Article

Discovery of the Aryl-Phospho-Indole (IDX899), a highly potent anti-HIV non-nucleoside reverse transcriptase inhibitor

Cyril Dousson, François-René Alexandre, Agnès Amador, Séverine Bonaric, Stéphanie Bot, Catherine Caillet, Thierry Convard, Daniel da Costa, Marie-Pierre Lioure, Arlène Roland, Elodie Rosinovsky, Sébastien Maldonado, Christophe Parsy, Christophe Trochet, Richard Storer, Alistair Stewart, Jingyang Wang, BENJAMIN A MAYES, Chiara Musiu, Barbara Poddesu, Luana Vargiu, Michel Liuzzi, Adel Moussa, Jocelyn Jakubik, Luke Hubbard, Maria Seifer, and David Standring

J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.5b01430 • Publication Date (Web): 23 Jan 2016

Downloaded from http://pubs.acs.org on January 26, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Discovery of the Aryl-Phospho-Indole (IDX899), a highly potent anti-HIV non-nucleoside reverse transcriptase inhibitor

Cyril Dousson^{a‡}, François-René Alexandre^{a*‡}, Agnès Amador^{a,†}, Séverine Bonaric^{a,†}, Stéphanie Bot^a, Catherine Caillet^{a,†}, Thierry Convard^a, Daniel da Costa^a, Marie-Pierre Lioure^{a,†}, Arlène Roland^{a,†}, Elodie Rosinovsky^{a,†}, Sébastien Maldonado^{a,†}, Christophe Parsy^a, Christophe Trochet^{a,†}, Richard Storer^{a,†}, Alistair Stewart^{b,†}, Jingyang Wang^{b,†}, Benjamin A. Mayes^{b,†}, Chiara Musiu^{b,†}, Barbara Poddesu^{b,†}, Luana Vargiu^{b,†}, Michel Liuzzi^{b,†}, Adel Moussa^{b,†}, Jocelyn Jakubik^{b,†}, Luke Hubbard^{b,†}, Maria Seifer^{b,†}, David Standring^{b,†}

^aIDENIX, an MSD Company, 1682 rue de la Valsière, Cap Gamma, BP 50001, 34189 MONTPELLIER Cedex 4, France and ^bIDENIX, 320 Bent Street - 4th Floor, Cambridge, MA 02139, USA

[†]Former Idenix employees

ABSTRACT: Here, we describe the design, synthesis, biological evaluation and identification of a clinical candidate non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a novel Aryl-Phospho-Indole (APhI) scaffold. NNRTIs are recommended components of highly active antiretroviral therapy (HAART) for the treatment of HIV-1. Since a major problem associated with NNRTI treatment is the emergence of drug resistant virus, this work focussed on optimization of the APhI against clinically relevant HIV-1 Y181C and K103N mutants and the Y181C/K103N double mutant. Optimization of the Phosphinate Aryl substituent led to the discovery of the 3-Me,5-Acrylonitrile-Phenyl analogue R_{P} -13s (IDX899) having an EC₅₀ of 11 nM against the Y181C/K103N double mutant.

The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is a key enzyme in the replication cycle.¹ Inhibition of the HIV-1 RT leads to viral load declines in patients as shown with currently approved NNR-TIs: nevirapine (NVP) 1, efavirenz (EFV) 2, delavirdine (DLV) 3, etravirine (ETV) 4 and rilpivirine (RPV) 5. NNRTIS bind to an allosteric hydrophobic pocket close to the polymerase active site of the HIV-RT, triggering a conformational change that inhibits the progression of viral DNA synthesis along the RNA template ^{2,3}. However, a single ami-

no acid mutation in the RT enzyme can lead to dramatic loss of efficacy of first generation NNRTIs such as NVP and EFV.^{4,5,6} Clinically relevant mutants generated by first generation NNRTIs include Y181C, K103N and the Y181C/K103N double mutant (DM). The second generation NNRTI, etravirine, has an improved coverage of RT-mutants⁷. However, there is still a need for novel, chemically diverse, second generation NNRTIs with broader mutant coverage and an improved pharmaceutical profile^{8,9,10}.

Our goal in this work report was to develop a clinical candidate that retains good activity against the Y181C, K103N and Y181C/K103N mutants compared to EFV. The potency optimization of this series of APhI was performed using a cell-based HIV-1 assay to identify compounds that were potent enzyme inhibitors, and also had the ability to cross the cell membrane and inhibit the HIV-1 virus replication cycle in a living cell.

