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ABSTRACT: A direct electrooxidative sulfonylation/hetero-
arylation reaction of alkenes with sulfinic acids, which
proceeds through distal heteroaryl ipso-migration and C—S
and C—C bond formations, is reported. This electro-synthetic
method offers an efficient and environmentally friendly entry
to prepare various sulfonated functionalized heteroarenes
under an undivided cell at room temperature, avoiding the use
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of any metal catalysts, additives, and oxidants. Preliminary mechanistic studies indicated a radical pathway.

F unctionality migration is known as a common workhorse
rearrangement transformation in organic chernistry.l Not
only is it one of the most challenging themes, but it also enables
us to reconstruct the molecular frameworks and synthesize
invaluable and structurally unique functionalized organic
compounds in an efficient way, which are difficult to generate
through other methods.” Generally, group migration works only
at carbon centers adjacent to carbon cations,” radicals,* or
carbenes.’ For instance, the radical 1,2-arylation migration has
been extensively studied.’ In contrast, long-distance radical aryl
migration is currently underdeveloped. In recent years, the
remote aryl migration protocol was actively pursued, and a
number of elegant cases have been established by Studer,™
Lian ,7b Tchabanenko,”® Uneyama,7d and others.”® Particularly,
Zhu® and Gu’ independently reported the intramolecular
migration of heteroaryl groups to accomplish the difunctional-
ization of unactivated olefins (Scheme 1a, b). Despite this
progress, these reported methods suffer from the necessity of
toxic and stoichiometric radical initiators,"”'" and oxidants,'>"*
thereby limiting their applicability to a certain extent.'*
Therefore, the development of a practical and green alternative
for remote aryl migration is still highly desirable, but is
challenging.

The design and application of efficient and sustainable
synthetic strategies toward functional molecules are a hot topic
in the organic community. As an ideal alternative to chemical
oxidants, electrochemical anodic oxidation represents an
environmentally friendly synthetic tool in organic chemistry."
Beyond simple replacement of chemical reductants/oxidants,
the electrochemical pathway also endows enormous oppor-
tunity to realize unprecedented reactivity and selectivity in many
C—H functionalization reactions.'® Recently, significant mo-
mentum has been gained by merging electrocatalysis with
dehydrogenative coupling for green synthesis, allowing the
direct construction of C—N and C—C bonds,"” and beautiful
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Scheme 1. Strategy of Heteroaryl Group Migration
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examples have been independently reported by Lei,"® Xu'’ and
co-workers. In spite of these significant achievements, electro-
catalytic C—S bond forming reactions for sulfone synthesis are
still rather limited, which requires the selection of suitable
sulfonyl sources and the specific design of sulfonyl-radical
triggered transformations.'*>'’® As part of our continuin§
studies in the synthesis of the sulfone-containing compounds,”
herein, we report an intermolecular sulfonylation/heteroaryla-
tion of the unactivated alkenes through electrochemical
oxidation (Scheme 1c). To the best of our knowledge,
transition-metal-free and oxidant-free intermolecular sulfonyla-
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tion/heteroarylation of unactivated alkenes to provide function-
alized sulfonated heteroarenes has not been reported to date.
Our study commenced with 1-(benzo[d]thiazol-2-yl)-1-
phenylpent-4-en-1-ol (1a) and 4-methylbenzenesulfinic acid
(2a) in a 1:3 mol ratio comprised of an undivided cell equipped
with a graphite anode and graphite cathode. Initially, the NH,I
(0.8 equiv) was set as the catalyst, LiClO, as the electrolyte, and
CH,;CN/DCE (v/v = 9/1) as cosolvents, which afforded the
migration product 3a only in a trace amount under 10 mA
constant current for 3.0 h (Table 1, entry 1). Interestingly,

Table 1. Optimization of Reaction Conditions”
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N "BuysNBF4 (0.3 M)
CH3CN/DCE, rt, 3 h
undivided cell
1a 2a 3a
entry deviation from standard condition yield (%)b
1 NH,]I as the catalyst, LiClO, as the electrolyte trace
2 LiClO, as the electrolyte 49
3 "Bu,ClO, as the electrolyte 48
4 none 70
S "Bu,NPF as the electrolyte 48
6 Et,NBF, as the electrolyte 30
7 Et,NOTs as the electrolyte 18
8 DCE instead of CH;CN/DCE 31
9 CH;CN instead of CH;CN/DCE 65
10 CH,CN/H,O (v/v = 4/1) instead of CH;CN/DCE 47
11 S mA instead of 10 mA, 6 h 63
12 15 mA instead of 10 mA, 2 h 59
13 Pt (+)IC () instead of C (+)IC (—) 29
14 C (+)IPt () instead of C (+)IC (=) 41
15 Pt (+)IPt (—) instead of C (+)IC (—) 26

