Synthesis of 2-Aminoindoles through Gold-Catalyzed C–H Annulations of Sulfilimines with *N*-Arylynamides

Xianhai Tian,[†] Lina Song,[†] Matthias Rudolph,[†] Frank Rominger,[†] and A. Stephen K. Hashmi^{*,†,‡}

[†]Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany [‡]Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Supporting Information

ABSTRACT: A new gold-catalyzed C–H annulation of sulfilimines with *N*-phenylynamides is presented. As key intermediates of this operationally simple reaction, the in situ generated α -imino gold carbenes insert into the ortho C–H bonds of the phenyl groups to afford 2-aminoindoles bearing a variety of substitution patterns in high selectivities. This reaction offers a facile approach to biologically important 2-aminoindoles by using inexpensive and readily available starting materials.

T he indole core, an extraordinarily important structural component, is present in many natural products and synthetic medicinal compounds.¹ 2-Aminoindoles are among the most important of these substrates in pharmaceutical chemistry.^{2,3} Beyond the diverse bioactivities shown by prominent examples (Figure 1), the 2-aminoindole unit can act as a planar aromatic structure and interact with a protein target by virtue of the two adjacent hydrogen-bond donors.⁴

Consequently, the development of methodologies toward 2aminoindoles is highly desirable. Traditional methods include palladium-catalyzed aminations of 2-haloindoles,⁵ cross-coupling cascade reactions,⁶ multistep reactions,⁷ and a recent

Figure 1. Representative bioactive 2-aminoindoles and syntheses of 2aminoindoles by means of gold catalysis.

base-promoted [4 + 1] cycloaddition of o-aminobenzyl chlorides with isocyanides.⁸ These protocols, however, require strong bases, high temperatures, harsh substrates, or give specialized products bearing only special substituents at the 3positions of the indole cores. Recently, gold-catalyzed conversion of ynamides offers new alternatives to highly regioselective routes to these compounds. Skrydstrup et al. synthesized 2-aminoindoles through a gold(I)-catalyzed hydroamination of ynamides with 2-iodoanilines and a subsequent palladium-catalyzed cross-coupling reaction (Figure 1).⁹ Ye's group¹⁰ developed a gold-catalyzed reaction of the potentially explosive benzyl azides and N-phenylynamides for the synthesis of 2-aminoindoles. Hashmi et al. prepared 2aminoindoles from anthranils and ynamides with the restriction of an acyl group at the 7-position of the indole framework.^{11a} Given these advances and drawbacks, a general, facile method using safe and readily accessible substrates is still challenging and of great importance.

Gold catalysis¹² involving alkyne activation and subsequent oxygen,¹³ carbene,¹⁴ as well as nitrene transfer¹⁵ reactions represents one of the most concise and promising complexitygenerating strategies. Aza-heterocycles with labile N–X bonds (X = C, N, O) including 2*H*-arizines,¹⁶ pyrido[1,2-*b*]indazole,s¹⁷ and isoxazole derivatives¹⁸ as gold nitrene transfer reagents facilitate the syntheses of heterocycles (Scheme 1A), whereas the ring-opening in situ generated α -imino gold carbenes are mostly trapped by a limited number of functionalities, mainly originating from the nitrene transfer reagents. By comparison, ylides and ylide-like reagents such as azides,¹⁹ pyridium aza-ylides,²⁰ sulfonium ylides,¹⁴ and sulfilimines²¹ have propelled the rapid development of efficient transformations because of the diversity of trapping functionalities on the anions (Scheme 1B). While conjugated ylides

```
Received: April 29, 2019
```

