(Chem. Pharm. Bull.) 29(9)2451—2459(1981)

Constituents of Cinnamomi Cortex. V.1) Structures of Five Novel Diterpenes, Cinncassiols D₁, D₁ Glucoside, D₂, D₂ Glucoside and D₃

Toshihiro Nohara,*,^a Yoshiki Kashiwada,^a Kōtarō Murakami,^a Toshiaki Tomimatsu,^a Masaru Kido,^b Akira Yagi,^c and Itsuo Nishioka^c

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima 770, Japan, Laboratory of Natural Products Chemistry, Otsuka Pharmaceutical Co., Ltd., Kawauchi-cho, Tokushima 770, Japan, and Faculty of Pharmaceutical Sciences, Kyushu University, Maedashi 3-1-1, Higashi-ku, Fukuoka 812, Japan

(Received February 12, 1981)

The structures of cinncassiol D_1 (1), cinncassiol D_1 glucoside (2), cinncassiol D_2 (3), cinncassiol D_2 glucoside (4) and cinncassiol D_3 (5), isolated from the fraction exhibiting anti-complement activity of the water extractive of Cinnamomi Cortex ("Tōkō Keihi"), have been characterized by means of chemical, spectral and X-ray analyses. They are novel pentacyclic diterpenes with a new skeleton.

Keywords—Cinnamomi Cortex; Lauraceae; diterpenes; cinncassiol D_1 ; cinncassiol D_1 glucoside; cinncassiol D_2 ; cinncassiol D_2 glucoside; cinncassiol D_3 ; X-ray analysis

The isolation of a series of diterpenes (compounds I—XIII) from the fraction exhiviting anti-complement activity²⁾ of the water extractive of Cinnamomi Cortex ("Kannan Keihi" and "Tōkō Keihi", the dried bark of *Cinnamomum cassia* Blume (Lauraceae); one of the most widely used crude drugs), the identification of compounds I and II with cinnzeylanine and cinnzeylanol,³⁾respectively,and the structure elucidation of compounds III—XIII were reported in the preceding papers.^{1,4)} These diterpenes so far obtained from Cinnamomi Cortex can be classified into three groups, namely ketal, lactone and diketone types, as shown in Table I.

As a continuation of that work, the present paper deals with the structure determination of five additional diterpenes named cinncassiol D_1 (1), D_1 glucoside (2),⁵⁾ D_2 (3), D_2 glucoside (4) and D_3 (5), which had been isolated⁶⁾ from the water extractive of "Tōkō Keihi." They are closely related to each other structurally and belong to a new type different from the above three groups.

Cinncassiol D_1 (1), a white powder, $[\alpha]_D - 11.6^\circ$, $C_{20}H_{32}O_5$ (field desorption mass (FD-MS) spectrum (m/z) 352 (M^+)), showed signals due to three tert. CH₃ (δ 0.90 and 2×1.69), a sec.CH₃ $(\delta 1.37, d, I = 6 Hz)$, a -CH₂-O- $(\delta 3.80, d, I = 9 Hz)$ and a >CH-O- $(\delta 4.44, br s)$ in the proton nuclear magnetic resonance (¹H NMR) spectrum (d₅-pyridine). Since the latter two functions, the methylene and the methine bearing an oxygen atom, appeared at δ 4.01, 4.21 (each 1H, dd, I=7, 11 Hz) and 4.45 (1H, br s) in the ¹H NMR spectrum (d_5 -pyridine) of the monoacetate (6), a white powder, $C_{22}H_{34}O_6$, $[\alpha]D - 10.9^\circ$, derived from 1 by acetylation with Ac_2O -pyridine at room temperature for 30 min, the above signals could be assigned to the hydroxymethyl group and the methine proton bearing an ether oxygen bond, respectively. Furthermore, the ¹³C nuclear magnetic resonance (¹³C NMR) spectrum (Table II) exhibited peaks due to $CH_3 \times 4$, $CH_2 \times 4$, $CH \times 5$, $CC \times 2$, $-CH_2 - O - \times 1$, $CH - O - \times 1$, $CH - O - \times 2$ and $CCO - \times 1$. On the basis of a comparisn of the ¹H NMR and ¹³C NMR spectra of 1 with those of compounds I—XIII, 1 was supposed to be a diterpene with a new skeleton. Thus, 1 was treated with ϕ bromobenzenesulfonyl chloride and pyridine at room temperature for 2 h and subsequently acetylated with Ac₂O-pyridine at room temperature overnight to yield the monoacetyl monobrosylate (brosylate=p-bromobenzenesulfonate) (7) of 1, colorless plates, mp 104—105°C, $[\alpha]_D \simeq 0^\circ$, ¹H NMR (CDCl₃) δ : 2.03 (3H, s, -OAc), 7.65, 7.78 (each 2H, d, J = 10 Hz, $4 \times \text{arom}$.