Figure 1. Marketed NNRTIs

In a previous communication^{11a}, we described the discovery of the APhI scaffold^{11b-d}. A widely accepted strategy to improve the activity of an NNRTI against viruses containing the expected class resistant mutations is to build strong interactions of the drug with conserved regions of the NNI Binding Pocket (NNIBP)^{12,13,14,15}, such as highly conserved side chain residues or protein backbone atoms. Ideally, the candidate NNRTI should also demonstrate decreased interactions with mutable residues and exhibit some degree of conformational flexibility so that its binding can adapt to accommodate possible mutated amino acids¹⁶. Furthermore, it is known that in order to get robust potency, the ligand should have at least three points of interaction with the protein, and, ideally, these three points should not be aligned but form a triangle.

Based on reported structures (1FK9, 1FKO, 1JKH) of EFV, and other inhibitors¹⁷ and the geometry requirements revealed by these structures, we postulated that:

- A substituted bicyclic scaffold that generates hydrogen bond interactions with backbone of K101 and lipophilic interactions or π/π interactions with F227.

- A branched tetrahedral linker could direct the substitution with the right angle towards the W229 conserved residue.

Page 3 of 16

Journal of Medicinal Chemistry

Phosphorus atom was selected as a key component of this linker because of its tetrahedral conformation, its novelty

in this framework as well as for the opportunity of substitution allowed by its P^V oxidation state (Figure 2).

|--|

Figure 2. (a) X-ray of EFV in 1FK9 (some residues have been omitted for clarity). (b) Schematic view of EFV in 1FK9. (c) Selection of phospho-indole as novel scaffold.

In an earlier study we identified APhI **6** with the methyl phosphinate linker as lead series.^{11a} The further optimization of this lead is described in the present report.

Chemistry

 EC_{50} HIV-1 WT = 0.0007 μ M

Figure 3. Lead APhI 6

Two main synthesis strategies have been used to successfully give phospho-indole **13** with various substituents on the phosphorus (scheme 1 and 2), both started from key intermediate 7^{ub} .

Scheme 1. Indole phosphinate synthesis – chlorophosphonate route

(a) n-BuLi, THF, -90 °C, 5 min; (b) **8** in THF, 20-80%; (c) TMSBr, DMF, 55 °C; (d) P(OMe)₃, 90 °C, 12-64%; (e) NH₃, MeOH, 50 °C, 13-77%; (f) (Me)₃SiCHN₂, MeOH, 5-27%; (g) Pd(OAc)₂, TlOAc, tri-o-tolylphosphine, acrylonitrile, DMF, μW, 110 °C, 2-56%.

Scheme 2. Indole phosphinate synthesis – indole H-phosphinate route

(a) n-BuLi, THF, -90 °C, 5 min; (b) Cl-P(OEt)₂; (c) HCl 0.5M/THF, 64% (3 steps); (d) NH₃, MeOH 50 °C, 42%; (e) 16, Pd(PPh₃)₄, Et₃N, CH₃CN, μ W, 85 °C, 8-10%.

The classical and linear chlorophosphonate route was first used as described previously^{11a-c} for aromatic, heteroaromatic and alkyl R_2 substituents (Scheme 1) before more convergent indole H-ethyl-phosphinate 14 was developed (scheme 2). Attempts to directly give key intermediate indole H-Methyl phosphinate 15 succeeded by treatment with ammonia in methanol. Intermediate 14 was obtained from 3-bromo indole analogue *via* lithium-bromine exchange with *n*-BuLi at low temperature and nucleophilic substitution on chlorodiethylphosphite followed by indolephosphonite acid monohydrolysis in 64 % overall yield. This route proved to be also generally useful for the preparation of APhI with different substitutions on the phenyl ring (compounds 13c and 13t).

Results and Discussion

During the course of this program, an extensive structure activity relationship (SAR) of the indole scaffold was conducted and more than 300 methyl phosphinate analogues were synthesized and evaluated in cellular assays using standard procedure. In this article we wish to report a focused SAR of 2-carboxamide,5-chloro indole phosphinates

Journal of Medicinal Chemistry

and results are reported in Tables 1, 2, 3 and 4. The majority of the APhI synthesized were racemates at phosphorus and only a few selected compounds were resolved to test the two enantiomers. Cytotoxicities were evaluated during the course of the optimization of APhI and selectivity indexes proved to be over 1000 for most of the APhI (data not shown^{11d}). Mono substituted phenyl phosphino-indoles were generally very potent against wild type HIV-1, but only those with long lipophilic groups tended to exhibit good activity against the mutant viruses as shown for compounds **13a** and **13b** (Table 1). The 3-*E*-acrylonitrile **13b** displayed single nanomolar potency on WT and the single mutants and, below 50 nM activity on the DM.

