ARTICLE IN PRESS

Tetrahedron Letters xxx (xxxx) xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Asymmetric synthesis of α , β -substituted γ -amino acids via conjugate addition

Rocío Sabala^a, Salomon Assad^a, Ángel Mendoza^b, Jacqueline Jiménez^a, Estibaliz Sansinenea^a, Aurelio Ortiz^{a,*}

^a Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Pue. 72570, Mexico
 ^b Instituto de Ciencias, de la Benemérita Universidad Autónoma de Puebla, Puebla, Pue. 72570, Mexico

ARTICLE INFO

Article history: Received 6 May 2019 Revised 21 May 2019 Accepted 28 May 2019 Available online xxxx

Keywords: α, β-Disubstituted γ-amino acids Conjugate addition Oxazolidinone Organocuprates

ABSTRACT

The first conjugate addition reaction of organocuprates to *N*-enoyl oxazolidinone where a *N*-protected γ nitrogen atom and an α -methyl group are present into α , β -unsaturated system is described. This reaction gave *anti*-products in moderate yields and high diastereomeric ratios. The *anti*-products have two contiguous stereogenic centers, one formed by the conjugate addition reaction and the other by a diastereoselective protonation reaction. The removal of chiral oxazolidinone moiety and *N*-deprotection of amino group furnished chiral α , β -disubstituted γ -amino acids.

© 2019 Elsevier Ltd. All rights reserved.

(S)-Pregabalin is marketed as pharmaceutical for the treatment of diseases accompanied with GABA recepors [1]. (S)-Pregabalin has potent and robust activity in preclinical models predictive of clinical efficacy in anxiety [2], epilepsy [3] and neuropathic pain [4] since the molecule interacts with α_2 - δ subunit of calcium channels [5] and is a substrate of the L transporter system [6]. The precise mechanism through which, pregabalin exhibits its pharmacological action has been the subject of many studies in recent years. It is noteworthy that (R)-pregabalin lacks antiepileptic, analgesic or anxiolytic activity in vivo animal models, since it has significantly weaker affinity for α_2 - δ and system L transporter. The α -substituted γ -amino acid has reduced affinity for both the α_2 - δ and the system L transporter [7]. This structure-activity relationship has led to put more emphasis on stereoselective synthesis of α -, β -substituted γ -amino acid derivatives. However, to date the methodologies to achieve α , β -disubstituted γ -amino acids are restricted [8]. Wustrow [7] described the synthesis of γ -amino acids analogs to pregabalin adding methyl group at position along the pregabalin backbone and determined the structure-activity relationship with their affinity for α_2 - δ subunit and the system L transporter (biological activity) (Fig. 1). We report herein, the first diastereoselective conjugate addition reaction of organocuprates to chiral N-enoyl oxazolidinone, where the methyl group and protected nitrogen atom have been incorporated into the α , β -unsatu-

* Corresponding author. *E-mail address:* aurelioom@yahoo.com (A. Ortiz).

https://doi.org/10.1016/j.tetlet.2019.05.060 0040-4039/© 2019 Elsevier Ltd. All rights reserved. rated system. The removal of chiral oxazolidinone from conjugate addition product and *N*-deprotection of nitrogen atom in amino group produced the α , β -disubstituted γ -amino acids.

The synthesis began with the development of the (*E*)-4-(dibenzylamino)-2-methylbut-2-enoic acid. The tiglic acid **1** was treated with concentrated H_2SO_4 and EtOH, which was used both as solvent as reagent, at reflux for 7 h to give the ethyl tiglate **2** in 91%, as shown in Scheme 1. Ester **2** was exposed to allylic bromination reaction conditions according to the Pronin's protocol, treating **2** with LDA solution (1 M, THF) and TMSCl in the presence of NBS at $-78 \degree$ C to furnish the brominated compound **3** in 40% yield [9]. The brominated compound **3** was coupled with dibenzylamine in THF for 12 h at room temperature to yield (*E*)-ethyl-4-(dibenzylamino)-2-methylbut-2-enoate **4** as yellow liquid in 80% yield [10].

Ester **4** was hydrolyzed using an aqueous solution 5 N of NaOH in MeOH/H₂O at room temperature for 12 h affording (*E*)-4-(dibenzylamino)-2-methylbut-2-enoic acid **5** as a white solid in 95% yield, as shown in Scheme 2 [11]. This compound 5 was transformed to its respective anhydride using pyvaloyl chloride in the presence of Et₃N in anhydrous THF, for 15 min at -78 °C and subsequent stirring at 0 °C for 45 min to give compound **6** in a quantitative yield. This anhydride **6** was used in the next reaction without purification. The chiral oxazolidinone **7** was treated with a solution of *n*-butyllithium (2.5 M, hex.) in anhydrous THF at -78 °C for 15 min followed by the addition of anhydride **6** in anhydrous THF. The reaction mixture was stirred at room temperature

Please cite this article as: R. Sabala, S. Assad, Á.Mendoza et al., Asymmetric synthesis of α , β -substituted γ -amino acids via conjugate addition, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2019.05.060

ARTICLE IN PRESS

R. Sabala et al./Tetrahedron Letters xxx (xxxx) xxx

Fig. 1. Analog compounds to Pregabalin.