TABLE I. Diterpenes obtained from Cinnamomi Cortex

Ketal-type Lactone-type Diketone-type ŌR′ OH HO, HO R=H, R'=AcR=H, R'=AcR = OHcinnzeylanine3,4a) anhydrocinnzeylanine 3,4a) cinncassiol C14b) R=R'=HR=R'=H $R = -O - \beta - p - glc \cdot pyr$ ${\rm cinnzeylanol}^{3,4a)}$ anhydrocinnzeylanol 3,4a) cinncassiol C_1 glucoside1) III R=OH, R'=HVII R=OH, R'=H XII R=Hcinncassiol B4c) cinncassiol A4a) cinncassiol $C_2^{1)}$ IV $R = -O - \beta - p - glc \cdot pyr$, VIII R=OAc, R'=HR'=Hcinncassiol A ÒН cinncassiol B4c) monoacetate glucoside IX $R = -O - \beta - p - glc \cdot pyr$, R'=Hcinncassiol A HO glucoside4a) XIII cinncassiol C₃1,3)

Table II. 13 C NMR Spectra^{a)} of 1, 2, 3, 11 and 12

	1	2	3	11	12
C- 1	88.6	88.8	89.4	88.9	44.2
C-2	40.4	40.7	36.3	35.7	78.4
C-3	28.1	28.3	41.3	40.6	47.0
C - 4	51.0	51.5	87.4	87.2	89.0
C - 5	54.1	54.6	62.5	61.1	53.8
C-6	77.2	77.6	76.3	75.0	76.4
C - 7	82.0	82.0	81.5	82.4	83.7
C - 8	48.6	48.9	49.3	48.4	48.9
C-9	37.3	37.5	42.2	41.4	42.4
C -10	25.2	26.0	26.1	25.3	26.5
C -11	107.5	107.7	107.9	106.8	107.8
C –12	57.1	57.4	57.5	56.5	57.8
C -13	40.4	41.2	40.9	40.4	40.8
C-14	41.1	41.2	44.3	42.4	44.1
C –15	25.5	25.4	24.5	23.6	13.1
C-16	24.4	24.8	22.4	21.5	22.9
C-17	13.5	14.1	13.8	12.9	13.8
C -18	36.9	34.8	37.5	33.8	37.8
C-19	67.3	75.7	67.8	78.6	67.8
C -20	10.6	10.5	10.5	8.3	10.4
C-1'		105.0		100.9	
C-2'		75.1		71.4	
C –3′		78.3		72.7	
C-4'		71.6		68.4	
C-5'		78.3		71.7	
C-6′		62.8		61.9	

a) Measured in d_5 -pyridine for 1, 2, 3, 12 and in CDCl₃ for 11.

proton). A single crystal of 7 suitable for X-ray diffraction study was obtained by recrystal-lization from dil. MeOH and its data were as follows; $C_{28}H_{37}SO_8Br \cdot H_2O$; monoclinic, space groups $P2_1$ (Z=2); lattice constants a=10.222(6), b=10.271(7), c=15.155(6) Å, $\beta=96.91(4)^\circ$, V=1579.6 ų; $D_{(calcd.)}=1.33$, $D_{(obsd.)}=1.37$ g/cm³. The cell dimensions and intensities were measured with a Syntex R_3 four-circle diffractometer with graphite-monochromated $Mo(K\alpha)$ radiation in an ω scan mode for 2θ less than 45° . A total of 2192 independent reflections were collected, among which 1284 reflections ($I \ge 2.0 \sigma(I)$) were stored as observed. The structure was solved by the heavy atom method using the Syntex XTL program. All the non-hydrogen atoms and all but 16 hydrogen atoms were found on a difference Fourier map. The block-diagonal least-squares method was used for refinement, the final R value being 0.105. The molecular structure with the bond lengths and angles is shown in Fig. 1.