Scheme 1. Gold-catalyzed reactions involving carbene intermediates

A. Cyclic aza-heterocycles as nitrene equivalents^{ref 16-18} (**O** : trapping site)

always undergo [3 + 2] dipolar annulations, with nonconjugated groups on the anions the generated gold carbenes can be intramolecularly trapped by the functional groups within the alkynes. An intramolecular C-H insertion reaction for the synthesis of bicyclic systems can be expected by introduction of an aromatic group to the alkyne moiety. Unlike oxidative cyclization²² reactions using N-oxides, with the main drawback of overoxidation to form a diketone product (Scheme 1C), gold-catalyzed annulations of N-arylynamides and benzyl azides efficiently delivered 2-aminoindoles.¹⁰ Azides, however, are potentially hazardous and poisonous. Moreover, nitrogen as a leaving group creates the danger of explosive decomposition in the scale-up of reactions, which limits the synthetic applicability of this method. To this end, a readily available and safe reagent with a mild leaving group is highly desirable. We recently reported [3 + 2] annulations of sulfilimines with ynamides for the syntheses of 2-aminoindoles,^{21a} 4-aminoimidazoles,^{21a} fused 2-aminoimidazoles,^{21b} and 4-aminooxazles^{21c} by installing different functional groups (aryls, heteroaryls, iminyls, and acyls) on the nitrogen anions of sulfilimines (Scheme 1D, path a). We now envisioned a new synthetic approach to 2-aminoindoles (Scheme 1D, path b). The generated α -imino gold carbenes insert into the ortho C-H bonds of the preinstalled aryl groups, providing N,N'disubstituted 2-aminoindoles. As nonexplosive waste, the released sulfides showed no poisoning of the gold catalyst.

We began our investigation by employing *N*-sulfonylsulfilimines **1** as a nitrene source. As shown in Scheme 2, under the

Scheme 2. Reaction $Scope^{a,b}$

^aReaction conditions: 1 (0.3 mmol, 1.5 equiv), 2 (0.2 mmol, 1.0 equiv), PicAuCl₂ (3.8 mg, 5 mol %), toluene (2.0 mL, 0.1 M). ^bIsolated yields.

same reaction conditions (PicAuCl₂, 80 °C, toluene) as in our previous reports,²¹ *N*-methylsulfonyl-protected sulfilimine **1a** reacted efficiently with *N*-phenylynamide **2a** and the desired product **3aa** (single-crystal X-ray structure analysis, see Figure 2) was obtained in 82% yield. This reaction was compatible

Figure 2. Solid-state molecular structure of 3aa.

with *N*-phenylsulfonyl-substituted sulfilimine **1b**, giving indole **3ba** in 50% yield. Ynamides **2b**,**c** with other protecting groups (Ms, SO₂Ph) on the nitrogen atoms were also converted to products **3ab**,**ac** in good yield. With either electron-rich or electron-deficient aryl groups on the nitrogen atoms, ynamides **2d**-**f** were suitable substrates to undergo the desired transformation. 3-Methylphenyl ynamide **2g** afforded a mixture of 4-methylindole **3ag** and 6-methylindole **3ag'** with a ratio of 2.1:1 in 84% combined yield (Scheme 3). This C-H

^{*a*}Isolated yields. ^{*b*}The ratio of 3ag/3ag' was determined by ¹H NMR.

annulation reaction even tolerates an electron-rich dimethoxyphenyl ynamide, providing **3ah** in 87% yield. When R^2 was varied from an electron-poor aryl group (either a phenyl halide or a trifluoromethylbenzene) to an electron-rich group (*p*-methylbenzene) within the ynamides, the reactions proceeded smoothly and the corresponding products **3ai–ao** were prepared in 49–89% yield. The high-quality success with a thiophene-containing ynamide is notable. Unfortunately, an alkyl ynamide reacted sluggishly and unselectively, and the target indole **3aq** was not obtained. Furthermore, the reaction of **3ab** (Scheme 3) could conveniently be conducted on a mmole scale.

