

Subscriber access provided by Iowa State University | Library

Azacalixquinarenes: from Canonical to (Poly-)Zwitterionic Macrocycles

Simon Pascal, Lucien Lavaud, Cloé Azarias, Alexandre Varlot, Gabriel Canard, Michel Giorgi, Denis Jacquemin, and Olivier Siri

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b02847 • Publication Date (Web): 04 Jan 2019

Downloaded from http://pubs.acs.org on January 8, 2019

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Azacalixquinarenes: from Canonical to (Poly-)Zwitterionic Macrocycles

Simon Pascal,^{*,†} Lucien Lavaud,[†] Cloé Azarias,[‡] Alexandre Varlot,[‡] Gabriel Canard,[†] Michel Giorgi,[§] Denis Jacquemin,^{*,‡} and Olivier Siri^{*,†}

[†] Aix Marseille Université, CNRS UMR 7325, CINAM, Campus de Luminy, cas 913, 13288 Marseille cedex 09, France
[‡] Laboratoire CEISAM, CNRS UMR 6230, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes, France
§ Fédération des Sciences Chimiques de Marseille-Spectropole, FR 1739 Aix-Marseille Université, 13397 Marseille, France

ABSTRACT: Azacalixquinarenes, a new family of macrocycles constituted of diaminobenzoquinone diimine units linked by dinitrobenzene rings are synthesized by selected oxidation of the parent azacalixarenes. Crystallographic analyses of two compounds demonstrated the presence of (uncharged) canonical and zwitterionic quinones within a single structure. The electron-withdrawing nature of the dinitrobenzene moieties can trigger the intramolecular H-transfer that generates zwitterionic-ground state quinones. The nature of the *N*-substituents and the polarity of the solvent have a crucial impact on the equilibrium between the canonical and zwitterionic forms that present

distinct optical and electrochemical properties. Thus, within [4]- and [6]-membered macrocycles, poly-zwitterionic structures can be reached, as demonstrated experimentally and theoretically using first-principle approaches.

INTRODUCTION

Heteroatom-bridged calixarenes are an evolved class of calixarene macrocycles^{1, 2} in which the introduction of a bridging heteroatom in lieu of a methylene link provides additional features such as: (i) the tuning of the cavity size and of the conformation (*e.g.* 1,3-alternate structure); (ii) new redox properties; and (iii) conjugation between the units of the macrocyclic oligomer.^{3, 4} Beyond the wide range of heteroatom-containing calixarenes developed during the past decades, azacalixarenes (ACA) demonstrated an undeniable versatility regarding structureproperties shaping.⁵ Since seminal works in the late nineties on polyazacalixarenes,6-10 this family has been growing to incorporate trypticene moieties,^{11, 12} pyridine units,^{13,} ¹⁴ and covalently-bonded metallic centers conferring unusual reactivity.¹⁵⁻²⁰ Noteworthy, ACA macrocycles were valorized for carbon dioxide uptake,21, 22 fullerene or anions complexation²³⁻²⁵ and demonstrated to be relevant as hole- and spin-containing architectures.^{26, 27} In 2013, the azacalixphyrin (ACP, Figure 1) was reported as the only known "azacalixarene-like" derivative introducing four oxidized tetraaminobenzene units that promote a stable bis-zwitterionic ground electronic state.²⁸⁻³³ Consequently

ACP can be viewed as a masked conjugated azacalixquinone. Its aromatic core involving 18 π -electrons confers to the ACP a strong absorption *ca*. 900 nm that can be tuned by substitution of the peripheral imine functions (Figure 1, R = H, aryl, alkyl).^{30, 34}

Figure 1. Previously reported azacalixphyrin macrocycle (top) and illustration of the canonical-zwitterionic equilibrium in 2,5-diaminobenzoquinone diimines (bottom).

Chart 1. Scope of the study (only the canonical form is represented).

Interestingly, we recently reported that the constituting unit of ACP, the monocyclic 2,5-diamino benzoquinone diimine, can be also stabilized under a zwitterionic ground state if it is functionalized with strongly electronwithdrawing aromatic substituents (EWG, Figure 1).³⁵ In the case of quinone **1a** featuring 5-fluoro-2,4dinitrophenyl moieties (Chart 1), the zwitterionic form was found to dominate in both solution and solid states.

With the aim to combine several of these systems in a single molecule and study the impact on the canonical/zwitterionic equilibrium, we naturally focused our attention on the elaboration of macrocyclic architectures of types 2 or 3 presenting an alternation of quinones and aromatic rings substituted with EWG. We report herein their synthesis from ACA precursors and demonstrate that these macrocycles (2a-c and 3a), named azacalixquinarenes (ACO), can be seen as "hemiazacalixphyrins", i.e. an intermediary class of ACA-ACP derivatives featuring an alternation of dinitro-substituted aromatic rings and diaminobenzoquinone diimine rings. As for model compounds 1a-d, the quinoidal fragments within ACQs can be either stabilized under canonical (uncharged) or zwitterionic forms depending on given parameters (N-substituents, solvent), allowing to reach unprecedented poly-zwitterionic systems.

RESULTS AND DISCUSSION

Synthesis. The access to the target ACQs **2a-c** was envisaged by chemical oxidation of the azacalix[4]arene precursors (Scheme 1). Therefore, the preparation of ACA **7a-c** was carried out following a well-established strategy starting from precursors **4a-c**, incorporating octylamine or selected aniline moieties, which were reduced under acidic conditions in presence of Sn(II) salts or Fe powder, then substituted by 1,5-difluoro-2,4-dinitrobenzene (DFDNB) to afford the adducts **6a-c**.^{30, 34}

Scheme 1. Synthesis of compounds 1a-d, 2a-c and 3a (quinones only represented under their canonical forms).

34

35

36

37

38

39

59

60

These intermediates were converted to the corresponding azacalix[4]arene **7a-c** using one equivalent of tetraamino-2 benzenes 4a-c in refluxing acetonitrile. For compound 6d, 3 previously unknown, the reaction was carried out at room 4 temperature and a low concentration of 5d (10⁻² M) was 5 necessary to reach a moderate yield (43%, Table S1). Such 6 poor efficiency is presumably imputable to a lack of regi-7 oselectivity during the nucleophilic aromatic substitution of the electron-rich adduct **5d** on DFDNB. Unfortunately, 8 for the same reason, it was impossible to reach the corre-9 sponding azacalix[4]arene 6d using classical conditions. 10 The synthesis of azacalix[6]arenes 8a was more straight-11 forward and allowed the isolation of the macrocycle in 12 only one step from octylamine-decorated tetraaminoben-13 zene 5a, with however a poor 5% yield.²⁴ Note that the 14 formation of higher order macrocycles was not observed. 15

As expected, series of azacalix[4]arenes 7a-c and azaca-16 lix[6]arene 8a could be oxidized to the corresponding 17 azacalixquinarenes 2a-c and 3a using 2 and 3 equivalents 18 of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 19 respectively. The reaction proceeded rapidly, nevertheless 20 purification was more tedious for aryl-substituted qui-21 nones **2b-c** which revealed a poor solubility in organic 22 solvents. In contrast, macrocycles 2a and 3a, featuring 23 octyl chains, show a surprisingly good solubility in di-24 chloromethane and were obtained in 82% and 90% yields, 25 respectively. Eventually, care was taken to verify that the 26 ACQ 2a could be converted to the corresponding ACP by 27 reducing the nitro functions in presence of Pd/C and 28 excess hydrazine in refluxing tetrahydrofuran for 2 days. 29 Following a classical workup and overnight aerial oxida-30 tion, the expected bis-zwitterionic ACP-C8 (Figure 1, ACP 31 with $R = C_8 H_{17}$) was isolated in a 97% yield (see Experi-32 mental Section for details). 33

With the perspective to study them as model compounds, the quinone **1a-d** were prepared from the aromatic derivatives 6a-d, following their treatment with a stoichiometric amount of DDQ in degassed chloroform.35 The compounds were conveniently purified either by precipitation or by flash column chromatography and finally isolated with good yields (67-80%).