TABLE III. Final Atomic Parameters of 7

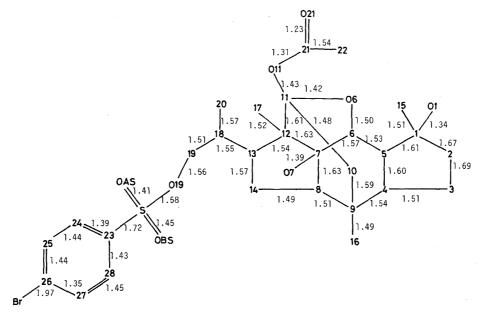
Atoms	x ·	у	z	B ₁₁	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Br	11030(3)	-11151(5)	869(3)	35 (1)	98(2)	102(2)	4(3)	-5(2)	11 (3)
S	4742 (7)	-10847(7)	256 (5)	37(4)	24(4)	32(4)	-2(4)	6 (3)	-2(4)
O (1)	3026(15)	-2252(18)	5505(12)	4(9)	87 (13)	56(12)	-24(10)	-18(8)	-47(11)
O (6)	1351(14)	-5508(16)	3734(10)	17(7)	56(12)	31 (9)	-2(8)	15 (7)	-21(8)
O (7)	4268(14)	-7183(16)	4555 (9)	8(8)	68(10)	29 (9)	8(9)	-12(7)	-7(9)
O (11)	548(14)	-6525(18)	2426(11)	18(8)	73(13)	66 (12)	-6(9)	-2(8)	-14(11)
O (19)	4312(15)	-10474(13)	1190(10)	29(9)	6(9)	53(10)	2(7)	5(8)	-4(7)
O (21)	-601(18)	-4714(23)	2257(14)	35 (11)	118 (18)	106(17)	8(13)	-28(11)	31 (15)
OAS	4256(16)	-12170(17)	149(10)	67(11)	43(11)	36 (9)	18(10)	27 (9)	-8(10)
OBS	4334 (14)	-9911(16)	-404(10)	28(9)	34(9)	38(10)	4(9)	7(7)	-4(9)
C (1)	2223(27)	-3140(29)	5075 (18)	67(19)	72(24)	43(20)	38 (19)	66 (16)	-8(18)
C (2)	1246(25)	-2608(29)	4188(16)	31 (15)	79(21)	26(15)	31 (16)	10(12)	-5(15)
C (3)	2460(26)	-2295(31)	3548(17)	39 (16)	98(22)	17(17)	12(17)	-8(13)	-32(17)
C (4)	3445 (25)	-3394(25)	3681 (17)	79(16)	32(17)	-33(16)	18 (15)	0(13)	5(14)
C (5)	3105 (25)	-4108(27)	4561 (16)	43 (15)	26(16)	100(17)	4(15)	-13(13)	-32(14)
C (6)	2610 (22)	-5491(25)	4351(16)	25 (13)	75(23)	45 (15)	-10(13)	-4(12)	47 (14)
C (7)	3576 (19)	-6400(22)	3910(13)	35(12)	7(12)	42(14)	1(12)	17(10)	-17(12)
C (8)	4365 (24)	-5519(24)	3254(17)	4(14)	21(18)	31 (15)	-7(13)	23(12)	-22(12)
C (9)	3580 (20)	-4341(21)	2907(13)	20(12)	26(14)	20(13)	19(11)	5(10)	29(11)
C (10)	2248 (20)	-4872(24)	2384(13)	21(12)	39(14)	15(11)	-16(13)	-6(9)	13(12)
C (11)	1684 (18)	-5921(24)	2892(14)	22(10)	25(13)	47(14)	-16(13)	-4(10)	-29(13)
C (12)	2611 (21)	-7161(22)	3146 (15)	34(13)	19(13)	48 (16)	3(12)	-4(12)	1(13)
C (13)	3506 (21)	-7419(21)	2415 (13)	45(13)	27(13)	7(11)	-8(12)	0(10)	-22(10)
C (14)	4771 (21)	-6557(23)	2657 (15)	30(13)	37 (16)	44(14)	-15(13)	16(11)	-21(13)
C (15)	1554 (24)	-3873(26)	5757 (16)	118(15)	57 (15)	85 (15)	-11(14)	59(13)	-26(14)
C (16)	4390 (25)	-3638(23)	2303 (15)	70(17)	23(16)	46(16)	-35(14)	32(14)	5 (13)
C (17)	1854 (23)	-8300(21)	3484 (17)	35 (15)	21(12)	77(20)	-14(12)	8(14)	18 (13)
C (18)	3833 (18)	-8869(21)	2275 (12)	15(10)	25(13)	10(11)	-3(10)	-11(9)	11(10)
C (19)	4374 (22)	-8986(21)	1397 (13)	38 (14)	21(11)	26(13)	-1(11)	-6(11)	-6(10)
C (20)	4895 (22)	-9434(21)	3015 (15)	56 (15)	32(14)	57 (16)	23(12)	10(12)	-12(12)
C (21)	-566(30)	-5936(33)	2159 (19)	99 (24)	50(20)	145(24)	-57(22)	4(20)	41 (21)
C (22)	-1713(24)	-6709(29)	1661 (17)	59 (16)	96 (26)	76(19)	-36(17)	5(14)	-14(18)
C (23)	6431 (19)	-10996(25)	422 (11)	41 (12)	31 (13)	17(10)	4(15)	-8(9)	-12(12)
C (24)	6975 (22)	-12137(28)	792 (14)	38 (14)	96 (20)	31(13)	6(16)	5(11)	12(15)
C (25)	8383 (24)	-12149(25)	1019(17)	53 (16)	44 (15)	85 (19)	30 (15)	19(14)	35(15)
C (26)	9086 (20)	-11072(32)	685 (15)	37 (12)	68 (18)	68(16)	-12(18)	-10(11)	-24(18)
C (27)	8594 (21)	-9987 (20)	273 (17)	27 (12)	13(11)	94(20)	1(11)	22(13)	13 (13)
C (28)	7165 (21)	-9917(22)	142 (14)	41(13)	39(14)	27(13)	4(13)	16(11)	-25(12)
HO(3)	518 (14)	227 (14)	402(9)						
H (31)	774 (14)	304 (14)	663(9)						
H (32)	829 (14)	282 (15)	601 (9)						
H (5)	662 (14)	63 (15)	545 (9)						
H (6)	246 (13)	400 (17)	473 (8)						
H (8)	454 (14)	-9(14)	648 (10)						

Atoms	x	У	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
H (13)	273 (14)	246 (15)	180(9)						
H (14)	525 (14)	432 (15)	195 (9)						
H (151)	886 (14)	84 (15)	441 (9)						
H (152)	860 (14)	162 (14)	395 (9)						
H (153)	734 (15)	133 (15)	375 (9)						
H (161)	574 (14)	129 (15)	814 (10)						
H (162)	538 (14)	222 (15)	768 (9)						
H (17)	177 (14)	118 (15)	390 (9)						
H (18)	295 (14)	55 (15)	228 (9)						
H (191)	385 (14)	28 (15)	133 (9)						
H (192)	361 (15)	153 (15)	86 (9)						
H (20)	470 (14)	-36(14)	310(10)						
H (221)	868 (14)	313 (14)	112 (9)						
H (222)	799 (14)	309 (14)	200 (9)						
H (27)	903 (14)	61 (15)	1015 (10)						

Atomic co-ordinates, multiplied by 10^4 for non-hydrogen atoms and by 10^3 for hydrogen atoms, and thermal parameters, a) multiplied by 10.

The anisotropic temperature factors are of the form

 $\exp[-(1/4)(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)].$


Therefore, the chemical structure of cinncassiol D_1 is represented by the formula 1 or its enantiomer; however the latter could be excluded because the configurations, at C-7, -9, -11 and -12 for example, are most likely identical with those of cinnzeylanol (II). 1 is a novel pentacyclic diterpene consisting of three five-membered rings and two six-membered ones, and its skeleton corresponds to a migrated form from the C_5 - C_6 into the C_5 - C_1 bond in the ketal-type diterpene cinnzeylanol (II), for example.