Table 1. Structure and Activity of APhI-carboxamides 6, 13a-13b

 $EC_{50} (\mu M)^{a}$

Compd	R ₂	WT	K103N	Y181C	K103N/Y181C
EFV 2		0.0007	0.037	0.0018	0.0580
6 ^{11a}	Н	0.0003	0.0100	0.0220	>1
13a	3-iPr	0.0005	0.0016	0.0084	0.0926
13b ^b	3-acrylonitrile (E)	0.0034	0.0032	0.0018	0.0495

^{*a*}Primary MT-4 cell type assay. ^{*b*}Secondary MT-4 cell type assay.

Based on this result, other 3-substituted phenyl analogues with larger substituents were synthesized and tested. However, as shown in Table 2, 3-acrylonitrile (13b) was not sufficient to retain good activity against the DM when phenyl was substituted with 3-pyridine (13c). Furthermore, heterocycles such as 1-pyrazole or 2-thiophene (13d, 13e), cycloalkyl (13f) or carboaromatics (13g) did not improve the DM activity.

Table 2. Structure and Activity of APhI-carboxamides 13c-13g

 EC_{50} (μ M)

Compd	R ₃	WT	K103N	Y181C	K103N/Y181C

130	* *	0.001	0.0025	0.0095	0.192
13d	*	0.0045	0.059	0.1025	>1
13e	2-thiophene	0.0003	0.0034	0.0086	>1
13f	Cyclohexyl	0.0025	0.219	0.1008	>1
13g	1-naphtyl	0.0175	0.357	0.7272	>1

Phenyl substitutions on the phosphorus linker proved to have a significant influence on mutant activity. To further evaluate the effect of substituted phenyl groups on DM activity, we synthesized and tested di-substituted phenyl analogues as reported in Table 3. It appears that 3,5 disubstitution is better than 3,4 (13h vs. 13i), which may be explained by the close proximity of W229 in the NNIBP. This steric requirement can also be observed when both methyls (13i) are replaced by fluorine (13j), chlorine (13k) or trifluoromethyl (13l), with the bulkier trifluoromethyl analogue giving the weakest activity. Further, it appears that fluorine may be too small to fulfill alkyl hydrophobic interactions with the P95 side chain of the protein, while methyl or chlorine substituents provided the best potency. The electronic density of the phenyl ring also played a role in the DM activity in this binding region; keeping the methyl/P95 interaction while modulating electronic density with small substituents led to the following ranking of activity against the DM: F>Cl>CN>Me>Br>OMe (13i, 13m to 13q). This ranking can be explained in part by π/π interactions (Figure 5) with the electron rich aromatic ring of the Y188 residue that lies stacked above the phenyl ring of the inhibitor; these π/π interactions become stronger with electron poor phenyl rings. This electronic requirement was further confirmed when comparing electron donating groups of 13t, 13r and the electron withdrawing acrylonitrile (135), all having a similar length.

Compound **13t** proved to be the best WT inhibitor of this series displaying an exceptional EC_{50} value of 80 pM; however, it lost more than 1000-fold activity against the DM ($EC_{50} = 111$ nM). In contrast, compound **13s** exhibited the best DM activity and overall profile in the simple carboxamide series.

Table 3. Structure and Activity of APhI-carboxamides 13h-13t

Journal of Medicinal Chemistry

 EC_{50} (μ M)