Scheme 1. Incorporation of *N*-protected amino group to α , β -unsaturated system.

Scheme 2. Coupling reaction of γ -amino acid and chiral oxazolidinone.

for 2 h to give *N*-enoyl oxazolidinone **8** in 80% yield [12], as a white solid.

N-enoyloxazolidinone **8** was treated under conjugate addition reaction conditions [12]. The Gilman's reagent was achieved from the reaction of CuI-DMS complex and methyl magnesium bromide at -45 °C to provide the respective diorganocuprate, which was added to *N*-enoyloxazolidinone **8** in anhydrous THF, as shown in Scheme 3. The reaction mixture was stirred for 1 h at -45 °C and for 1 h at room temperature to provide a mixture of diastereoisomers **9a/9b** in 80% yield and with 87/13 diastereomeric ratio (Scheme 4), which was determined by NMR of crude reaction

Scheme 3. Reaction conditions to conjugate addition.

Scheme 4. Anti-products from conjugate addition.

mixture. The products were isolated by silica gel column chromatography with hexane:ethyl acetate 97:3 as eluent. The stereochemistry of the major product **9a** was possible to establish from the structure achieved by X-ray diffraction and the configuration at newly formed chiral centers is (R, R). The major product **9a** corresponds to the *anti*-product, as shown in Fig. 2. High diastereoselectivity was observed, when the *N*-enoyloxazolidinone **8** was treated under the same conjugate addition reaction conditions using other organocuprates (Et, *n*-Pr, vinyl) to give the *anti*-products **10**, **11** and **12** with 75–76% yields and diastereomeric ratios (98:2) which were determined by NMR of crude reaction mixtures, as shown in Scheme 4.

The stereoselectivity of the major *anti*-products **9a-12** can be rationalized when *N*-enoyloxazolidinone **8** adopts *syn-s-cis* conformation, where the organocuprate reagent attacks at C β of α , β -unsaturated system by the less hindered side, on the opposite side to the phenyl group, and a diastereoselective protonation reaction is carried out for the same side of the phenyl group, as shown in Scheme 5.

The removal of chiral oxazolidinone moiety of compounds **9a-12** was carried out with Evans' protocol using LiOH, H_2O_2 in THF- H_2O at room temperature to give *N*-protected γ -amino acids **13– 16** in good yields (85–90%) and recovering chiral oxazolidinone in 80% yield [13], as shown in Scheme 6.

For the *N*-deprotection of amino group, the compounds 13-16 were exposed to hydrogenation reaction conditions using a catalytic amount of Pd/C in EtOH at room temperature for 16 h to

2

Please cite this article as: R. Sabala, S. Assad, Á.Mendoza et al., Asymmetric synthesis of α , β -substituted γ -amino acids via conjugate addition, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2019.05.060

ARTICLE IN PRESS

R. Sabala et al./Tetrahedron Letters xxx (xxxx) xxx

Fig. 2. Molecular structure of the compound **9a**. Summary of Data CCDC 1916099.

Scheme 5. The stereoselectivity can be rationalized by this possible transition state.

Scheme 6. Chiral oxazolidinone moiety removal.

deliver α , β -disubstituted γ -amino acids **17–19** in quantitative yields (93–94%). The compound **16** was exposed to hydrogenation conditions, and both *N*-deprotection of the amino group and vinyl group double bond hydrogenation were carried out giving the α , β -disubstituted γ -amino acid **18** in 90% yield, as shown in Scheme 7.

In conclusion, we have described the first conjugate addition reaction of organocuprates to *N*-enoyloxazolidinone, where γ -

Scheme 7. Chiral α , β -disubstituted γ -amino acids.

nitrogen atom and α -methyl group are presents into α , β -unsaturated system. The reaction furnished the *anti*-products in moderated yields and with high diastereomeric ratios (98:2). The addition products have two contiguous stereogenic centers, one formed by the conjugate addition reaction and the other by a diastereoselective protonation reaction. The removal of the chiral oxazolidinone moiety and *N*-deprotection produced α , β -substituted γ -amino acids. Our research is ongoing to study the role that nitrogen atom and methyl group are playing in transition state of the conjugate addition.