Cinncassiol D_1 glucoside (2), a white powder, $[\alpha]_D - 4.1^\circ$, $C_{26}H_{42}O_{10}$ (FD-MS (m/z): 553 (M+K+), 537 (M+Na+)), showed strong absorption (3380 cm⁻¹) due to hydroxyl functions. On the assumption that it was a glycoside of a diterpene, 2 was hydrolyzed with crude hesperidinase (Tanabe Pharm. Co., Ltd.) to give an aglycone identical with cinncassiol D_1 (1) and D-glucose. Therefore, 2 is composed with each one mole of 1 and D-glucose. A comparison of the ¹³C NMR spectrum of 2 with that of 1 revealed that the signals due to C-19 and C-18 were shifted by +8.4 and -2.1 ppm, respectively, indicating that the glucosyl moiety is bound with the C-19 hydroxyl. The spectral data of the tetraacetate (8), a white powder, $[\alpha]_D - 18.6^\circ$, derived from 2 by acetylation with Ac_2O -pyridine at room temperature for 20 min, were also consistent with the above evidence, that is, the ¹H NMR spectrum (CDCl₃) showed the presence of four acetyl signals at δ 2.00, 2.03, 2.05 and 2.09 and the electron impact mass spectrum (EI-MS) exhibited a peak due to the terminal peracetylated hexosyl cation (m/z 331), indicating that the glucosyl moiety should be linked to the C-19 hydroxyl. Moreover, a doublet signal with a J=7 Hz at δ 4.49 indicated that the glucosyl linkage has the β -configuration. Consequently, 2 can be represented as cinncassiol D_1 19-O- β -D-glucopyranoside.

Cinncassiol D₂ (3), a white powder, $[\alpha]_D$ -15.4°, was formulated as C₂₀H₃₂O₆ based on elementary analysis and the EI-MS spectrum (m/z 368 (M⁺)); it contains one more oxygen than 1. The ¹H NMR spectrum of 3 showed a pattern similar to that of 1 and a comparison of both ¹H NMR spectrum (d_5 -pyridine) suggested the following signal assignments in the ¹H NMR spectrum of 3; δ 1.27 (3H, s, 9-CH₃), 1.41 (3H, d, J=7 Hz, 18-CH₃), 1.68 (3H, s, 1-CH₃), 1.74 (3H, s, 12-CH₃), 3.85 (2H, d, J=9 Hz, 19-H₂), 4.49 (1H, d, J=2 Hz, 6-H). Since irradiation of a doublet signal at δ 4.49 (6-H) changed a broad singlet signal at δ 2.75 to a sharp singlet, the signal at δ 2.75 was assignable to 5-H and consequently the carbons at C-1 and -4 should be quaternary ones.

Therefore, the structure of 3 was supposed to be 4-hydroxy cinncassiol D₁. The 11-O-

a) Thermal parameters for hydrogen atoms are fixed at the average temperature factor ($B=4.07 \text{ Å}^2$)

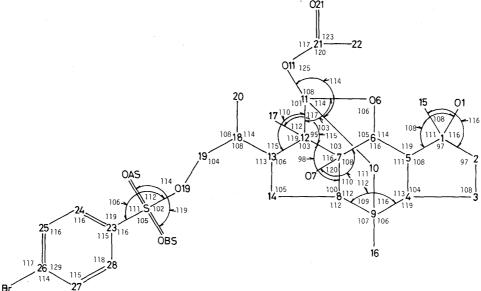


Fig. 1. Bond Lengths (Å) and Angles (°)

monoacetyl 19-O-monobrosylate derived from 3 in the same way as for 7 was treated with $COCl_2$ -ether to give the 1,4-cyclic carbonate (10), $C_{29}H_{35}SO_{10}Br$. Since the configuration of the hydroxyl at C-1 was assumed to be β because the methyl signal at C-1 appeared at δ 1.68 (in the almost same range as that of 1) in the ¹H NMR spectrum, the hydroxyl functions at C-4 was also supposed to be β .

Cinncassiol D_2 glucoside (4), a white powder, $[\alpha]_D - 3.2^\circ$, $C_{26}H_{42}O_{11}$ (FD-MS (m/z): 531 (M⁺ +1), 513 (M⁺ -OH)), was decomposed into cinncassiol D_2 (3) and D-glucose on enzymatic hydrolysis, as in the case of 2. Furthermore, the location and the mode of linkage of the glucosyl moiety were determined in the same way as for 2. Namely, the tetraacetate (11), a white powder, $C_{34}H_{50}O_{15}$, $[\alpha]_D -17.5^\circ$, derived from 4 in the same way as for 8, showed four acetyl signals (δ 2.03, 2.05, 2.10 and 2.17) in the ¹H NMR spectrum (CDCl₃) and a peak at m/z 331 originated from the terminal peracetylated hexosyl cation in the EI-MS spectrum, indicating that the glucosyl residue should be linked to the C-19 hydroxyl. In addition, in

the 13 C NMR spectrum (CDCl₃) the signals due to the C-19 and C-18 were shifted by +10.8 and -3.7 ppm, respectively, supporting the above 1 H NMR and EI-MS evidence.