“Standard conditions: graphite SK-50 electrodes, constant current =
10 mA, 1a (0.25 mmol), 2a (0.75 mmol), "Bu,NBF, (3.0 mmol) in
CH3CN/DCE (10.0 mL, v/v = 9/1) under air at room temperature
for 3.0 h. Plsolated yield is based on 1a.

without the addition of NH,], the current transformation could
proceed smoothly, accessing a 49% yield of the desired product
3a (entry 2). The following screening of the supporting
electrolytes, such as "Bu,ClO,, "Bu,NBF,, "Bu,PF, Et,NBF,,
and Et,NOTs often used in electrocatalysis, were then
investigated (entries 3—7), and the results show that "Bu,NBF,
was proven to be the best one, affording 3a in 70% yield (entry
4). Next, the effect of solvent was explored, including DCE,
CH,CN, and a cosolvent of CH;CN/H,O (v/v = 4/1) (entries
8—10). All these reaction media did not show any improvement
in reaction yields compared with the cosolvent CH;CN/DCE
(v/v = 9/1) (entries 8—10 vs entry 4). Further investigation
focused on the manipulation of the electrolysis conditions.
Either increasing or decreasing the constant current led to the
lower conversion (entries 11—12 vs entry 4). Moreover, the
effect of the electrode material was probed. It seemed that
replacing the graphite anode or graphite cathode with a platinum
plate all resulted in lower yields (Table 1, entries 13—15).
Finally, the molecular structure of 3a was identified by single-
crystal X-ray diffraction (CCDC 1867118; Figure S2).

With the optimized reaction conditions having been
identified, we evaluated the scope and limitations of substrates
in this electrochemical protocol (Scheme 2). Gratifyingly,

Scheme 2. Scope of Benzothiazole-Substituted Tertiary
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“Reaction conditions: graphite SK-50 electrodes, constant current =
10 mA, 1 (0.25 mmol), 2a (0.7S mmol), "Bu,NBF, (3.0 mmol) in
CH,CN/DCE (10.0 mL, v/v = 9/1) under air at room temperature
for 3.0 h. Isolated yield is based on 1.

electronic characteristics of the aryl group (R') have no
influence on the migration of the benzothiazolyl group, and a
variety of substituents at different positions of the alkynyl (R')
moiety that are electron-neutral (3a—3e), -rich (3f), and -poor
(3g—31) efficiently gave the corresponding products 3a—31 with
yields ranging from 36% to 74%. To our delight, benzothiazole-
substituted tertiary alcohol 1 bearing biphenyl and naphthyl
groups led to products 3m and 3n in 83% and 72% yields,
respectively. Similarly, the reaction exhibited considerable
tolerance of a series of heterocyclic functional groups such as
pyridyl, furanyl, or thienyl moieties, as the corresponding
products 30—3q were obtained in 52—69% yields. Besides
benzothiazole, the other heteroaryl groups such as benzoxazole
and thiazoles were then evaluated for this sulfonylation reaction.
Delightfully, both of them were suitable for this transformation,
giving the migration products 3r—3t with good to excellent
yields.

Subsequently, we evaluated whether the reaction could
tolerate the modification of the substituents attached to the
sulfinic acids 2 (Scheme 3). As anticipated, the reaction of
benzothiazole-substituted tertiary alcohol 1a with a variety of
arylsulfinic acids 2 under the standard conditions offered the
corresponding sulfonylated products 3aa—3aj in generally good
yields. Alternatively, both 2-thienyl and cyclopropyl analogues
were proven to be effective, enabling a similar radical-induced
migration process to give the corresponding products 3ak and
3al in 67% to 72% yields. However, sulfinic acids bearing
naphthyl or biphenyl groups seemed reluctant to undergo the
current electrocatalytic migration reaction, as the corresponding

DOI: 10.1021/acs.orglett.8b03191
Org. Lett. XXXX, XXX, XXX—XXX


https://summary.ccdc.cam.ac.uk/structure-summary?pid=ccdc:1867118&id=doi:10.1021/acs.orglett.8b03191
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.8b03191/suppl_file/ol8b03191_si_001.pdf
http://dx.doi.org/10.1021/acs.orglett.8b03191