40 Structural analysis. X-ray quality crystals could be ob-41 tained for quinone 1b by slow evaporation of an acetoni-42 trile solution. All H-atoms were found experimentally for 43 1b, as well as the H-atoms for the central cycles and 44 amines in 2a and 3a, except the one for amine N6 in 3a 45 (see Figure 4) that was introduced at geometrical posi-46 tion. Unlike the previously reported crystal structure of 47 1a, featuring a zwitterionic ground state,³⁵ the molecule 1b 48 presents an alternation of single and double bonds in 49 both subunits of the quinoidal ring (BLA *ca*. 0.10 Å; Figure 50 2). Thus, the presence of slightly electron-donating aro-51 matic substituents in 1b promotes an unequivocal canoni-52 cal ground state. This unexpected result, which helps to 53 rationalize the optical properties of ACQ 2b (see below), 54 is consistent with theoretical predictions and experi-55 mental evidences that aryl-substituted ACPs tend to sta-56 bilize canonical tautomers due to the extent of delocaliza-57 tion brought by the aryl substituents.^{31, 34} 58

Figure 2. Single crystal structures of canonical 1b with selected bond lengths (Å). Anisotropic displacement ellipsoids plot at the 50 percent probability level.

Single crystals of 2a were obtained from a dichloromethane-acetonitrile solution and the structure is presented in Figure 3. Considering the striking effect of the environment on the ground state structure of the ACQs (vide infra), it is worth to underline that crystals of 2a obtained from acetone or dimethylformamide solutions gave rise to the exact same structure and packing. An unusual solid-state structure is evidenced for this ACQ corresponding to the mixed form zc-2a (Scheme 2), which presents two aromatic dinitrobenzene moieties binding two oxidized rings, one of them being a zwitterion structure, the other being a canonical structure. The former ring is characterized by two 6π -electrons subunits, one cationic and the other anionic, linked by single bonds (1.50 Å). Within each cyanine systems, the bond length alternation nearly vanishes (BLA ca. 0.01 Å) due to the strong delocalization of the charges along the trimethine motifs. Surprisingly, for both oxidized rings, the two 6π electrons subsystems are not belonging to the same plane, with an angle of 6° for the zwitterionic system and 4° for the canonical one. One can notice that the presence of these two quinone rings within ACQ 3a also induces a strong distortion of the 1,3-alternate configuration, compared to parent analogous ACA structures.³⁶ The only acidic hydrogen atom borne by the macrocyclic core is involved in a 1.98 Å hydrogen bond with one of the peripheral nitro function. The distance between the two oxidized ring centroids is 6.86 Å, this value being close to the one found in unsubstituted ACP (6.65 Å) and standing out from classical 1,3-alternate ACA 7a, which presents a distance of 4.74 Å between the two octyl- substituted aromatic rings.²⁴ The angle formed between the two

Figure 3. Single crystal structure of **2a**. Selected bond lengths (Å) and the electronic structure of each rings are indicated: zwitterionic (z), canonical (c) and aromatic (Ar). *N*-octyl chains are omitted for clarity. Anisotropic displacement ellipsoids plot at the 50 percent probability level.

Scheme 2. Possible H-transfers and tautomeric structures of series 1a-d, azacalix[4]quinarenes 2a-c and azacalix[6]quinarene 3a. *c* and *z* stand for canonical and zwitterionic, respectively. Note that only one structure for compounds containing at least one c unit is shown here but other (generally less stable) tautomers can be drawn, see Schemes S1, S2, and S3 in the ESI.

planes of the quinone rings is ca. 110°, which is comparable to the data measured for unsubstituted ACP (see Table S₃).

Finally, ACQ **3a** was crystallized from evaporation of a solution in acetone and stands as one of the rare example of six-membered azacalix-derivatives (Figure 4).^{13, 14, 21, 23, 24, 37, 38} The structure reveals that **3a** crystallizes with two independent molecules in the asymmetric unit that stack together through two π - π ring interactions between, on one hand, two of their canonical *c* cycles and, on the other hand, two of their aromatic cycles. Indeed the distance between the centroids is equal to 4.359(4) Å between the aromatic ones, while the dihedral angles are equal to 7.5(3)° and 1.6(3)° respectively. The slippage between the

centroids is equal to 2.443 Å and 2.497 Å for the canonical and the aromatic rings respectively. In both independent molecules the macrocycle presents three aromatic dinitrobenzene moieties, two canonical quinones and one zwitterionic ring, thus corresponding to the structure **zcc-3a** in Scheme 2. It is worthy to note that both acidic hydrogen atoms (NH) borne by the central core are symmetrically distributed and involved in H-bonds with the closest nitro functions. The 1,2,4,5-alternate structure (u,d,d,u,d,d) is very similar to the parent **8a**, with however a distortion brought by the zwitterionic ring. Note that one dinitro aromatic ring is folded inside the cavity and occupies the available space.

2

3

4

5

6 7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23

24 25

26 27

28

29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Figure 4. Single crystal structures of **3a**. The electronic structure of each rings are indicated: zwitterionic (z), canonical (c) and aromatic (Ar). *N*-octyl chains are omitted for clarity. Anisotropic displacement ellipsoids plot at the 50 percent probability level.

Photophysical properties. The electronic absorption spectra of the quinones recorded in acetone solution (ca. 2.10⁻⁵ M) are compiled in Figure 5. As a model compound, alkyl-substituted compound 1a exhibits a characteristic broad absorption band centered at *ca*. 700 nm, which is the fingerprint of the zwitterionic form z-1a. This transition is attributed to an intramolecular charge transfer (ICT) from the anionic trimethine to the cationic one (cyanine-to-cyanine ICT), its intensity depending on the proportion of ground-state zwitterion in solution.35 This analysis is corroborated by theoretical calculations (see Figure S₃₄ and Table S₉ in the ESI). Quinones **1b** and **1c**, possess trimethoxyaniline which and mtrifluoromethylaniline moieties do not present such transition, which hints at a prominent canonical ground-state for these compounds, the strong UV band and its tail in the visible region being classical features of tetra-

substituted diamino benzoquinone diimines.39, 40 In contrast. the absorption of *p*-dimethylaminoanilinesubstituted 1d shows a panchromatic absorption spanning from 400 to 800 nm. Two main transitions can be identified at 654 and 570 nm, and are counter-intuitively theoretically attributed to the forms *c*-1d and *z*-1d, respectively (vide infra). In any case, this result underlines that, for aniline substituted quinones 1b-d, very electron-rich auxochromes are needed to trigger the proton transfer and subsequently observe the presence of the zwitterion. The solvatochromism of this series has been recorded in different solvents ranging from toluene to DMSO and shows a very low impact on the absorption of canonical compounds **1b-c**, while a moderate hyperchromic effect is observed for 1a and 1d in solvent of high polarity due to the generation of the zwitterionic forms (Figure S₃₀).