Compd	R ₂	WT	K103N	Y181C	K103N/Y181C
13h	3-Me-4-Me	0.0002	0.0229	0.0350	0.7920
13i	3-Me-5-Me	0.0010	0.0040	0.0150	0.2380
13j	3-F-5-F	0.0007	0.0065	0.0255	0.6420
13k	3-Cl-5-Cl	0.0003	0.0017	0.0199	0.2480
131	3-CF ₃ -5-CF ₃	0.0246	0.5268	0.9468	>1
13m	3-F-5-Me	0.0002	0.0005	0.0034	0.0690
13N	3-Cl-5-Me	0.0011	0.0056	0.0188	0.1141
130	3-Br-5-Me	0.0030	0.006	0.0250	0.3685
13p	3-OMe-5-Me	0.0004	0.009	0.0230	0.663
13q	3-CN-5-Me	0.0010	0.0038	0.0184	0.1618
13r	3-(CH₂)₂CN-5-Me	0.0007	0.0007	0.0035	0.0285
138	3-CH=CHCN-5-Me (<i>E</i>)	0.0029	0.0030	0.0030	0.0166
13t	3-OCH ₂ CN-5-Me	0.00008	0.0018	0.0087	0.1110

With compound **13s** exhibiting the best overall profile, its enantiomers were separated (R_P -**13s** and S_P -**13s**) by chiral preparative HPLC. Consistent with the X-ray data, only the R_P enantiomer was active with a DM activity difference between the R_P and S_P enantiomers of over 110 fold. Compared to EFV, R_P -**13s** demonstrated over 30- and 4-fold better activity against the K103N and DM, respectively (Table 4 and Figure 4).

Table 4. Structure and Activity of enantiomers of 13s

>1.25

Figure 4. X-ray co-crystal top view of APhI *R*_P-13s (PDB 5FDL)

 An X-ray structure of R_{P} -13s (Figure 4) bound to the NNIBP of HIV-RT DM was obtained at a resolution of 3.3 Å (PDB 5FDL). The corresponding ligand interaction diagram shows the residues interacting with the NNRTI (Figure 5).

Journal of Medicinal Chemistry

Style keys:Red large dashed line: hydrogen-bond interactions. Black dashed line: van der Waals, π and lipophilic interactions. Grey residues: positioned behind R_{P} -13s.

Figure 5. Ligand interaction diagram of *R*_P-13s with HIV-RT DM.

To further evaluate the drug potential of the APhI, the aqueous solubility of some analogues were determined. Compared to EFV (<0.5 μ M), this series proved to be more soluble (Table 5). The bioavailability and pharmacokinetic profile were evaluated in three animal species (Table 6) and *R*_{*P*}**-13s** proved to have a good exposure in monkey when given orally as opposed to the low rat and dog AUC/dose values. *R*_{*P*}**-13s** *in vitro* data in hepatocytes (Table 7) suggest a better *in vivo* metabolic stability profile in human than the other species, with rat and dog giving the lowest values as previously observed *in vivo*. Given its excellent *in vitro* and *in vivo* profile, *R*_{*P*}**-13s** 5-chloro-3-[[3-[(E)-2-cyanovinyl]-5methyl-phenyl]-(R)-methoxy-phosphoryl]-1H-indole-2-carboxamide (IDX899) was selected as a clinical candidate for human dosing¹⁸.

Table 5. Solubility profile of APhIs

pH7.0 Aqueous solubility Compound (μM)

EFV	<0.5
13a	0.8
13i	0.9
13m	1.7
<i>R</i> _{<i>P</i>} -13s	20

Table 6. PK profile of APhIs

_

Compound	Species ^ª R		Dose	Cmax	Tmax	t _{1/2}	AUC	Cl	Vd	F
		Route ^b		(ng/mL)	(h)	(h)	/Dose	(mL/kg/h)	(mL/kg)	(%)
	Rat	IV	2.0	88.0	-	0.2	14.0	71.00	NC	-
	Rat	РО	10.0	25.0	0.4	5.9	5.0	-	NC	38.0
	Dog	IV	1.0	290.0	-	3.9	520.0	1.83	NC	-
<i>R</i> _{<i>P</i>} -13s	Dog	РО	5.0	18.0	1.5	2.4	22.0	-	NC	4.0
	Monkey	IV	1.0	1465.0	-	2.0	3026.0	0.33	NC	-
	Monkey	РО	5.0	945.0	3.0	3.1	1267.0	-	NC	42.0

^a Mean PK Parameters (n=3 or 2)

^b Vehicle : PEG400

Table 7. Metabolic stability in hepatocytes

 R_P -13S

Species Parent cpd depletion: $t_{1/2}$ (min)^a

Rat	17 ± 15	
Dog	21 ± 10	
Monkey	52 ± 24	
Human	125 ± 55	

^a Independent experiments from 5 to 7 donors

Conclusion

Journal of Medicinal Chemistry

We have successfully developed and optimized a new valuable NNRTI series, namely APhI, which proved to have substantial benefits in term of mutant activities, physicochemical properties and pharmacological profile. This work led to the discovery of R_{P} -13s (IDX899) as a new highly potent second generation NNRTI drug candidate. ¹⁹ Further to this work, R_{P} -13s progressed in phase IIb clinical trial where its development was suspended due to reports of seizures as part of a clinical trial involving treatment-experienced patients.²⁰

Experimental Methods

Synthesis of Aryl Phospho Indoles. The synthesis of (±)-13s only is described here, while the synthesis of all other compounds is described in the Supporting Information.