Organic Letters

Scheme 3. Scope of Sulfinic Acids”
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“Reaction conditions: graphite SK-50 electrodes, constant current =
10 mA, 1a (0.25 mmol), 2 (0.75S mmol), "Bu,NBF, (3.0 mmol) in
CH,CN/DCE (10.0 mL, v/v = 9/1) under air at room temperature
for 3.0 h. Isolated yield is based on 1la.

products 3am and 3an were generated in low yields of 28% and
30%, respectively.

To gain further mechanistic insight into this mechanism,
preliminary controlled experiments were conducted. Initially,
tertiary alcohols (1a and lu—1x) with different lengths of linear
chains were subjected to the reaction of 4-methylbenzenesulfinic
acid 2a under the standard electrocatalytic conditions to
understand the migration pathway (Scheme 4). Obviously, the

Scheme 4. Transition States of Migration Reaction
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“3a, yield = (71%” was revised to “3a, yield = (70%)”

migration of the benzothiazole group could be affected by the
chain length of substrate 1; namely, the corresponding products
3aand 3w could be furnished through 1,4- or 1,5-migration (1a,
n =2; 1w, n = 3) whereas 1,2- and 1,3-migration together with
1,6-migration did not work, and the desired products (3u, n=0;
3v, n = 1; 3%, n = 4) could not be obtained. Results from these
experiments indicate that the migration favors five- and six-
membered cyclic transition states (n = 2, 3) while three-, four-,
and seven-membered cyclic transition states are disfavored (n =
0, 1, 4). These experiment outcomes also support the heteroaryl
migration in an intramolecular manner.

Subsequently, radical trapping experiments were carried out
to confirm whether this reaction proceeded through a radical
reaction pathway. When 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO) as the radical scavenger was subjected to the reaction
system under the standard conditions, the reaction was

substantially inhibited and the starting material 1a was almost
completely recovered (Scheme Sa). Furthermore, the sodium p-

Scheme 5. Control Experiments
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tolylsulfinate (4) was utilized as the sulfonyl source instead of
sulfinic acid 2a to participate in this reaction under the standard
conditions. To our surprise, the sodium p-tolylsulfinate showed
reactivity similar to that of p-toluenesulfinic acid (2a), giving the
desired product 3a in 65% yield (Scheme Sb). In addition,
without the addition of tertiary alcohol 1, the coupling product
4,4’-dimethyldiphenyl disulfone (5) could be obtained in good
yield (70%) (Scheme Sc). Last, the reaction of 1a with 2a was
conducted under the standard conditions without current, and
no desired product could be observed (Scheme 5d). All these
results indicate that the sulfinic acid 2a may undergo a
deprotonation process, resulting in sulfonyl radicals.

Based on the above results and the literature survey,”' a
reasonable mechanism for electrocatalytic sulfonylation reaction
is proposed in Scheme 6. The reaction commences with the
deprotonation of sulfinic acid 2a, giving a sulfonyl ion

Scheme 6. Plausible Mechanism
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intermediate I. Subsequently, the ion intermediate I is oxidized
to a new oxygen-centered radical intermediate II through a
single electron transfer (SET) procedure at the anode. The
arylsulfonyl radicals IIT and II are resonance structures. The
sulfonyl radical III undergoes intermolecular radical addition to
the benzothiazole-substituted tertiary alcohols to generate
intermediate IV, which was trapped by the intramolecular
heteroaryl group via a five-membered cyclic transition state to
generate the spiro N-radical V. The amino radical triggers the
C—C bond cleavage, and the resulting ring opening of the spiro
structure generates a ketyl radical VI. Single-electron oxidation
of VI occurs at the anode to the cationic intermediate VII.
Finally, deprotonation of VII afforded the product 3a.

In summary, we have successfully developed an efficient
intermolecular sulfonylation/heteroarylation of alkenes with
sulfinic acids via distal heteroaryl ipso-migration. This electro-
chemical protocol avoids the use of the external catalysts and
chemical oxidants, resulting in the formation of new C—C/C—S§
bonds, thereby providing an environmentally friendly way to
access a set of sulfonated functionalized heteroarenes. Efforts are
underway in our laboratory to extend the application of this
method to other migration functionalization reactions.
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