Figure 5. Electronic absorption spectra of the quinones in acetone.

The absorption solvatochromism of the macrocycle 2a is particularly interesting since a strong evolution of the lower energy transition is monitored depending on the solvent (Figure 6). Going from toluene to dichloromethane solution, the molar extinction coefficient increases from ca. 720 to 4200 M⁻¹.cm⁻¹. In acetone, a transition centered at 660 nm starts to emerge and ultimately becomes the most intense band in DMSO ($\epsilon = 6800$ M⁻¹ ¹.cm⁻¹). With the help of theory (Figure S₄6 and Table S₁6 in the ESI), the hyperchromic shift in the less polar solvents compared to z-1a is attributed to the stronger absorbance of *zc-2a* in solution (tripling of the oscillator strength compared to 1a), while the growing blue-shifted transition corresponds to the bis-zwitterionic zz-2a. In a different way, the ACQ 2b presents characteristic "canonical-type" absorption spectra with negligible differences in the range of solvents screened. In contrast, the macrocycle 2c shows the apparition of a band at 700 nm in the most polar solvents such as DMF and DMSO ($\varepsilon = 4200 \text{ M}^{-1}$ ¹.cm⁻¹). Such behavior is tentatively assigned to the formation of mixed species zc-2c following intramolecular proton transfer in the corresponding bis-canonical macrocycle. Finally, the [6]-membered macrocycle 3a exhibits a very similar progression of absorption that of 2a. The broad transition at ca. 650-700 nm observed in toluene and dioxane potentially implies the presence of at least

Figure 6. UV-Vis-NIR absorption solvatochromism of **2c**, **2a** and **3a** in toluene (—), 1,4-dioxane (—), ethyl acetate (—), dichloromethane (—), acetone (—), *N*,*N*-dimethylformamide (—) and dimethylsulfoxide (—).

one zwitterionic quinone among the three oxidized rings of **3a** (see tautomer **zcc-3a** in Figure 4 and Scheme 2). The growing transition noticed in DMSO is most probably due to the evolution towards species **zzc-3a** and/or **zzz-3a** (see calculations below).

1

2

3

4

5

6

7

8

9

10 11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

59

60

Cyclic voltammetry. The redox properties of compounds **1a-d**, **2a-c** and **3a** were analyzed by recording their cyclic voltammograms (CV) in DCM and in DMF solutions (containing 0.1 M of $[(^nBu_4N)PF_6]$ and using ferrocene as an internal standard (Figures S28 and S29). The corresponding oxidation and reduction half-wave potential $E_{1/2}$ values are given *versus* the oxidation potential of ferrocene and are listed in Table S4. In DCM, each CV features up to three irreversible reduction waves and up to two oxidation ones. In DMF, no oxidation potential values of compounds **1c** and **2c** are reported since these processes are occurring out of the solvent electro-chemical window.

31 For the 1a-d series, the first reduction processes centered 32 on the most electron-accepting di-nitro-fluorobenzene 33 moieties have $E_{1/2}$ values that are not strongly affected by the nature of the *N*-substituents nor by the solvent polari-34 35 ty. For example, in both solvents, the replacement of the electron-withdrawing *m*-trifluoromethylphenyl groups of 36 **ic** by electron-donating *p*-dimethylaminophenyl ones in 37 **id** induces a cathodic shift of the first reduction wave by 38 less than 50 mV. In contrast, in the four membered mac-39 rocycle 2a-c series, where the fluorine atoms have been 40 replaced by tetraaminobenzoquinone moieties, such vari-41 ation of the N-substitution has a noticeable effect on the 42 first reduction $E_{1/2}$ values. For example, the first reduction 43 waves located at -1.06 V (DCM) and -1.00 V (DMF) for 2a 44 (Figure 7) are found at -0.78 V (DCM) and at -0.84 V 45 (DMF) when studying 2c. The first oxidation potential 46 values are significantly affected by the nature of the N-47 substituents and/or by the solvent polarity. For example, 48 in DCM, when going from 1b and 2b to 1c and 2c, the 49 increasing electron-accepting strength of the N-50 substituents produces an anodic shift of the first oxida-51 tion wave by more than 250 mV. The variation of the first 52 oxidation $E_{1/2}$ value with the solvent polarity can also be 53 used as an additional proof of the occurrence of a canoni-54 cal/zwitterionic balance. Indeed, if the solvent polarity 55 has a limited impact on the location of the oxidation of 56 the canonical 1b and 2b compounds, it induces, for the 57 oxidation $E_{1/2}$ values of compounds 1a, 2a and 3a, a signif-58

icant variation of more than 150 mV. This canonical/zwitterionic equilibrium is probably responsible for the decrease of the electrochemical gaps ($\geq 200 \text{ mV}$) of 1a, 2a and 3a when changing DCM by DMF (Figure 7), while those of 1b and 2b are only slightly affected ($\leq 50 \text{ mV}$).

Figure 7. Cyclic voltammograms of compound **2a** in DCM (black) and DMF (red) solutions.

Theoretical calculations. In order to obtain further insights into the underlying electronic structures and evaluate the relative stabilities of the various tautomers, DFT and TD-DFT calculations have been performed on all the systems studied herein. Let us first compare the crystallographic structures with the one modelled in gas phase for **1b**, **2a**, and **3a**. For the two former compounds, we have performed a full tautomeric search, i.e., modelling not only structures presenting rings of z and/or cforms (displayed in Scheme 2), but also accounting for other possible types of rings (see Schemes S1 and S2 in the ESI). For **1b**, among the four tautomers considered, theory predicts that the canonical c form is the most stable by more than 2 kcal.mol⁻¹ compared to the other forms, which is in perfect agreement with the X-ray structure. One notices that the *a* and *x* tautomers (see the ESI for representation) are much less stable (>10 kcal.mol⁻¹, Table S₅) than the z and c structures, which is also consistent with our previous work on a similar compound.³⁵ The BLA determined for c-1b is ca. 0.07 Å, only slightly smaller than in the XRD (vide supra). For 2a, among the thirteen different tautomers considered, it turns out that the mac-

2

3

4

5

6

7

8

9

58

59

60

rocycles presenting a least one ring of type *a* or *x* are very unlikely with relative free energies exceeding 15 kcal.mol-1 (Table S6) which is perfectly consistent with the results obtained for **1b**. While only the **zc-2a** structure has been evidenced experimentally, theory predicts that the cc structure is slightly more stable than zc. However, the computed difference (1 kcal.mol⁻¹) is within DFT error bar and could be overcome by crystal packing effects, not accounted for in the calculations. In zc-2a, the DFT determined CC bond lengths in the zwitterionic cycle are 1.386 and 1.389 Å (external side), and 1.388 and 1.405 Å 10 (internal side), in very good match with the experimental 11 values (Figure 3). For 3a, according to the previous obser-12 vations, only the possible tautomers that combine z13 and/or c type of rings have been taken into account 14 (Scheme S₃ and Table S₇). Due to its strongly distorted 15 structure, for a given tautomer, several non-equivalent 16 conformers can be drawn and a full conformational 17 search has therefore been performed. It turns out that, in 18 gas phase, only the zcc form in the exact same confor-19 mation as the crystallographic structure was found to be 20 stable, the other structures being less stable by at least 3 21 kcal.mol⁻¹.