All reactions were performed with reagent-grade materials under an atmosphere of nitrogen. Solvents were reagent-grade or better. Evaporation of the solvents was carried out in a rotary evaporator under reduced pressure. Thin layer chromatography (TLC) was performed on precoated aluminium sheets of silica gel 60 F254 (Merck, Art. 5554), visualization of products being accomplished by UV absorbance at 254 nm; column chromatography on silica 60 (40-63μm, Merck 11567). ¹H (400 MHz), ¹³C (100 MHz) and ³¹P (162 MHz) NMR spectra were recorded on a Brucker AC300 spectrometer using DMSO- d_6 or CDCl₃ as solvents. NMR chemical shift (δ) are quoted in parts per million (ppm) referenced to the residual solvent peak [DMSO- d_6] set at 2.49 ppm or [CDCl₃] set at 7.26 ppm. The accepted abbreviations are as followed: s, singulet; d, doublet; t, triplet; q, quartet; m, multiplet. Low-resolution LC mass spectra (LR LCMS) were recorded on a WATERS unit [Alliance 2695, Photodiode Array detector 2996, ZQ 2000 (ESCI source), Mass Lynx 4.1] using a reverse phase analytical column Synergy 4 µm Fusion 80A 50x2.0 mm (Phenomenex 100B-4424-BO). The compound to be analyzed was eluted using a linear gradient of 5% -95% acetonitrile in water with 0.05 % formic acid programmed over a 8 or 20 minutes period with a flow rate of 0.4 mL/min. Purity of all compounds was determined to be >95% by analytical HPLC using a WATERS unit [Alliance 2695, Photodiode Array detector 2996] using a reverse phase analytical column Waters Novapack C18 4µm 150x3.9 mm. The compound to be analyzed was eluted using a linear gradient of 5-95% acetonitrile over a 20 min period with a flow rate of 1 mL/min and the chromatogram was recorded using an UV detection from 210 to 400 nm (PDA Max Plot). Microwave assisted chemistry was performed with a CEM discover apparatus.

Ethyl 1-(benzenesulfonyl)-5-chloro-3-[(3-iodo-5-methyl-phenyl)-methoxy-phosphoryl] indole-2-carboxylate, (±)-10s: n-BuLi (2.5M in hexane, 2.17 mL, 5.42 mmol) was added dropwise to a stirred and cooled (to about -90 °C) solution of bromoindole 7 (2.0 g, 4.52 mmol) in anhydrous THF (45 mL) under nitrogen. After keeping the solution at about -90 °C for about 5 min, an appropriate chorophosphorylorus reagent 8s (R₂=3-I,5-Me) (1.87 g, 5.42 mmol) was added dropwise to the solution at the same temperature. The reaction was allowed to warm up slowly to about -40°C (TLC monitoring, eluent CH₂Cl₂/EtOAc 9/1). Water (50 mL) was added and the reaction mixture was extracted with

EtOAc (3x 50 mL), dried and evaporated. The crude oil was purified by chromatography on silica gel to give (±)-10s (1.75 g, 49%) as a yellowish solid; ¹H NMR (DMSO- d_6 , 300 MHz) δ (ppm) 1.40 (t, J = 7.12 Hz, 3H), 2.31 (s, 3H), 3.70 (d, J = 11.59 Hz, 3H), 4.46 (q, J = 7.12 Hz, 2H), 7.55 (dd, J = 2.13 Hz and J = 9.01 Hz, 1H), 7.61-7.72 (m, 3H), 7.79-7.91 (m, 4H), 8.06-8.12 (m, 3H); ³¹P NMR (DMSO- d_6 , 121.49 MHz) δ (ppm) 22.09; MS (ESI) m/z = 658.4 (MH⁺).