Acknowledgments

We thank VIEP and CONACyT (251512).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tetlet.2019.05.060.

Please cite this article as: R. Sabala, S. Assad, Á.Mendoza et al., Asymmetric synthesis of α , β -substituted γ -amino acids via conjugate addition, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2019.05.060

4

ARTICLE IN PRESS

R. Sabala et al. / Tetrahedron Letters xxx (xxxx) xxx

References

- [1] R.B. Silverman, Angew. Chem Int. Ed. 47 (2008) 3500-3504.
- [2] L. Singh, M.J. Field, P. Ferris, J.C. Hunter, R.J. Oles, R.G. Williams, G.N. Woodruff, Psychopharmacology 127 (1996) 1-9.
- [3] a) R.B. Silverman, R. Andruszkiewicz, S.M. Nanavati, C.P. Taylor, M.G. Vartanian, J. Med. Chem. 34 (1991) 2295-2298;
 - b) C.P. Taylor, M.G. Vartanian, P.W. Yuen, G.D. Kanter, C. Bigge, N. Suman-Chauter, C. Digge, N. Sullial-Chauter, C. Digge, N. Sullial-Chautan, D.R. Hill, Epilepsy Res. 14 (1993) 11–15; c) P.W. Yuen, G.D. Kanter, C.P. Taylor, M.G. Vartanian, Bioorg. Med. Chem. Lett.
 - 4 (1994) 823-826.
- [4] a) W.H. Xiao, G.J. Bennett, Analgesia 2 (5/6) (1996) 267–273;
 b) J.H. Hwang, T.L. Yaksh, Reg. Anesth. 22 (1997) 249–256;
- c) M.J. Field, R.J. Oles, A.S. Lewis, S. McCleary, J. Hughes, L. Singh, J. Pharmacol. 121 (1997) 1513-1522.
- [5] N.S. Gee, J.P. Brown, V.U. Dissanayake, J. Offord, R. Thurlow, G.N. Woodruff, J. Biol. Chem. 271 (1996) 5768–5776.
- [6] T.-Z. Su, E. Lunney, G. Campbell, D. Oxender, J. Neurochem. 64 (1995) 2125-2131
- [7] T.R. Bellioti, T. Capiris, I.V. Ekhato, J.J. Kinsora, M.J. Field, T.G. Heffner, L.T. Meltzer, J.B. Schwars, C.P. Taylor, A.J. Thorpe, M.G. Vartanian, L.D. Wise, T. Zhi-Su, M.L. Weber, D.J. Wustrow, J. Med. Chem. 48 (2005) 2294–2307.

- [8] a) M. Ordoñez, C. Cativiela, Tetrahedron Asymmetry 18 (2007) 3-99; b) M. Ordoñez, C. Cativiela, I. Romero-Estudillo, Tetrahedron Asymmetry 27 (2016) 999-1055.
- [9] N.A. Godfrey, D.J. Schatz, S.V. Pronin, J. Am. Chem. Soc. 140 (2018) 12770-12774.
- [10] H.R. Tsou, E.G. Overbeek-Klumpers, W.A. Hallett, M.F. Reich, M.B. Floyd, B.D. Johnson, R.S. Michalak, R. Nilakantan, C. Discafani, J. Golas, S.K. Rabindran, R. Shen, X. Shi, Y.F. Wang, J. Upeslacis, A. Wissner, J. Med. Chem. 48 (2005) 1107-1131.
- [11] A. Ortiz, P. Ramírez, J. Jiménez, A. Mendoza, E. Sansinenea, Lett. Org. Chem. 15 (2018) 1030-1036.
- [12] a) E. Nicolas, K.C. Russell, V.J. Hruby, J. Org. Chem. 58 (1993) 766-770;
 - b) P. Pollock, J. Dambacher, R. Anness, M. Bergdahl, Tetrahedron Lett. 43 (2002) 3693-3697;
 - c) J. Dambacher, R. Anness, P. Pollock, M. Bergdahl, Tetrahedron 60 (2004) 2097-2110;
 - d) R. Sabala, L. Hernández-García, A. Ortiz, M. Romero, H.F. Olivo, Org. Lett. 12 (2010) 4268-4270, and references described here.
- [13] D.A. Evans, D.L. Rieger, M.T. Bilodeau, F. Urpi, J. Am. Chem. Soc. 113 (1991) 1047-1049.

Please cite this article as: R. Sabala, S. Assad, Á.Mendoza et al., Asymmetric synthesis of α , β -substituted γ -amino acids via conjugate addition, Tetrahedron Letters, https://doi.org/10.1016/j.tetlet.2019.05.060