22 Let us now turn towards an analysis of the results ob-23 tained in solution. We have chosen DMSO as reference 24 solvent except when noted. For 1a, only the z form, pre-25 senting a band at 602 nm according to TD-DFT (Table 26 S9), is likely to exist in DMSO, the c tautomer being 5 27 kcal.mol-1 less stable. As stated above, this 602 nm transi-28 tion involves a significant CT between the two cyanine 29 subunits (Figure S₃₅), consistent with our previous 30 work.³⁵ In contrast, for 1b and 1c, theory finds that the 31 canonical form is preferred by at least 4 kcal.mol⁻¹ (Tables 32 S10 and S12). The **c-1b** and **c-1c** compounds present their 33 lowest absorption at 527 and 495 nm, respectively (Fig-34 ures S₃₆ and S₃₉). There is therefore a clear agreement 35 with the experimental spectra observed for these three 36 species: only the *c* structures are present and their spectra 37 are blueshifted compared to z-1a. Eventually for 1d, DFT 38 returns almost isoenergetic z and c tautomers, which are 39 therefore likely to coexist in solution (Table S14). This can 40 explain the broad long-wavelength band obtained in the 41 experimental spectra. Unexpectedly, the absorption band 42 at the longest wavelength is attributed to the c-1d (651 nm, f=0.49) whereas the first significant absorption of z-43 **id** appears are higher energies (540 nm, *f*=0.85, see Table 44 S15 and Figure S43). This is because the S1 state of z-1d, 45 computed at 667 nm is totally dark. As can be seen in 46 Figures S41 and S42, all the lowest dipole-allowed transi-47 tions present a significant CT character, the p-amino-48 phenyl moieties acting as donor groups and the central 49 core acting as acceptor. 50

For 2a, the free energies and UV-Vis spectra have been 51 52 calculated in both DCM and DMSO. The results are displayed in the ESI. The computed free energies indicate 53 that the *cc* forms are not likely to be present in solution 54 (> 5 kcal.mol⁻¹), whereas the difference between the zc55 and zz forms increases when going from DCM to DMSO 56 hinting that the ratio of the latter increases with solvent 57

polarity as expected (Table S16). For both zc and zz, the absorption spectra computed in the two solvents are extremely similar (see Figure S51), with the first dipoleallowed absorption of *zz* appearing at smaller wavelength than the one of zc (565 and 621 nm, respectively, see Table S17), for the same reason as in 1d (i.e., the first transition in zz is forbidden). Therefore, the experimentally observed solvatochromism, that is, the increase of the intensity of the blueshifted zwitterionic band when going from DCM to DMSO (see Figure 8), is due to the changes in the relative population of the tautomers rather than a direct solvent effect on their individual spectra. In the zc-2a structure, the band at 621 nm is clearly centered on the z cycle (Figure S48). For 2b, theory predicts that the cc tautomer is the most stable and that the zz structure is unlikely (relative free energy of 3.8 kcal.mol⁻¹, Table S19) whereas the zc tautomer is only 1.1 kcal.mol⁻¹ above cc. Given the computed spectra (Figure S52), one can therefore probably attribute the small extension of the foot of the band toward the red in **2b** to the formation of a small amount of zc. For 2c, theory predicts that only the cc exists in solution, the free energies of the other *zc* and *zz* forms being relatively high, e.g., 3.8 kcal.mol⁻¹ for zc (Table S21). This is the only theoretical result not consistent with experiment that returns the presence of zwitterionic forms in the most polar solvents (vide infra).

Figure 8. Theoretical absorption spectra of different tautomeric forms of azacalixquinarenes 2a and 3a computed in DMSO. The theoretical spectra are obtained using a broadening Gaussian with a FWHM of 2500 cm⁻¹ to convolute the stick spectrum.

As previously shown and consistently with the experiments, theory predicts that the most stable form of 3a in gas phase corresponds to the *zcc* tautomer. Interestingly, going to DCM and DMSO leads to markedly different results (Table S23). Indeed, unsurprisingly, the more polar is the solvent, the more the "z-heavy" structures are stabilized. Indeed, in DCM (DMSO), theory predicts that the zzc (zzz) form is the most stable one. The theoretical spectra of these three species are given in Figures 8 and S59 and one notices that the long-wavelength absorption

Figure 9. Representation of the TD-DFT electron density difference for the three lowest excited-states of **3a** in three of its tautomeric forms. The blue and red regions respectively indicate decrease and increase of density upon photon absorption (contour threshold: 0.0008 au).

band presents a nearly equal position in *zcc*, *zzc* and *zzz*, whereas its intensity is roughly proportional to the ratio of zwitterionic rings. The lowest electronic transitions for these three species have been characterized (Figure 9). The long-wavelength bright states (> 550 nm) are localized on the zwitterionic part(s) for the three tautomers of **3a**, whereas the canonical moieties are related to absorption at higher energies (ca. 470 nm).

CONCLUSION

23 24 25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

60

A new class of macrocycle, the azacalixquinarene family has been synthesized by partial oxidation of azacalixarenes. Single crystal structures highlighted that the cavity volume in four-membered macrocycles was higher than in the parent ACA due to the distortion brought by the imine functions. Importantly, [4]- and [6]-membered ACQs 2a and 3a presented one of their quinone cycle under zwitterionic electronic structure at the solid state. The nature of the N-substituents influences the ground state of the quinone units, alkyl chains and strong electron-donating aryl moieties allowed to promote a zwitterionic character. The evolution of the absorption profiles observed in solution was rationalized by TD-DFT, highlighting the preponderance of zwitterionic units in polar environment. This fine, easily tunable balance between the presence of canonical and zwitterionic moieties within a same macrocyclic architecture paves the way to several sensing applications.

EXPERIMENTAL SECTION & THEORETICAL DETAILS

Reagents. All reagents were purchased from Alfa-Aesar or Sigma-Aldrich and used as received. When heating was required, oil bathes were used. Column chromatography were performed using Silica 6oM (0.04-0.063 mm) purchased from Macherey-Nagel. Compounds 1a,³⁵ 6a and 7a,³⁰ 6b-c and 7b-c,³⁴ 8a²⁴ were prepared following previously reported protocols.

Analytical methods and apparatus. NMR spectra were recorded on a JEOL ECS400 NMR spectrometer at room temperature, otherwise noted. NMR chemical shifts are given in ppm (δ) relative to Me₄Si with solvent resonances used as internal standards (CDCl₃: 7.26 ppm for ¹H and 77.2 for ¹³C{¹H}; Acetone-*d*₆: 2.05 ppm for ¹H and 29.8 for ¹³C{¹H}; DMSO-d₆: 2.50 ppm for ¹H and 39.5 for ¹³C{¹H}). UV-Vis-NIR absorption spectra were recorded on a VARIAN CARY 50 SCAN spectrophotometer at room temperature. NMR peak assignments were confirmed using a DEPT-135 method. Optical properties were recorded in spectrophotochemical grade solvents. HRMS (ESI) and MS (ESI) analyses were performed on a QStar Elite (Applied Biosystems SCIEX) or a SYNAPT G2 HDMS (Waters) spectrometers by the "Spectropole" of the Aix-Marseille University. These two instruments were equipped with an ESI or MALDI source spectrometer, and a TOF mass analyzer.