5-chloro-3-[[3-[(E)-2-cyanovinyl]-5-methyl-phenyl]-methoxy-phosphoryl]-1H-indole-2-carboxamide (±)-138: In a microwave tube, intermediate (±)-108 (0.467 g, 0.71 mmol) and acrylonitrile (17.75 mmol) in DMF (4.5 mL) were stirred at room temperature. This mixture was flushed few minutes with nitrogen. Tl(OAc) (0.187 g, 0.71 mmol), tri-o-tolylphosphine (0.086 g, 0.284 mmol) and Pd(OAc)₂ (0.037 g, 0.142 mmol) were added. The reaction mixture was heated under microwave irradiations under pressure at 110 °C (maximum power input 200 W) during 45 min. After concentration, the reaction mixture was purified by preparative HPLC to give the expected N-deprotected intermediate. ¹H NMR (DMSO-*d*₆, 300 MHz) δ (ppm) 1.11 (t, *J* = 7.07 Hz, 3H), 2.34 (s, 3H), 3.65 (d, *J* = 11.48 Hz, 3H), 4.14-4.25 (m, 2H), 6.5 (d, *J* = 16.69 Hz, 1H), 7.38-7.42 (m, 1H), 7.58-7.77 (m, 5H), 8.35-8.36 (m, 1H), 12.98 (brs, 1H); ³P NMR (DMSO-*d*₆, 121.49 MHz) δ (ppm) 28.69; MS (ESI) m/z = 443.4 (MH⁺). This compound was dissolved in methanol (10 mL) in a pressure tube and was stirred and cooled to o°C. The solution was saturated with NH₃ gas for about 10 minutes. The mixture was stirred at about 50° C overnight, and after TLC monitoring, excess ammonia and methanol were evaporated in vacuo. The crude residue was purified by chromatography on silica gel column to give the expected carboxamide (±)-135</sub> (o.164 g, 56%) as a white solid; ¹H NMR (CDCl₂, 300 MHz) δ (ppm) 2.36 (s, 3H), 3.85 (d, *J* = 11.7 Hz, 3H), 5.87 (d, *J* = 16.72 Hz, 1H), 6.20 (brs, 1H), 7.29-7.36 (m, 2H), 7.39 (brs, 1H), 7.53-7.66 (m, 4H), 10.97 (brs, 1H), 11.13 (brs, 1H); ³P NMR (CDCl₂, 121.49 MHz) δ (ppm) 31.73; MS (ESI) m/z = 414 (MH⁺).

HPLC chiral separation. Enantiomers of (±)-13s were separated by Supercritical Fluid Chromatography preparative method at Chiral Technologies. Preparative column: Chiralpak AD-H (250x20 mm) with CO₂/MeOH +1% diethylamine 80/20 as the mobile phase, flow rate 60 mL/min. Analytical column: Chiralcel OD-H (250x4.6 mm) with n-heptane/ethanol/diethylamine 70/30/0.1 as the mobile phase, flow rate 1.0mL/min. First eluting enantiomer R_{P} -13s, t_{R} =4.9 min, second eluting enantiomer S_{P} -13s, t_{R} =16.9 min, orders of elution refer to those observed on the preparative column.

HIV-1 infected cells inhibition experiments. The antiviral activity of compounds was measured by the inhibition of virus-induced cytopathogenicity in MT-4 cells using the HIV strain BH10 wild-type or the resistant viruses Y181C, K103N and Y181C/K103N as described in Hamann, M., Pierra, C., Sommadossi, J.P., Musiu, C., Vargiu, L., Liuzzi, M., Storer, R., and Gosselin, G. *Bioorg. Med. Chem.* **2009**, *17*, 2321-2326.

Journal of Medicinal Chemistry

Pharmacokinetic profile of R_{P} -13s in rats, dogs and monkeys. Fed male Cynomolgus monkey, fed Beagle dogs and fasted Sprague Dawley rats were used. Dogs and monkeys were dosed at 1mg/kg intraveinous (IV) and 5 mg/kg orally (PO), rats at 5 mg/kg IV and 10 mg/kg PO, in a formulation of 10% dimethylacetamide/ 10% ethanol/ 80% PEG400. After dose administration, blood samples were collected from each animal predose and at 0.083, 0.25, 0.5, 1, 2, 3, 4, 8, 12 and 24 hours postdose *via* a femoral vein and transferred into tubes containing lithium-heparin anticoagulant. Plasma was spearated by centrifugation and stored at -70 °C until analysis. Concentration of unlabeled IDX899 within plasma samples were identified through high performance liquid chromatographics (HPLC) methods that incorporated tandem mass spectrometric detection (LC-MS/MS).