Cinncassiol D₃ (5), a white powder, $C_{20}H_{32}O_6$, $[\alpha]_D - 10.1^\circ$, has the same molecular formula as 3, but its Rf value on thin-layer chromatography (TLC) is more smaller than that of 3. 5 was acetylated with Ac_2O -pyridine at room temperature for 30 min to yield the diacetate (12) of 5, a white powder, $C_{24}H_{36}O_8$, $[\alpha]_D - 10.1^\circ$, FD-MS (m/z): 452 (M+). A comparison of signals in the ¹H NMR spectrum (d_5 -pyridine) of 12 with those of 9 led us to make the following assignments; δ 1.25 (3H, d, J=6 Hz, $sec \cdot CH_3$), 1.28 (3H, s, 9-CH₃), 1.31 (3H, d, J=7 Hz, 18-CH₃), 1.70 (3H, s, 12-CH₃), 2.00, 2.03 (each 3H, s, OAc×2), 4.04, 4.25 (each 1H, d d, J=7, 11 Hz, 19-H₂), 4.39 (1H, br s, 6-H), 5.60 (1H, d d d, J=8, 8, 8 Hz, CH-OAc). Taking into account the ¹³C NMR data for 12, the structure of 5 has a $sec \cdot CH_3$ at C-1 and a new sec hydroxyl at either C-2 or C-3 in place of the structure of 3. The location of the sec hydroxyl was deter-

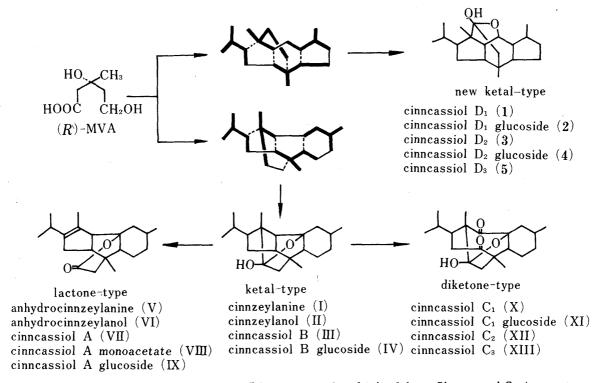


Chart 1. Possible Biogenesis of Diterpenes so far obtained from Cinnamomi Cortex

mined to be at C-2 by irradiation on 6-H \rightarrow 5-H \rightarrow 1-H \rightarrow 2-H \rightarrow 3-H in turn. The 19-O-monomethyl ether (13), $C_{21}H_{34}O_6$, derived from 5 by Kuhn's methylation, was reacted with 2,2-dimethoxypropane in the presence of ρ -toluenesulfonic acid (ρ -TsOH) to yield the 2,4-acetonide (14), $C_{24}H_{38}O_6$. Since the configuration of the hydroxyl at C-4 was assumed to be β because the methyl signal at C-9 appeared at δ 1.28 (in the almost same range as that of 9) in the ¹H NMR spectrum, the hydroxyl function at C-2 was also supposed to be in the β -configuration.

Consequently, the structure of cinncassiol D_3 can be represented as shown in the formula 5, though the configuration at C-1 remains to be determined.

Cinncassiol D_1 (1), D_1 glucoside (2), D_2 (3), D_2 glucoside (4) and D_3 (5) are unique pentacyclic diterpenes with a new skeleton.

A possible biogenetic route to the diterpenes so far isolated from Cinnamomi Cortex is shown in Chart 1.

Experimental

All melting points were determined on a Yanagimoto micro-melting point apparatus (a hot-stage type) and are uncorrected. The specific rotations were measured with a Union Giken PM-201 automatic digital polarimeter. The IR spectra were obtained with a JASCO DS-701 spectrometer. The ¹H NMR and ¹³C NMR spectra were recorded with JEOL JNM-PS-100 (100 MHz) and JEOL JNM-FX-90Q (22.5 MHz) spectrometers, respectively, with tetramethylsilane as an internal standard. Mass spectra (FD and EI) were recorded on a JEOL JMS-D-300 mass spectrometer. Silica gel (Kieselgel 60; Merck) was used for column chromatography. TLC was carried out on Merck plates precoated with Kieselgel 60 using a, CHCl₃-MeOH-water (7:3:0.2); b, CHCl₃-MeOH-water (8:2:0.2); c, CHCl₃-MeOH (10:1); d, n-hexane-acetone (1:1), as solvent systems. Detection was done by spraying 10% H₂SO₄ followed by heating and UV irradiation (λ =366 nm). Paper-partition chromatography (PPC) for sugar was conducted on Toyo Roshi No. 50 paper using the upper layer of n-BuOH-pyridine-water (6:2:3)+pyridine (1) as a solvent and aniline hydrogen phthalate as a staining agent.

Cinncassiol D₁ (1)——A white powder, Rf 0.67 (solv. a), $[\alpha]_D^{26}$ -11.6° (c=0.86, MeOH). IR ν_{\max}^{KBr} cm⁻¹: 3400 (OH). Anal. Calcd for $C_{20}H_{32}O_5$: C, 68.15; H, 9.15. Found: C, 68.22; H, 9.18. FD-MS (m/z): 352 (M⁺). EI-MS (m/z): 352 (M⁺), 334, 319, 316, 303, 275, 257, 216, 197, 179, 167, 157, 149, 121, 108. ¹H NMR (d_5 -pyridine) δ (ppm): 0.90 (3H, s, 9-CH₃), 1.37 (3H, d, J=6 Hz, 18-CH₃), 1.69 (6H, s, 1- and 12-CH₃), 3.80 (2H, d, J=9 Hz, 19-H₂), 4.44 (1H, br s, 6-H).