3

4

5

7

58

59

60

Single Crystal X-ray Diffraction. Suitable crystals for compounds 1b, 2a and 3a were obtained from slow evapo-2 ration from acetonitrile, dichloromethane/acetonitrile and acetone respectively. They were mounted on a Rigaku Oxford Diffraction SuperNova diffractometer and measured at 203 K, 250 K and 150 K respectively, at the Cu 6 radiation (λ =1.54184 Å). Data collection, reduction and multiscan ABSPACK correction were performed with CrysAlisPro (Rigaku Oxford Diffraction). Using Olex241 8 the structures were solved with the ShelXT42 structure 9 solution program using Intrinsic Phasing and refined with 10 ShelXL42 using least-square minimization. Crystals of 1b 11 were found to be twins and all H-atoms were determined 12 experimentally. Structures of 2a and 3a revealed severe 13 disordered for the octylamine moieties and hard con-14 straints were applied during the refinement process. For 15 both compounds the H-atoms for the central cycles and 16 the amines were found experimentally except for atom 17 N6 in 3a. The remaining H-atoms were introduced at 18 geometrical positions and all H-atoms were refined with 19 riding coordinates to their parent atoms and with their 20 Uiso parameters constraint to 1.2Ueq(parent atoms) for 21 the CH, CH₂, and NH and 1.5Ueq(parent atoms) for the 22 CH₃. Compound 3a crystallized with 2 independent mole-23 cules in the asymmetric unit. 24

Electrochemistry. Cyclic voltammetry (CV) data were 25 recorded using a BAS 100 (Bioanalytical Systems) potenti-26 ostat and the BAS100W software (v2.3). All the experi-27 ments were conducted under an argon atmosphere in a 28 standard one-compartment using a three electrodes set-29 up: a Pt working electrode ($\emptyset = 1.6$ mm), a Pt counter 30 electrode and an Ag/AgCl reference electrode (filled with 31 a 3 M NaCl solution). Tetra-*n*-butylammonium hex-32 afluorophosphate ([TBA][PF₆]) was used as supporting 33 electrolyte (10⁻¹ M), with a concentration of the electro-34 active compound ca. 10⁻³ M. The reference electrode was 35 calibrated using ferrocene ($E^{\circ}(Fc/Fc^{+}) = 0.46V/SCE$ 36 (DCM), 0.46V/SCE (DMF)).⁴³ The scan rate was 100 mV/S. 37 The solution was degassed using argon before recording 38 each reductive scan, and the working electrode (Pt) was 39 polished before each scan recording.

40 DFT and TD-DFT Calculations. All calculations have 41 been made with Gaussian-16,44 replacing the alkyl chains 42 C_8H_{17} by methyl groups in all the calculations for the sake 43 of computational time. We have used the PBEo45 global 44 hybrid functional for all our calculations. For compounds 45 1a-d and 2a, we have optimized the ground-state geome-46 try with the 6-311++G(2d,2p) basis set, whereas larger 47 compounds **2b-c** and **3a** have been optimized using the 48 more compact 6-31G(d) atomic basis set. We verified the 49 absence of imaginary frequencies by computing analyti-50 cally the Hessian at the same level of theory. The excited-51 state calculations were performed with TD-DFT deter-52 mined with the CAM-B3LYP46 exchange-correlation func-53 tional in combination with the 6-311++G(2d,2p) atomic basis set. This functional has been preferred to PBEo as 54 several charge transfer states are considered in this study. 55 The solvent effects were modeled through the well-56 known Polarizable Continuum Model (PCM).47 Extra 57

computational details are available in Section VII of the SI.

of *N*¹,*N*¹-(4,6-dinitro-1,3-**Synthesis** phenylene)bis(*N*⁴,*N*⁴-dimethylbenzene-1,4-diamine) (4d). 1,5-difluoro-2,4-dinitrobenzene (2 g, 9.80 mmol, 1 equiv.), N,N-dimethyl-p-phenylenediamine (2.936 g, 21.56 mmol, 2.5 equiv.) and N,N-diisopropylethylamine (5.12 mL, 29.40 mmol, 3 equiv.) were heated at 145 °C for 2 hours. The reaction mixture was cooled to room temperature and the precipitate was filtered, washed several times with ethanol, Et₂O and dried under vacuum to afford the product as a dark brown solid (3.94 g, 92%). ¹H NMR $(CDCl_3, 400 \text{ MHz}): \delta = 9.55 \text{ (br s, 2H, NH)}, 9.31 \text{ (s, 1H, })$ CH), 6.99 (d, I = 8.9 Hz, 4H, CH), 6.63 (d, I = 8.9 Hz, 4H, H)CH), 6.30 (s, 1H, CH), 2.94 (s, 12H, N(CH₃)₂). ¹³C{¹H} NMR $(CD_2Cl_2, 100 \text{ MHz}): \delta = 149.6 \text{ (C)}, 148.2 \text{ (C)}, 129.6 \text{ (CH)},$ 126.6 (CH), 126.3 (C), 125.3 (C), 109.5 (CH), 95.1 (CH), 40.7 (CH₃). HRMS (ESI+) calculated for [M+H]⁺: 437.1932 $(C_{22}H_{25}N_6O_4^+)$, found: 437.1932.

Synthesis of N^{1}, N^{5} -bis(4-(dimethylamino)phenyl)benzene-1,2,4,5-tetraamine tetrahydrochloride (5d). In a pressure bomb, compound 4d (1 g, 2.29 mmol, 1 equiv.) and SnCl₂•2H₂O (4.136 g, 18.33 mmol, 8 equiv.) were dissolved in 10 mL of concentrated HCl (12 N) and 10 mL of chloroform. The bomb was closed with a Teflon seal and the mixture was stirred at 60 °C for 15 h. The resulting precipitate was filtered, washed several times with concentrated HCl (3 x 20 mL), DCM, Et₂O and finally dried under vacuum to afford the product as a withe powder (739 mg, 72%). The compound was stored at -4 °C to prevent its oxidation to the corresponding quinone. ¹H NMR (DMSO- d_6 , 400 MHz): δ = 8.65 (br s, 2H, NH), 7.66 (d, J = 9.0 Hz, 4H, CH), 7.41 (s, 1H, CH), 7.09 (s, 1H, CH), 7.06 (d, I = 9.0 Hz, 4H, CH), 3.08 (s, 12H, N(CH₃)₂). No ${}^{13}C{}^{1}H$ NMR spectrum could be recorded owing to the poor stability in solution. HRMS (MALDI) calculated for $[M+H]^+$: 376.2370 ($C_{22}H_{28}N_6$), found: 376.2360.