Supporting information. Synthetic procedure and characterization data of all compounds. This material is available free of charge via the internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* To whom correspondence should be addressed. Phone: +33(0)499522252; fax: +33(0)499522250. E-mail: francois-

rene.alexandre@merck.com

Author Contributions

[‡]These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank Sareum Ltd (Cambridge, UK) Dr. P.M. Leonard, Dr. M. Fisher, Dr. M.B.AC. Lamers and Dr. J. Reader for X-ray structure determination of K103N/Y181C Mutant HIV-1 Reverse Transcriptase (RT) in Complex with the ligand (R_{P} -13s).

ABBREVIATIONS

APhI, aryl-phospho-indole; DM, double mutant; EFV, efavirenz; ETV, etravirine; HAART, highly active antiretroviral therapy; HIV-1, human immunodeficiency virus type 1; NNIBP, nonnucleoside inhibitor-binding pocket; NNRTI, non-nucleoside reverse transcriptase inhibitor; NVP, nevirapine; PK, pharmacokinetic; RPV rilpivirine, RT, reverse transcriptase; WT, wild type.

Accession Codes

Crystal structure of K103N/Y181C Mutant HIV-1 Reverse Transcriptase (RT) in Complex with R_{P} -13s (IDX899) has been deposited in the RCSB Protein Data Bank under the PDB ID code 5FDL.

REFERENCES

¹ de Bethune, M.P. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). *Antiviral Research* **2010**, 85, 75–90.

² Tantillo, C. ; Ding, J. ; Jacobo-Molina, A. ; Nanni, R. G.; Boyer, P. L. ; Hughes, S. H. ; Pauwels, R. ; Andries, K.; Janssen, P. A. J. ; Arnold, E. Locations of Anti-AIDS Drug Binding Sites and Resistance Mutations in the Three-dimensional Structure of HIV-1 Reverse Transcriptase. *J. Mol. Biol.* **1994**. *243*, 369-387.

³ Ivetac, A.; McCammon, J. A. Elucidating the Inhibition Mechanism of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors through Multicopy Molecular Dynamics Simulations. *J. Mol. Biol.*, **2009**, 388, 644-658.

⁴ Adkins, J. C.; Noble, S. Efavirenz. *Drugs*, **1998**, *56*, 1055-1064.

⁵ Srivab, P.; Hannongbua, S. A study of the Binding Energies of Efavirenz to Wild-Type and K103N/Y181C HIV-1 Reverse Transcriptase Based on the ONIOM Method. *ChemMedChem*, **2008**, *3*, 803-811.

⁶ Casado, J. L.; Moreno, A.; Hertogs, K.; Dronda, F.; Moreno, S. Extent and importance of cross-resistance to efavirenz after nevirapine failure. *AIDS Res. Hum. Retroviruses*, **2002**, *18*, 771-775.

⁷ Andries, K. ; Azijn, H. ; Thielemans, T. ; Ludovici, D. ; Kukla, M.; Heeres, J.; Janssen, P.; De Corte, B.; Vingerhoets, J.; Pauwels, R.; De Bethune, M.-P. TMC125, a novel next-generation non-nucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. *Antimicrob. Agents Chemother.* **2004**, *48*, 4680-4686.

⁸ Prajapati, D. G.; Ramajayam, R. ; Ram Yadav, M.; Giridhar, R. The search for potent, small molecule NNRTIs: A review. *Bioorg. Med. Chem.* **2009**, *17*, 5744-5762.

⁹ Sweeney, Z. K.; Klumpp, K. Improving non-nucleoside reverse transcriptase inhibitors for first-line treatment of HIV infection: The development pipeline and recent clinical data. *Curr. Opin. Drug Discov. Devel.* **2008**, *n*, 458-470.

¹⁰ Mehellou, Y.; De Clercq, E. Twenty-Six Years of Anti-HIV Drug Discovery : Where Do We Stand and Where Do We Go ? *J. Med. Chem.* **2010**, *53*, 521-538.

