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AbstractÐChemical resolution of racemic 18-methoxycoronaridine (18-MC) was achieved by the formation of its diastereomeric
sulfonamides with either (R)-(ÿ)- or (S)-(+)-camphorsulfonyl chloride. Preliminary assessment of (+)-, (ÿ)-, and (�)-18-MC.HCl
showed similar e�ects on morphine self-administration in a rat model, and similar a�nities at the k opioid receptors. # 2000
Elsevier Science Ltd. All rights reserved.

Racemic 18-methoxycoronaridine (18-MC),1 a struc-
tural analogue of ibogaine,2±7 has been shown in pre-
vious studies to mimic the anti-addictive e�ects of
ibogaine in a rat model of addiction.8±11 This mimetic
e�ect is apparently without the side e�ects of ibogaine,
which include damage to the rat cerebellum.12,13

Because ibogaine exists as a single enantiomer, our early
assumption was that the biological activity of (�)-18-
MC was due primarily to the presence of the (ÿ)-18-MC
enantiomer, which has a similar absolute con®guration
to ibogaine.14,15 To test this hypothesis, we chemically
resolved the racemate to its pure (+)- and (ÿ)-enantio-
mers.We then tested the racemate and each of the sepa-
rated enantiomers for anti-addictive biological activity
in a rat model of addiction (morphine self-administration)
and in k, m and d opioid receptor binding assays.16,17

Chemistry

Our initial attempts to e�ciently resolve the enantio-
mers of 18±methoxycoronaridine by selective recrys-
tallization of diastereomeric salts, formed by reaction of
the racemate18±21 with a variety of chiral acids (13 in
all),22 were uniformly unsuccessful. We then turned our

attention to the preparation of diastereomers via the
formation of chiral sulfonamide derivatives at the indole
nitrogen using chiral sulfonyl chlorides. We found that
the use of commercially available (R)-(+)- or (S)-(ÿ)-
camphorsulfonyl chloride formed a mixture of diaster-
eomers that allowed ready separation by column chro-
matography, as described below.

Racemic 18-MC1,18±21 was converted to sulfonamides 1
and 2 as a pair of diastereomers with (S)-(+)-cam-
phorsulfonyl chloride (see Scheme 1).23 The use of
potassium bis(trimethylsilyl)amide24 as the base in this
reaction gave the desired adducts 1 and 2. Sulfonamides
1 and 2 were separated by normal phase silica gel chro-
matography and isolated as white foams in 27 and 25%
yield, respectively.25 The unreacted starting material
(racemic 18-MC) was recovered in 12% yield.

Treatment of the separated sulfonamides 1 and 2 each
with a large excess of potassium hydroxide in methanol
easily provided the desired enantiomers (+)-18-MC in
77% yield and (ÿ)-18-MC in 74% yield, respectively.
The crude products, which contained approximately 5%
of the opposite enantiomers,26 were further puri®ed
by recrystallization. In this puri®cation method, the
opposite enantiomer co-crystallized with the major
enantiomer as a racemate from a solution of methylene
chloride:diethyl ether:hexanes (1:5:5) at ÿ20 �C. The
solid racemate was then removed by ®ltration. From the
®ltrates, the pure enantiomers were isolated as white
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solids in 61 and 58% overall yields, respectively. Finally,
the enantiomerically pure free bases were converted to
the corresponding hydrochloride salts in 78 and 88%
yields.27 The optical purities of both enantiomers were
>99.8% ee as determined by chiral HPLC analysis.26 In
all, approximately 3 g each of (+)- and (ÿ)-18-MC.HCl
were prepared for the biological evaluations.

Biological Testing

Similar to previous results with intraperitoneally admi-
nistered (�)-18-MC.HCl,12 the present data (Fig. 1)
show that orally administered (�)-18-MC.HCl decrea-
ses morphine self-administration without a�ecting
response for a non-drug reinforcer (water).28 The data
further show that the (+)- and (ÿ)-enantiomers have
e�ects that are similar to each other as well as to (�)-
18-MC.HCl (Fig. 1).

The previously reported a�nities (binding inhibition
constants, Ki) of ibogaine and noribogaine for m and k
opioid receptors29 led us to examine the a�nities of the
18-MC enantiomers for these sites. The results of our
tests are shown in Table 1.30 (�)-18-MC.HCl had low
micromolar a�nities at all three opioid receptors.
However, while the a�nities of (+)- and (ÿ)-18-
MC.HCl at the k opioid receptor were equivalent, the
(+)-enantiomer had more than a 10-fold higher a�nity
than the (ÿ)-enantiomer at m and d opioid receptors.
Previous work with ibogaine suggested that its a�nity

for k opioid receptors is an important component of
the mechanism mediating its putative anti-addictive
e�ects.31 The similar a�nities of (�)-, (+)- and (ÿ)-18-
MC.HCl at k sites and their similar e�ects on morphine
self-administration suggest that their mechanism of
action may involve k opioid receptors. Although these
k a�nities are in the micromolar range and low in

Scheme 1. Chemical resolution of (�)-18-methoxycoronaridine. (a) KHMDS, THF, 23 �C then (S)-(+)-camphorsulfonyl chloride, THF, 4±23 �C;
(b) ¯ash chromatography, SiO2, 5±10% EtOAc in CH2Cl2; (c) KOH, methanol, 23 �C, 1 M HCl in Et2O, THF, 23 �C.

Figure 1. E�ects of 18-MC.HCl on morphine self-administration and
on responding for water. Each data point represents the mean of 5±11
rats. Analyses of variance across doses showed a signi®cant (P<0.05)
e�ect of treatments on morphine self-administration but not on
response for water. There was no signi®cant di�erence among the
three treatments. Post-hoc tests at each dose showed signi®cant e�ects
of all three treatments at 40 mg/kg on morphine self-administration.
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comparison to the nanomolar a�nities of most other
opioid compounds, the 18-MC doses required to pro-
duce behavioral e�ects are relatively large and probably
not inconsistent with micromolar a�nities. Further stu-
dies are in progress.
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