Synthesis of *N*¹,*N*⁵-bis(4-(dimethylamino)phenyl)-N²,N⁴-bis(5-fluoro-2,4-dinitrophenyl)benzene-1,2,4,5tetraamine (6d). Compound 5d (500 mg, 1.11 mmol, 1 equiv.) and 1,5-difluoro-2,4-dinitrobenzene (227 g, 1.11 mmol, 1 equiv.) were dissolved in 110 mL of acetonitrile. The solution was cooled to o °C and degassed under Argon bubbling for 30 minutes. N,N-diisopropylethylamine (1.55 mL, 8.90 mmol, 8 equiv.) was added dropwise to the solution. The reaction mixture was stirred for 2 h at 0 °C, then warmed to 25 °C and stirred for 15 h. The crude solution was filtered to remove insoluble materials and the filtrate was evaporated under reduced pressure. The residue was subjected to column chromatography over silica gel using dichloromethane/ethyl acetate (9:1) as eluent to afford the product as a brown solid (125 mg, 30%). Rf: 0.47 (SiO₂, dichloromethane/ethyl acetate, 9:1). ¹H NMR $(CDCl_3, 400 \text{ MHz}): \delta = 9.37 \text{ (br s, 2H, NH)}, 9.11 \text{ (d, } J_{H-F} =$ 7.6 Hz, 2H, CH), 6.96 (s, 1H, CH), 6.92 (d, J = 8.8 Hz, 4H, CH), 6.66 (d, J_{H-F} = 13.1 Hz, 2H, CH), 6.63 – 6.60 (m, 5H, CH), 5.56 (s, 2H, NH₂), 2.90 (s, 12H, N(CH₃)₂). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 400 MHz, 100 MHz): $\delta = 159.8$ (d, $J_{C-F} = 271$ Hz, C), 149.4 (d, *J*_{C-F} = 13 Hz, C), 148.3 (C), 144.3 (C), 128.9 (C), 128.3 (CH), 127.9 (C), 127.6 (CH), 127.3 (C), 124.8 (CH), 113.3 (CH), 112.6 (C), 103.7 (d, *J*_{C-F} = 27 Hz, CH), 99.9 (CH), 40.8 (CH₃). HRMS (ESI+) calculated for [M+H]+: 745.2289 $(C_{34}H_{31}N_{10}O_8F_2^+)$, found: 745.2288.

Synthesis of (3E,6E)-N¹-(5-fluoro-2,4-dinitrophenyl)-3-((5-fluoro-2,4-dinitrophenyl)imino)-N4-(3,4,5-

trimethoxyphenyl)-6-((3,4,5-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

31

58

59

60

trimethoxyphenyl)imino)cyclohexa-1,4-diene-1,4-

diamine (1b). To a solution of compound 6b (100 mg, 0.119 mmol, 1 equiv.) in 3 mL of degassed chloroform was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (27 mg, 0.119 mmol, 1 equiv.) and the mixture was stirred at 25 °C for 30 minutes. After concentration under reduced pressure, the crude residue was purified by column chromatography over silica gel using dichloromethane/ethyl acetate (9:1) as eluent. The obtained compound was finally passed through a basic activated alumina pad (Brockmann I) via DCM to afford the product as a dark solid (72 mg, 72%). Rf: 0.70 (SiO₂, dichloromethane/ ethyl acetate, 9:1). ¹H NMR (DMSO- d_6 , 400 MHz): δ = 9.71 (br s, 2H, NH), 8.91 (d, J_{H-F} = 7.5 Hz, 2H, CH), 7.80 (d, J_{H-F} = 12.7 Hz, 2H, CH), 6.65 (s, 1H, CH), 6.43 (s, 4H, CH), 6.34 (s, 1H, CH), 3.69 (s, 12H, OCH₃), 3.62 (s, 6H, OCH₃). ¹³C{¹H} NMR $(DMSO-d_6, 100 \text{ MHz}): \delta = 157.8 \text{ (d, } J_{C-F} = 270 \text{ Hz, C}), 153.1$ (C), 148.1 (C), 147.6 (C), 146.4 (C), 140.0 (C), 134.8 (C), 134.1 (C), 130.8 (C), 125.5 (CH), 110.4 (d, $J_{C-F} = 27$ Hz, CH), 102.3 (CH), 99.0 (CH), 91.8 (CH), 60.0 (OCH₃), 55.8 (OCH₃). (ESI+) calculated for [M+H]+: 837.1922 HRMS $(C_{36}H_{31}F_2N_8O_{14})$, found: 837.1920.

28 Synthesis of (3E,6E)-N¹-(5-fluoro-2,4-dinitrophenyl)-3-29 ((5-fluoro-2,4-dinitrophenyl)imino)-N4-(3-30

(trifluoromethyl)phenyl)-6-((3-

(trifluoromethyl)phenyl)imino)cyclohexa-1,4-diene-

32 1,4-diamine (1c). To a solution of compound 1c (100 mg, 33 0.126 mmol, 1 equiv.) in 2 mL of degassed tetrahydrofuran 34 added dropwise 2,3-dichloro-5,6-dicyano-1,4was 35 benzoquinone (28.7 mg, 0.126 mmol, 1 equiv.) in 2 mL of 36 degassed tetrahydrofuran and the mixture was stirred at 37 room temperature for 4 h. After concentration under 38 reduced pressure, the crude residue was washed with 39 ethanol and diethyl ether to afford the product as a 40 brown solid (80 mg, 80%). ¹H NMR (DMSO-d₆, 400 41 MHz): δ = 9.97 (br s, 2H, NH), 8.93 (d, J_{H-F} = 7.2 Hz, 2H, 42 CH), 7.82 (d, I_{H-F} = 12.6 Hz, 2H, CH), 7.65 – 7.35 (m, 8H, 43 CH), 6.72 (s, 1H, CH), 6.13 (s, 1H, CH). Compound was too 44 insoluble to record a ¹³C{¹H} NMR spectrum. HRMS (ESI+) 45 calculated for [M+H]+: 793.1036 (C₃₂H₁₇ F₈N₈O₈+), found: 46 793.1041.

47 **Synthesis** of $(E)-N^{1}-((E)-5-((4-$ 48 (dimethylamino)phenyl)amino)-2-((5-fluoro-2,4-49 dinitrophenyl)amino)-4-((5-fluoro-2,4-50 dinitrophenyl)imino)cyclohexa-2,5-dien-1-ylidene)-51 *N*⁴,*N*⁴-dimethylbenzene-1,4-diamine (1d). To a solution 52 of compound 6d (100 mg, 0.134 mmol, 1 equiv.) in 2 mL of 53 degassed tetrahydrofuran was added 2,3-dichloro-5,6-54 dicyano-1,4-benzoquinone (31 mg, 0.134 mmol, 1 equiv.) in 55 2 mL of degassed tetrahydrofuran and the mixture was 56 stirred at 25 °C for 1 h. After concentration under reduced 57 pressure, the crude residue was washed with ethanol,

diethyl ether and pentane to afford the product as a green

solid (76 mg, 76%). ¹H NMR (DMSO-*d*₆, 400 MHz, 353 K): δ = 9.60 (br s, 2H, NH), 8.89 (d, J_{H-F} = 7.9 Hz, 2H, CH), 7.18 – 6.88 (m, 6H, CH), 6.78 (d, J_{H-F} = 14.3 Hz, 2H, CH), 6.75 - 6.60 (m, 4H, CH), 2.85 (s, 12H, N(CH₃)₂). Compound was too insoluble to record a ¹³C{¹H} NMR spectrum. HRMS (ESI+) calculated for [M+H]+: 743.2132 $(C_{34}H_{20}N_{10}O_8F_2^+)$, found: 743.2130.