^{11a} Alexandre, F.-R.; Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.; Musiu, C.; Poddesu B.; Vargiu L.; Liuzzi, M.; Roland, R.; Seifer M.; Standring D.; Storer, R.; Dousson, C.B. Synthesis and biological evaluation of Aryl-Phospho-Indole (API) as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. *J. Med. Chem.*, **2011**, *54*, 392–395. ^{nb} Storer, R.; Dousson, C.B.; Alexandre, F.-R.; Roland, R.; Phospho-indoles as HIV inhibitors, *patent* US7,534,809B2, **2009**, May 19. ^{nc} Storer, R.; Dousson, C.B.; Alexandre, F.-R.; Roland, R.; Phospho-indoles as HIV inhibitors, *patent* US8,044,091B2, **2011**, October 25. nd Storer, R.; Alexandre, F.-R.; Dousson,

C.B.; Moussa A.M.; Bridges E.; Stewart A.; Wang J.Y.; Mayes B.A.; Enantiomerically pure phosphoindoles as HIV inhibitors, *patent* US7,960,428B2, **2011**, June 14.

¹² Hopkins, A. L. ; Ren, J. ; Milton, J. ; Hazen, R. J. ; Chan, J. H.; Stuart, D. L.; Stammers, D. K. Design of Non-Nucleoside Inhibitors of HIV-1 Reverse Transcriptase with Improved Drug Resistance Properties.1. J. Med. Chem. **2004**, *47*, 5912-5922.

¹³ Zhan, P.; Liu, X.; Li, Z.; Pannecouque, C.; De Clercq, E. Design strategies of novel NNRTIs to overcome drug resistance. *Curr. Med. Chem.*, 2009, *16*, 3903-3917

¹⁴ Paris, K. A.; Haq, O. ; Felts, A. K.; Das, K.; Arnold, E.; Levy, R. M. Conformational Landscape of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Non-Nucleoside Inhibitor Binding Pocket: Lessons for Inhibitor Design from a Cluster Analysis of Many Crystal Structures. *J. Med. Chem.*, **2009**, 52, 6413-6420.

¹⁵ Ren, J.; Stammers, D. K. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. *Virus Res.*, **2008**, *134*, 157-170.

¹⁶ Das, K.; Clark, A. D.; Lewi, P. J.; Heeres, J.; De Jonge, M. R.; Koymans, L. M. H.; Vinkers, H. M.; Daeyaert, F.; Ludovici, D. W.; Kukla, M. J.; De Corte, B.; Kavash, R. W.; Ho, C. Y.; Ye, H.; Lichtenstein, M. A.; Andries, K.; Pauwels, R.; De Béthune, M.-P.; Boyer, P. L.; Clarck, P.; Hughes, S. H.; Janseen, P. A. J.; Arnold, E. Roles of Conformational and Positional Adaptability in Structure-Based Design of TMC125-R165335 (Etravirine) and Related Non-Nucleoside Reverse Transcriptase Inhibitors that are Highly Potent and Effective against Wild-Type and Drug-Resistant HIV-1 Variants. *J. Med. Chem.* 2004, *47*, 2550-2560.

¹⁷ Ragno, R. ; Frasca, S. ; Manetti, F. ; Brizzi, A.; Massa, S. HIV-Reverse Transcriptase Inhibition: Inclusion of Ligand-Induced Fit by Cross-Docking Studies. *J. Med. Chem.* **2005**, *48*, 200-212.

¹⁸ Zhou, X. J.; Garner, R. C.; Nicholson, S.; Kissling, C. J.; Mayers, D. Microdose Pharmacokinetics of IDX899 and IDX989, Candidate HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors, Following Oral and Intravenous Administration in Healthy Male Subjects. J. Clin. Pharmacol. **2009**, *49*, 1408-1416.

¹⁹ R_{P-13S} (IDX899) was evaluated in phase 2 clinical trial and was licensed to GlaxoSmithKline as of February 2009 and its name changed to fosdevirine/GSK2248761.

²⁰ Castellino,S.; Groseclose, M. R.; Sigafoos, J.; Wagner, D.; de Serres, M.; Polli, J. W.; Romach, E.; Myer, J.; Hamilton, B. Central Nervous System Disposition and Metabolism of Fosdevirine (GSK2248761), a Non-Nucleoside Reverse Transcriptase Inhibitor: An LC-MS and Matrix-Assisted Laser Desorption/Ionization Imaging MS Investigation into Central Nervous System Toxicity *Chem. Res. Toxicol.* 2013, 26, 241–251.

Table of Contents Graphic

R_P-13s