Cinncassiol D₁ 19-O-Monoacetate (6)—1 (22 mg) was treated with Ac₂O (2 ml) and pyridine (2 ml) at room temperature for 25 min to give the monoacetate (6), a white powder (16 mg), $[\alpha]_{\rm D}^{25}$ -10.9° (c=0.79, MeOH). Anal. Calcd for C₂₂H₃₄O₆: C, 66.98; H, 8.69. Found: C, 66.72; H, 8.66. ¹H NMR (CDCl₃) δ (ppm): 0.93 (3H, s, 9-CH₃), 1.00 (3H, d, J=7 Hz, 18-CH₃), 1.12 (3H, s, 12-CH₃), 1.38 (3H, s, 1-CH₃), 2.08 (3H, s, 19-OAc), 3.78—3.96 (3H, m, 6-H and 19-H₂); (d_5 -pyridine): 0.94 (3H, s, 9-CH₃), 1.29 (3H, d, J=7 Hz, 18-CH₃), 1.65, 1.70 (each 3H, s, 1- and 12-CH₃), 2.01 (3H, s, OAc), 4.01, 4.21 (each 1H, d d, J=7, 11 Hz, 19-H₂), 4.45 (1H, br s, 6-H).

11-Monoacetyl Cinncassiol D₁ 19-O-Monobrosylate (7)—A mixture of 1 (63 mg) and p-bromobenzene-sulfonyl chloride (150 mg) in pyridine (5 ml) was kept standing overnight at room temperature. Then, water was added to the reaction mixture, the product was extracted with n-BuOH and the solvent was evaporated off in vacuo to leave a residue which was chromatographed on silica gel with n-hexane-AcOEt (2: 3 \rightarrow 1: 2) as the solvent to give the monobrosylate of 1 (Rf 0.30, solv. d). The monobrosylate was acetylated with Ac₂O-pyridine (3 ml each) at room temperature overnight. After usual work-up, the product was purified by silica gel column chromatography with CHCl₃-MeOH (60: 1) as the solvent to yield the monoacetyl monobrosylate (7) of 1 (25 mg). A single crystal suitable for an X-ray diffraction study was obtained by recrystallization from dil.MeOH. Colorless plates, mp 104—105°C, $[\alpha]_b^{15} \simeq 0^\circ$ (c=0.59, MeOH), Rf 0.40 (solv. d). Anal. Calcd for $C_{28}H_{37}SO_8 \cdot H_2O: C$, 53.25; H, 6.22. Found: C, 53.57; H, 6.38. ¹H NMR (CDCl₃) δ (ppm): 0.90, 1.07, 1.38 (each 3H, s, $3 \times tert.CH_3$), 0.95 (3H, d, J=7 Hz, $sec.CH_3$), 2.03 (3H, s, OAc), 3.87 (2H, d, J=6 Hz, $-CH_2-O-$), 3.90 (1H, d, J=2 Hz, >CH-O-), 7.65, 7.78 (each 2H, d, J=10 Hz, $4 \times arom.$ proton).

Cinncassiol D₁ Glucoside (2)—A white powder, Rf 0.33 (solv. a), $[\alpha]_D^{12}$ -4.1° (c=0.29, MeOH), IR ν_{\max}^{KBr} cm⁻¹: 3380 (OH). Anal. Calcd for $C_{26}H_{42}O_{10}$: C, 60.68; H, 8.23. Found: C, 60.37; H, 8.37. FD-MS (m/z): 553 (M+K+), 537 (M+Na+).

Enzymatic Hydrolysis of Cinncassiol D_1 Glucoside (2)—A mixture of 2 (22 mg) and crude hesperidinase (8 mg) (Tanabe Pharm. Co., Ltd.) in dist. water (5 ml). was incubated at 39°C for 4 h. The reaction mixture was evaporated to dryness under reduced pressure to give a residue, to which MeOH was added.

The solution was filtered and the filtrate was subjected to Sephadex LH-20 chromatography. Elution with MeOH afforded the aglycone, a white powder, $[\alpha]_{0}^{m}$ -10.9° (c=0.32, MeOH), EI-MS (m/z): 352 (M+),

identical with cinncassiol D₁ (1) and the sugar, a syrup, Rf 0.39 (on TLC, solv. CHCl₃-MeOH-acetone-water=3:3:3:1), Rf 0.44 (on PPC), $[\alpha]_D^{17}$ +42.6° (c=0.28, water), identical with p-glucose.

2',3',4',6'-Tetra-O-Acetyl Cinncassiol D₁ Glucoside (8)—2 (12 mg) was acetylated with Ac₂O (3 ml) and pyridine (4 ml) at room temperature for 20 min to yield the tetraacetate (8) of 2. A white powder (10 mg), Rf 0.33 (solv. c), $[\alpha]_{5}^{22}$ -18.6° (c=1.08, MeOH). Anal. Calcd for $C_{34}H_{50}O_{14}$: C, 59.81; H, 7.38. Found: C, 59.66; H, 7.36. EI-MS (m/z): 664 (M⁺-H₂O), 646, 628, 584, 331.102 ($C_{14}H_{19}O_{9}^{+}=331.101$, terminal peracetylated hexosyl cation), 169, 109. ¹H NMR (CDCl₃) δ (ppm): 0.92 (3H, s, 9-CH₃), 0.93 (3H, d, J=7 Hz, 18-CH₃), 1.09 (3H, s, 12-CH₃), 1.38 (3H, s, 1-CH₃), 2.00, 2.03, 2.05, 2.09 (each 3H, s, OAc × 4), 3.60—3.84 (3H, m, 5'-H and 19-H₂), 4.49 (1H, d, J=7 Hz, 1'-H). ¹³C NMR (CDCl₃) δ (ppm): 8.7, 12.9, 24.1, 24.6, 25.2, 27.8, 33.8, 37.2, 39.8, 40.0, 40.2, 47.7, 50.4, 53.6, 56.5, 62.0 (C-6'), 68.5 (C-4'), 71.5 (C-2'), 71.7 (C-5'), 72.8 (C-3'), 75.1, 76.7, 83.1, 88.8, 101.0 (C-1'), 106.9. The acetyl signals are not given.