The reaction scope was further extended to N-arylsulfilimines (Scheme 4). The α -imino gold carbenes from such ylides could lead to two types of indole products by competitive C-H insertions. N-Phenyl ylides 1c,d and Nphenyl ynamides with a methoxy group at the meta-position were examined. Gratifyingly, the treatment of S,S-dimethylsulfilimine 1c with the 3-methoxyphenyl-substituted ynamide 2r delivered N-phenyl-1-tosyl-1H-indol-2-amines 3cr in 87% yield through a regioselective C-H annulation (Scheme 4). A 3,5dimethoxyphenylynamide 2h also showed excellent efficiency for the preparation of product 3ch. Clearly, the gold carbenes prefer to insert into the ortho-C-H bonds of the more electron-rich phenyl group. By reacting with triphenylsulfilimine 1d, 3-methoxyphenylynamide 2r gave divergent products 4dr (73% yield) and 3dr (25% yield), while 3,5-dimethoxyphenyl-derived ynamide 2h afforded a single product 3dh in 75% yield. Notably, the reaction between sulfilimine 1d and 4methoxyphenylynamide 2e yielded 4de as a single product. These results demonstrate that the different electronic properties of the two nitrogen atoms (the imino nitrogen atom and the amide nitrogen atom) also have a significant influence on the C-H insertion processes.

In conclusion, we have described a new gold(III)-catalyzed C–H annulation of sulfilimines and N-phenylynamides for the synthesis of 2-aminoindoles. The reaction involves α -imino gold carbene intermediates. The current report features readily available substrates, mild conditions, and good substrate tolerance. Dimethyl (or diphenyl) sulfide as a safe leaving

^aReaction conditions: 1 (0.3 mmol, 1.5 equiv), 2 (0.2 mmol, 1.0 equiv), PicAuCl₂ (3.8 mg, 5 mol %), and toluene (2.0 mL, 0.1 M). ^aIsolated yields of products 3 and 4.

group makes this method a practical and safely scalable alternative for synthesizing these biologically important heterocyclic compounds.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.9b01501.

Experimental procedures and compound characterization (PDF)

Accession Codes

CCDC 1861977 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hashmi@hashmi.de.

ORCID ®

A. Stephen K. Hashmi: 0000-0002-6720-8602

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

X.T. and L.S. are grateful to the CSC (China Scholarship Council) for a PhD fellowship.

REFERENCES

(1) For reviews on indoles, see: (a) Sundberg, R. J. Indoles; Academic Press, 1996. (b) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. (c) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (d) Krüger, K.; Tillack, A.; Beller, M. Adv. Synth. Catal. 2008, 350, 2153. (e) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608. (f) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev. 2010, 110, 4489. (g) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215. (h) Inman, M.; Moody, C. J. Chem. Sci. 2013, 4, 29.

(2) Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P. J. Med. Chem. 2003, 46, 2656.

(3) Barraja, P.; Diana, P.; Lauria, A.; Montalbano, A.; Almerico, A. M.; Dattolo, G.; Cirrincione, G. *Bioorg. Med. Chem.* **2005**, *13*, 295.

(4) Wang, K.; Herdtweck, E.; Dömling, A. ACS Comb. Sci. 2011, 13, 140.

(5) (a) Hooper, M. W.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2003, 68, 2861. (b) Plas, A.; Martin, C.; Joubert, N.; Viaud-Massuard, M.-C. Org. Lett. 2015, 17, 4710.

(6) (a) Witulski, B.; Alayrac, C.; Tevzadze-Saeftel, L. *Angew. Chem., Int. Ed.* **2003**, *42*, 4257. (b) Dooleweerdt, K.; Ruhland, T.; Skrydstrup, T. *Org. Lett.* **2009**, *11*, 221.

(7) (a) Yang, X.; Fu, H.; Qiao, R.; Jiang, Y.; Zhao, Y. Adv. Synth. Catal. 2010, 352, 1033. (b) Jiang, M.; Li, J.; Wang, F.; Zhao, Y.; Zhao, F.; Dong, X.; Zhao, W. Org. Lett. 2012, 14, 1420. (c) Sheng, G.; Huang, K.; Ma, S.; Qian, J.; Lu, P.; Wang, Y. Chem. Commun. 2015, 51, 11056.