Synthesis of ACQ 2a. To a solution of ACA 7a (50 mg, 0.047 mmol, 1 equiv.) in 2 mL of degassed chloroform was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (22 mg, 0.095 mmol, 2 equiv.) and the mixture was stirred at 25 °C for 1 h. After concentration under reduced pressure, the crude residue was purified by column chromatography over silica gel using dichloromethane as eluent to afford the product as a brown-green solid (41 mg, 82%). Rf: 0.80 (SiO₂, dichloromethane). ¹H NMR (CDCl₃, 400 MHz): δ = 8.91 (s, 2H, CH), 8.45 (br s, 4H, NH), 6.92 (s, 2H, CH), 6.14 (s, 2H, CH), 5.46 (s, 2H, CH), 3.38 (t, J = 6.8 Hz, 8H, N- CH_2), 1.76 (quint, J = 7.2 Hz, 8H, CH_2), 1.56 – 1.25 (m, 40H, CH_2), o.88 (t, J = 7.0 Hz, 12H, CH_3). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 100 MHz: $\delta = 152.5 (C), 148.8 (C), 147.9 (C), 134.3 (C), 126.1$ (CH), 110.2 (CH), 89.8 (CH), 85.3 (CH), 45.5 (N-CH₂), 31.8 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 29.0 (CH₂), 27.2 (CH₂), 22.6 (CH_2) , 14.1 (CH_3) . HRMS (ESI+) calculated for $[M+H]^+$: 1049.6295 ($C_{56}H_{8_1}N_{12}O_{8^+}$), found: 1049.6295.

Synthesis of ACO 2b. To a solution of ACA 7b (50 mg, 0.039 mmol, 1 equiv.) in 2 mL of degassed chloroform was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (18 mg, 0.039 mmol, 2 equiv.) and the mixture was stirred at 25 °C for 30 minutes. After concentration under reduced pressure, the particularly insoluble residue was purified by flash column chromatography over silica gel using dichloromethane/acetone (9:1) as eluent to afford the product as a green solid (26 mg, 52%). Rf: 0.40 (SiO₂, dichloromethane/acetone, 9:1). ¹H NMR (DMSO-d₆, 400 MHz): $\delta = 9.54$ (br s, 4H, NH), 8.95 (br s, 2H, CH), 7.55 (br s, 2H, CH), 7.11 (br s, 2H, CH), 6.40 (br s, 8H, CH), 6.34 (br s, 2H, CH), 3.67 (br s, 24H, OCH₃), 3.67 (br s, 12H, OCH₃). Compound was too insoluble to record a ${}^{13}C{}^{1}H$ NMR spectrum. HRMS (ESI+) calculated for [M+2H]²⁺: 633.1940 (C₆₀H₅₈N₁₂O₂₀²⁺), found: 633.1940.

Synthesis of ACQ 2c. To a solution of compound 7c (80 mg, 0.068 mmol, 1 equiv.) in 2.5 mL of degassed tetrahydrofuran was added dropwise 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (30.72 mg, 0.136 mmol, 2 equiv.) in 2.5 mL of degassed tetrahydrofuran and the mixture was stirred at 25 °C for 19 h. After concentration under reduced pressure, the crude residue was washed with ethanol and was purified by flash column chromatography neutral aluminium oxide using dichloroover methane/acetone (95:5) as eluent to afford the product as a brown solid (31 mg, 38%). Rf: 0.48 (SiO2, dichloromethane/petroleum ether, 7:3). ¹H NMR (DMSO-d₆, 400 MHz): $\delta = 9.80$ (br s, 4H, NH), 8.97 (s, 2H, CH), 7.62 -7.38 (m, 18H, CH), 7.20 (s, 2H, CH), 6.12 (s, 2H, CH). Compound was too insoluble to record a ¹³C{¹H} NMR spectrum. HRMS (ESI+) calculated for [M+H]+: 1177.2034 $(C_{52}H_{29}F_{12}N_{12}O_8^+)$, found: 1177.2046.

Synthesis of ACQ 3a. To a solution of ACA 8a (10 mg, 0.006 mmol, 1 equiv.) in 2 mL of degassed chloroform was

2

3

4

5

6

7

8

9

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (4.3 mg, 0.018 mmol, 3 equiv.) and the mixture was stirred at 25 °C for 30 minutes. After concentration under reduced pressure, the crude residue was purified by flash column chromatography over silica gel using dichloromethane as eluent to afford the product as a green solid (9 mg, 90%). Note that column purification had to be performed quickly since degradation of the compound was observed on silica gel. Rf: 0.74 (SiO₂, dichloromethane). ¹H NMR (acetone- d_6 , 400 MHz): $\delta = 8.69$ (br s, 2H), 6.67 (br s, 2H), 5.78 (br s, 2H), 3.56 (m, 12H, NCH₂), 1.81 (m, 12H, CH₂), 10 1.50 (m, 12H, CH₂), 1.29 (m, 48H, CH₂), 0.89 (t, J = 6.9 Hz, 11 18H, CH₃). Quinoid units meet relaxation issues that yield 12 uncomplete or unresolved NMR signals. ¹H NMR spec-13 trum recorded in DMSO- d_6 at 353 K reveals the missing 14 signals (see ESI) No ¹³C{¹H} NMR spectrum could be rec-15 orded due to poorly resolved signals and poor solubility. 16 HRMS (ESI+) calculated for [M+2H]²⁺: 787.4739 17 $(C_{84}H_{122}N_{18}O_{12}^{2+})$, found: 787.4737. 18

Synthesis of compound ACP-C8 (R=C₈H₁₇) from ACQ 19 2a. In a Schlenk tube, a solution of compound 2a (35 mg, 20 0.033 mmol, 1 equiv.) in tetrahydrofuran (15 mL) was 21 added by 5 wt.% Pd/C (21 mg, 0.010 mmol, 30 mol.%), and 22 hydrazine monohydrate (203 µL, 4.169 mmol, 125 equiv.) 23 and the mixture was stirred for 48 h at 80 °C. Then it was 24 cooled to room temperature, concentrated under reduced 25 pressure, and the residue was dissolved in 3 mL of metha-26 nol (solution instantaneously turned green, revealing the 27 oxidation of azacalixarene to azacalixphyrin). The solu-28 tion was bubbled with air for 16 h at 25 °C, then filtered 29 on a Celite (AW) pad which was rinsed with MeOH. The 30 filtrate was evaporated and the solid was taken up in a 31 mixture of dichloromethane and acetone, sonicated for 32 few minutes, filtered and the solid was finally washed 33 with acetonitrile, dichloromethane, diethyl ether and 34 pentane to afford the product as a green powder (30 mg, 35 97%). MS (ESI+) calculated for [M+2H]²⁺: 464.4 36 (C₅₆H₈₈N₁₂²⁺), found: 464.6; calculated for [M+H]⁺: 927.7 37 $(C_{56}H_{87}N_{12}^{2+})$, found: 927.8. NMR analysis and absorption 38 spectra were identical to previously reported ones.³⁰ 39

ASSOCIATED CONTENT

Additional synthetic details, 1H and 13C¹H NMR spectra, HRMS spectra, crystal data and structures refinements for compounds 1b, 2a and 3a, additional absorption spectra, cyclic voltammograms, theoretical calculations. The Supporting Information is available free of charge on the ACS Publications website at DOI: XXX.