Cinncassiol D₂ (3)——A white powder, Rf 0.56 (solv. a), $[\alpha]_{D}^{16}$ —15.4° (c=0.94, MeOH). Anal. Calcd for $C_{20}H_{32}O_6$: C, 65.19; H, 8.75. Found: C, 65.44; H, 8.62. IR ν_{\max}^{KBr} cm⁻¹: 3390 (OH). EI-MS (m/z): 368 (M+), 273, 255, 215, 185, 175, 166, 157, 149. ¹H NMR (d_5 -pyridine) δ (ppm): 1.27 (3H, s, 9-CH₃), 1.41 (3H, d, J=7 Hz, 18-CH₃), 1.68 (3H, s, 1-CH₃), 1.74 (3H, s, 12-CH₃), 2.75 (1H, br s, 5-H), 3.85 (2H, d, J=9 Hz, 19-H₂), 4.49 (1H, d, J=2 Hz, 6-H).

Cinncassiol D₂ 19-O-Monoacetate (9)—3 (16 mg) was treated with Ac₂O (2 ml) and pyridine (4 ml) at room temperature for 30 min to yield the 19-O-monoacetate (9) of 3. A white powder (13 mg), Rf 0.15 (solv. c), $[\alpha]_5^{25}$ -12.7° (c=1.10, MeOH). Anal. Calcd for C₂₂H₃₄O₇: C, 64.37; H, 8.35. Found: C, 64.26; H, 8.33. EI-MS (m/z): 410 (M⁺), 334, 315, 274, 255, 215, 213, 197, 139, 137, 121. ¹H NMR (d_5 -pyridine) δ (ppm): 1.29 (3H, s, 9-CH₃), 1.31 (3H, d, J=7 Hz, 18-CH₃), 1.65 (1H, s, 12-CH₃), 1.68 (3H, s, 1-CH₃), 2.04 (3H, s, OAc×1), 2.73 (1H, d, J=2 Hz, 5-H), 4.06 (1H, d d, J=7, 11 Hz, 19-H), 4.25 (1H, d d, J=7, 11 Hz, 19-H'), 4.46 (1H, d, J=2 Hz, 6-H). ¹³C NMR (d_5 -pyridine) δ (ppm): 10.3 (q), 13.6 (q), 20.8 (d), 22.4 (q), 24.5 (q), 26.4 (t), 33.8 (d), 36.2 (t), 41.2 (d), 41.6 (t), 42.1 (s), 44.2 (t), 49.2 (d), 57.4 (s), 62.3 (d), 69.8 (t), 76.1 (d), 81.3 (s), 87.1 (s), 89.0 (s), 107.3 (s), 170.5 (s).

1,4-Cyclic Carbonate (10) of 11-O-Acetyl Cinncassiol D₂ 19-O-Monobrosylate——11-O-Monoacetyl cinncassiol D₂ 19-O-monobrosylate was prepared from 3 in the manner described for 7. The resulting monoacetyl monobrosylate (15 mg) was treated with $COCl_2$ -ether (0.3 ml) at room temperature for 30 min, then poured into ice-water. The resulting precipitates were collected and purified by silica gel column chromatography. Elution with n-hexane-acetone (2:1) gave the carbonate (10). A white powder (8 mg), Rf 0.51 (solv. d), Anal. Calcd for $C_{29}H_{36}SO_{10}Br$: C, 53.13; H, 5.38. Found: C, 53.44; H, 5.44. EI-MS (m/z): 612 (M⁺-C₂H₂O), 594 (M⁺-AcOH).

Cinncassiol D₂ Glucoside (4)——A white powder, Rf 0.25 (solv. a), $[\alpha]_{0}^{m}$ -3.2° (e=0.44, MeOH). IR ν_{\max}^{KBr} cm⁻¹: 3400 (OH). FD-MS (m/z): 531 (M⁺+1), 513 (M⁺-OH). Anal. Calcd for $C_{26}H_{42}O_{11}$: C, 58.85; H, 7.98. Found: C, 58.61; H, 7.99.

Enzymatic Hydrolysis of 4——A mixture of 4 (18 mg) and crude hesperidinase (10 mg) in dist.water (3 ml) was incubated at 38°C for 3 h. After treatment in the same manner as for 2, the aglycone was obtained as a white powder (8 mg), Rf 0.56 (solv. a), identical with cinncassiol D_2 (3), together with p-glucose, a syrup, Rf 0.39 (on TLC, solv. CHCl₃-MeOH-acetone-water=3:3:3:1), Rf 0.45 (on PPC), $[\alpha]_p^{18}$ +47.6° (c=0.42, water).

2',3',4',6'-Tetra-O-acetyl Cinncassiol D_2 Glucoside (11)—4 (12 mg) was acetylated with Ac_2O (3 ml) and pyridine (4 ml) at room temperature for 30 min to give the tetraacetate (11) of 4. A white powder (10 mg), Rf 0.23 (solv. c), $[\alpha]_D^{26}$ -17.5° (c=0.57, MeOH). Anal. Calcd for $C_{34}H_{50}O_{15}$: C, 58.44; H, 7.21. Found: C, 58.61; H, 7.27. EI-MS (m/z): 662 (M^+ -2 H_2O), 331 (terminal peracetylated hexosyl cation), 271, 255, 237, 223, 169, 109. ¹H NMR ($CDCl_3$) δ (ppm): 0.94 (3H, d, J=7 Hz, 18- CH_3), 0.98 (3H, s, 9- CH_3), 1.09 (3H, s, 12- CH_3), 1.37 (3H, s, 1- CH_3), 2.03, 2.05, 2.10, 2.17 (each 3H, s, $OAc \times 4$), 3.62—4.85 (3H, m, 5'-H and 19- H_2), 4.50 (1H, d, J=7 Hz, 1'-H).