(8) Jong, J. A. W.; Bao, X.; Wang, Q.; Zhu, J. Helv. Chim. Acta 2019, 102, No. e1900002.

(9) Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.; Rottländer, M.; Skrydstrup, T. Org. Lett. 2009, 11, 4208.

(10) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. **2015**, 137, 9567.

(11) (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. *Angew. Chem., Int. Ed.* **2016**, 55, 794. For a similar strategy using mercury catalysis, see also: (b) Zheng, M.; Chen, K.; Zhu, S. *Synthesis* **2017**, *49*, 4173.

(12) Selected reviews on gold catalysis: (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. (b) Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (c) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. (d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (e) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677. (f) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028. (g) Wang, Y.; Muratore, M. E.; Echavarren, A. M. Chem. - Eur. J. 2015, 21, 7332. (h) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456. (i) Day, D. P.; Chan, P. W. H. Adv. Synth. Catal. 2016, 358, 1368.

(13) For reviews on α -oxo gold carbenes from N-oxides, see: (a) Yeom, H.-S.; Shin, S. Acc. Chem. Res. **2014**, 47, 966. (b) Zhang, L. Acc. Chem. Res. **2014**, 47, 877. (c) Wang, Y.; Zhang, L. Synthesis **2015**, 47, 289. (d) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. **2016**, 45, 4448. For examples on α -oxo gold carbenes from S-oxides, see also: (e) Li, G.; Zhang, L. Angew. Chem., Int. Ed. **2007**, 46, 5156. (f) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. **2007**, 129, 4160. (g) Davies, P. W.; Albrecht, S. J.-C. Angew. Chem., Int. Ed. **2009**, 48, 8372.

(14) (a) Kramer, S.; Skrydstrup, T. Angew. Chem., Int. Ed. 2012, 51, 4681. (b) Huang, X.; Peng, B.; Luparia, M.; Gomes, L. F.; Veiros, L. F.; Maulide, N. Angew. Chem., Int. Ed. 2012, 51, 8886. (c) Huang, X.; Klimczyk, S.; Veiros, L. F.; Maulide, N. Chem. Sci. 2013, 4, 1105.

(15) For reviews on gold nitrene transfer reactions, see: (a) Davies,
P. W.; Garzon, M. Asian J. Org. Chem. 2015, 4, 694. (b) Li, L.; Tan,
T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 15,
8483. (c) Aguilar, E.; Santamaría, J. Org. Chem. Front. 2019, 6, 1513.
(16) (a) Prechter, A.; Henrion, G.; dit Bel, P. F.; Gagosz, F. Angew.
Chem., Int. Ed. 2014, 53, 4959. (b) Zhu, L.; Yu, Y.; Mao, Z.; Huang,
X. Org. Lett. 2015, 17, 30. (c) Pawar, S. K.; Sahani, R. L.; Liu, R. S.
Chem. - Eur. J. 2015, 21, 10843.

(17) (a) Yu, Y.; Chen, G.; Zhu, L.; Liao, Y.; Wu, Y.; Huang, X. J. Org. Chem. 2016, 81, 8142. (b) González, J.; Santamaría, J.; Suárez-Sobrino, Á. L.; Ballesteros, A. Adv. Synth. Catal. 2016, 358, 1398.
(c) Allegue, D.; González, J.; Fernández, S.; Santamaría, J.; Ballesteros, A. Adv. Synth. Catal. 2019, 361, 758.

