

Vanaja, G.R., and Seelam, N., Anticancer Agents Med. Chem., 2018, vol. 18, p. 891. doi 10.2174/ 1871520618666180209151018

- Ravula, P., Vamaraju, H.B., Paturi, M., Bodige, S., Gulipalli, K.C., and Narendra Sharath Chandra, J.N., *J. Heterocycl. Chem.*, 2018, vol. 55, p. 1313. doi 10.1002/jhet.3163
- Ye, D., Zhang, Y., Wang, F., Zheng, M., Zhang, X., Luo, X., Shen, X., Jiang, H., and Liu, H., *Bioorg. Med. Chem.*, 2010, vol. 18, p. 1773. doi 10.1016/j.bmc.2010.01.055