Cinncassiol D₃ (5)—A white powder, Rf 0.45 (solv. a), $[\alpha]_{D}^{27}$ -10.1° (c=0.79, MeOH). Anal. Calcd for C₂₀H₃₂O₆: C, 65.19; H, 8.75. Found: C, 65.37; H, 8.72. ¹H NMR (d_5 -pyridine) δ (ppm): 1.27 (3H, s, 9-CH₃), 1.40 (3H, d, J=7 Hz, 1-CH₃), 1.49 (3H, d, J=6 Hz, 18-CH₃), 1.74 (3H, s, 12-CH₃), 3.84 (2H, d, J=8 Hz, 19-H₂).

Cinncassiol D₃ 2,19-Diacetate (12)——5 (25 mg) was acetylated with Ac₂O (3 ml) and pyridine (5 ml) at room temperature for 30 min to give the diacetate (12) of 5. A white powder (23 mg), Rf 0.42 (solv. c), $[\alpha]_5^{27}$ -10.1° (c=0.79, MeOH). Anal. Calcd for C₂₄H₃₆O₈: C, 63.70; H, 8.02. Found: C, 63.91; H, 7.98. FD-MS (m/z): 452 (M⁺). ¹H NMR (d_5 -pyridine) δ (ppm): 1.25 (3H, d, J=6 Hz, 1-CH₃), 1.28 (3H, s, 9-CH₃), 1.31 (3H, d, J=7 Hz, 18-CH₃), 1.70 (3H, s, 12-CH₃), 2.00, 2.03 (each 3H, s, OAc×2), 2.80—2.96 (2H, m, 1-and 5-H), 3.20 (1H, d d, J=8, 14 Hz, 3-H), 4.04, 4.25 (each 1H, d d, J=7, 11 Hz, 19-H₂), 4.39 (1H, br s, 6-H), 5.60 (1H, d d d, J=8, 8, 8 Hz, 2-H).

Cinncassiol D₃ 19-O-Monomethylether (13)——A mixture of 5 (18 mg), Ag₂O (30 mg), CH₃I (2 ml) and dimethylformamide (1 ml) was stirred at room temperature for 3 h. After usual work-up, the product was purified by silica gel column chromatography. Elution with CHCl₃-MeOH (20:1) gave the monomethylether (13) of 5. A syrup (12 mg), Rf 0.38 (solv. b). Anal. Calcd for C₂₁H₃₄O₆: C, 65.94; H, 8.96. Found: C, 65.77; H, 9.08.

19-O-Monomethyl Cinncassiol D_3 2,4-Acetonide (14) — A solution of 13 (10 mg), 2,2-dimethoxypropane (2 ml) and p-TsOH (1 mg) was stirred for 2.5 h at room temperature. After neutralization with aq. NaHCO₃ solution, the reaction mixture was concentrated under reduced pressure to give a residue which was chromatographed on a silica gel column. Elution with CHCl₃-MeOH (25:1) gave 19-O-monomethyl cinncassiol D_3 2,4-acetonide (14). A white powder (5 mg), Rf 0.55 (solv. b). Anal. Calcd for $C_{24}H_{38}O_6$: C, 60.22; H, 9.07. Found: C, 59.98; H, 9.00.

Acknowledgement We wish to express our thanks to Mr. H. Fujiwara and Mr. K. Goto (Otsuka Pharm. Factory, Inc.) for measurement of the ¹³C NMR spectra and to the staff of the Analytical Laboratory (Tokushima University) for elemental analysis and for measurement of the EI-MS and ¹H NMR spectra. We are also grateful to Dr. Y. Egawa (Tanabe Pharm. Co., Ltd.) for supplying crude hesperidinase and to Mr. I. Maetani (Kyushu University) for the measurement of FD-MS.

References and Notes

- 1) Part IV: Y. Kashiwada, 1. Nohara, T. Tomimatsu, and I. Nishioka, Chem. Pharm. Bull., 29, 2686 (1981).
- 2) A. Koda and H. Nagai, Proc. Symp. Wakan-Yaku, 18, 13 (1974); H. Nagai, M. Ichikawa, S. Watanabe, and A. Koda, ibid., 11, 51 (1978).
- 3) A. Isogai, A. Suzuki, S. Tamura, S. Murakoshi, Y. Ohashi, and Y. Sasada, Agric. Biol. Chem. (Tokyo), 40, 2305 (1976); A. Isogai, S. Murakoshi, A. Suzuki, and S. Tamura, ibid., 41, 1779 (1977).
- a) A. Yagi, N. Tokubuchi, T. Nohara, G. Nonaka, I. Nishioka, and A. Koda, Chem. Pharm. Bull., 28, 1432 (1980);
 b) T. Nohara, I. Nishioka, N. Tokubuchi, K. Miyahara, and T. Kawasaki, ibid., 28, 1969 (1980);
 c) T. Nohara, N. Tokubuchi, M. Kuroiwa, and I. Nishioka, Chem. Pharm. Bull., 28, 2682 (1980).
- 5) T. Nohara, Y. Kashiwada, T. Tomimatsu, M. Kido, N. Tokubuchi, and I. Nishioka, *Tetrahedron Lett.*, 1980, 2647.
- 6) They correspond to compounds 9—13 in Chart 1 in the previous report.^{4c)}
- 7) R. Kasai, M. Suzuo, J. Asakawa, and O. Tanaka, Tetrahedron Lett., 1977, 175; K. Tori, S. Seo, Y. Yoshimura, H. Arita, and Y. Tomita, ibid., 1977, 179.