(18) (a) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265. (b) Chen, M.; Sun, N.; Chen, H.; Liu, Y. Chem. Commun. 2016, 52, 6324. (c) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 12688. (d) Sahani, R. L.; Liu, R.-S. Angew. Chem., Int. Ed. 2017, 56, 1026. (e) Zeng, Z.; Jin, H.; Xie, J.; Tian, B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett. 2017, 19, 1020. (f) Xu, W.; Wang, G.; Sun, N.; Liu, Y. Org. Lett. 2017, 19, 3307. (g) Zeng, Z.; Jin, H.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2018, 57, 6935. (h) Jadhav, P. D.; Lu, X.; Liu, R.-S. ACS Catal. 2018, 8, 9697. (i) Zhao, Y.; Wang, C.; Hu, Y.; Wan, B. Chem. Commun. 2018, 54, 3963. (j) Giri, S. S.; Liu, R.-S. Chem. Sci. 2018, 9, 2991. (k) Tsai, M.-H.; Wang, C.-Y.; Raj, A. S. K.; Liu, R.-S. Chem. Commun. 2018, 54, 10866. (1) Mokar, B. D.; Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci. 2018, 9, 4488. (m) Xu, W.; Zhao, J.; Li, X.; Liu, Y. J. Org. Chem. 2018, 83, 15470. (n) Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2018, 57, 16549.

(19) (a) Gorin, D.; Davis, J. N. R.; Toste, F. D. J. Am. Chem. Soc.
2005, 127, 11260. (b) Wetzel, A.; Gagosz, F. Angew. Chem., Int. Ed.
2011, 50, 7354. (c) Lu, B.; Luo, Y.; Liu, L.; Ye, L.; Wang, Y.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 8358. (d) Yan, Z. Y.; Xiao, Y.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 8624. (e) Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. J. Org. Chem. 2015, 80, 11407. (f) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett.
2016, 18, 3254. (g) Li, N.; Lian, X.-L.; Li, Y.-H.; Wang, T.-Y.; Han, Z.-Y.; Zhang, L.; Gong, L.-Z. Org. Lett. 2016, 18, 4178. (h) Matsuoka, J.; Matsuda, Y.; Oishi, S.; Ohno, H. Angew. Chem., Int. Ed.
2017, 56, 7444.

(20) (a) Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738. (b) Davies, P.
W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed. 2011, 50, 8931. (c) Garzon, M.; Davies, P. W. Org. Lett. 2014, 16, 4850. (d) Reddy, R. J.; Ball-Jones, M. P.; Davies, P. W. Angew. Chem., Int. Ed. 2017, 56, 13310.

(21) (a) Tian, X.; Song, L.; Rudolph, M.; Rominger, F.; Oeser, T.; Hashmi, A. S. K. Angew. Chem., Int. Ed. **2019**, 58, 3589. (b) Tian, X.; Song, L.; Rudolph, M.; Wang, Q.; Song, X.; Rominger, F.; Hashmi, A. S. K. Org. Lett. **2019**, 21, 1598. (c) Tian, X.; Song, L.; Han, C.; Zhang, C.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett. **2019**, 21, 2937. (d) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. **2000**, 122, 11553. (e) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. **2000**, 39, 2285.

(22) (a) Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem., Int. Ed.
2012, 51, 1915. (b) Bhunia, S.; Ghorpade, S.; Huple, D. B.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 2939. (c) Chen, D.-F.; Han, Z.-Y.; He, Y.-P.; Yu, J.; Gong, L.-Z. Angew. Chem., Int. Ed. 2012, 51, 12307.
(d) Henrion, G.; Chavas, T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277. (e) Graf, K.; Rühl, C. L.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2013, 52, 12727. (f) Yang, L.-Q.; Wang, K.-B.; Li, C.-Y. Eur. J. Org. Chem. 2013, 2013, 2775. (g) Wang, K.-B.; Ran, R.-Q.; Xiu, S.-D.; Li, C.-Y. Org. Lett. 2013, 15, 2374. (h) Li, L.; Zhou, B.; Wang, Y.-H.; Shu, C.; Pan, Y.-F.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2015, 54, 8245.
(i) Sánchez-Cantalejo, F.; Priest, J. D.; Davies, P. W. Chem. - Eur. J. 2018, 24, 17215. (j) Xu, Z.; Chen, H.; Wang, Z.; Ying, A.; Zhang, L. J. Am. Chem. Soc. 2016, 138, 5515.