AUTHOR INFORMATION

Corresponding Authors

- * S.P.: pascal@cinam.univ-mrs.fr
- * D.J.: Denis.Jacquemin@univ-nantes.fr.
- * O.S.: olivier.siri@univ-amu.fr

ORCID

Simon Pascal: 0000-0001-8387-494X Lucien Lavaud: 0000-0001-8445-2159 Gabriel Canard: 0000-0002-3572-9091 Michel Giorgi: 0000-0002-4367-1985 Denis Jacquemin: 0000-0002-4217-0708 Olivier Siri: 0000-0001-9747-3813

Notes

The authors declare no competing financial interest.

AKNOLEDGEMENTS

The authors thank the ANR for support in the framework of the EMA grant. We thank Joachim Galiana (Marseille) for his help in synthesizing macrocycle 3a. This research used resources of (i) the GENCI-CINES/ IDRIS; (ii) Centre de Calcul Intensif des Pays de Loire; (iii) a local Troy cluster and (iv) HPC resources from ArronaxPlus (Grant No. ANR-11-EQPX-0004 funded by the French National Agency for Research). Spectropole of Aix-Marseille University is acknowledged for mass spectrometry.

REFERENCES

(1)Gutsche, C. D., Calixarenes: An Introduction: Edition 2. RSC Publishing: 2008.

Neri, P.; Sessler, J. L.; Wang, M.-X., Calixarenes and (2) Beyond. Springer: 2016.

(3) König, B.; Fonseca, Maria H., Heteroatom-Bridged Calixarenes. Eur. J. Inorg. Chem. 2000, 2000 (11), 2303-2310.

Wang, M.-X., Heterocalixaromatics, new generation (4) macrocyclic host molecules in supramolecular chemistry. Chem. Commun. 2008, (38), 4541-4551.

Tsue, H.; Ishibashi, K.; Tamura, R., Azacalixarene: A (5) New Class in the Calixarene Family. Springer: 2007.

Graubaum, H.; Lutze, G.; Tittelbach, F.; Bartoszek, M., (6)Neue Azacyclophane aus Cyanurchlorid und Diaminen. J. Prakt. Chem. 1995, 337 (1), 401-404.

Graubaum, H.; G.; Costisella, (7)Lutze, B Polyazacalix[5]arene - Synthese und NMR-Untersuchungen. J. Prakt. Chem. 1997, 339 (1), 266-271.

(8)Graubaum, H.; Lutze, G.; Costisella, B.; zur Linden, B., Polyazacalix[6]arene - Synthese und NMR-Untersuchungen. J. Prakt. Chem. 1997, 339 (1), 672-674.

Niikura, K.; V. Anslyn, E., Azacalixarene: synthesis, (9)conformational analysis, and recognition behavior toward anions. J. Chem. Soc., Perkin Trans. 2 1999, (12), 2769-2775.

(10)Ito, A.; Ono, Y.; Tanaka, K., N-Methyl-Substituted Aza[in]metacyclophane: Preparation, Structure, and Properties. J. Org. Chem. 1999, 64 (22), 8236-8241.

Xue, M.; Chen, C.-F., Triptycene-Derived N(H)-(11) Bridged Azacalixarenes: Synthesis, Structure, and Encapsulation of Small Neutral Molecules in the Solid State. Org. Lett. 2009, 11 (22), 5294-5297.

(12) Xue, M.; Chen, C.-F., Aromatic single-walled organic nanotubes self-assembled from NH-bridged azacalix[2]triptycene[2]pyridine. Chem. Commun. 2011, 47 (8), 2318-2320.

(13) Miyazaki, Y.; Kanbara, T.; Yamamoto, T., Preparation of new type of azacalixarene, azacalix[n](2,6)pyridine. *Tetrahedron Lett.* **2002**, *4*3 (44), 7945-7948.

Suzuki, Y.; Yanagi, T.; Kanbara, T.; Yamamoto, T., (14) Preparation of N-(p-Tolyl)azacalix[n](2,6)pyridines Constructed of Various Numbers of the Recurring Unit. Synlett 2005, 2005 (02), 263-266.

Yao, B.; Wang, Z.-L.; Zhang, H.; Wang, D.-X.; Zhao, L.; (15) M.-X., Cu(ClO₄)₂-Mediated Arene C-H Bond Wang, Halogenations of Azacalixaromatics Using Alkali Metal Halides as Halogen Sources. J. Org. Chem. 2012, 77 (7), 3336-3340.

Yao, B.; Liu, Y.; Zhao, L.; Wang, D.-X.; Wang, M.-X., (16)Designing a Cu(II)-ArCu(II)-ArCu(III)-Cu(I) Catalytic Cycle: Cu(II)-Catalyzed Oxidative Arene C–H Bond Azidation with Air as an Oxidant under Ambient Conditions. *J. Org. Chem.* **2014**, *79* (22), 11139-11145.

(17) Yang, C.; Wu, W.-D.; Zhao, L.; Wang, M.-X., Macrocyclic Aryl–Nickel(II) Complexes: Synthesis, Structure, and Reactivity Studies. *Organometallics* **2015**, *34* (20), 5167-5174.

(18) Liu, Y.; Zhang, Q.; Guo, Q.-H.; Wang, M.-X., Synthesis of Functionalized Azacalix[1]arene[3]pyridine Macrocycles from Cu(II)-Mediated Direct Amination Reactions of Arene through High Valent Arylcopper(III) Intermediates. *J. Org. Chem.* 2016, *81* (21), 10404-10410.

(19) Liu, Y.; Long, C.; Zhao, L.; Wang, M.-X., Functionalization of Azacalixaromatics by Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between the Arene C–H Bond and Boronic Acids. *Org. Lett.* **2016**, *18* (19), 5078-5081.

(20) Wang, F.; Zhao, L.; You, J.; Wang, M.-X., Synthesis of trifluoromethylthiolated azacalix[1]arene[3]pyridines from the Cu(ii)-mediated direct trifluoromethylthiolation reaction of arenes via reactive arylcopper(iii) intermediates. *Org. Chem. Front.* **2016**, *3* (7), 880-886.

(21) Tsue, H.; Ishibashi, K.; Tokita, S.; Takahashi, H.; Matsui, K.; Tamura, R., Azacalix[6]arene Hexamethyl Ether: Synthesis, Structure, and Selective Uptake of Carbon Dioxide in the Solid State. *Chem. Eur. J.* **2008**, *14* (20), 6125-6134.

(22) Tsue, H.; Ono, K.; Tokita, S.; Ishibashi, K.; Matsui, K.; Takahashi, H.; Miyata, K.; Takahashi, D.; Tamura, R., Spontaneous and Selective CO₂ Sorption under Ambient Conditions in Seemingly Nonporous Molecular Crystal of Azacalix[5]arene Pentamethyl Ether. *Org. Lett.* **2011**, *1*3 (3), 490-493.

(23) Fa, S.-X.; Wang, L.-X.; Wang, D.-X.; Zhao, L.; Wang, M.-X., Synthesis, Structure, and Fullerene-Complexing Property of Azacalix[6]aromatics. *J. Org. Chem.* **2014**, *79* (8), 3559-3571.

(24) Chen, Z.; Canard, G.; Azarias, C.; Jacquemin, D.; Siri, O., Straightforward metal-free synthesis of an azacalix[6]arene forming a host-guest complex with fullerene C60. *N. J. Chem.* **2017**, *41* (13), 5284-5290.

(25) Canard, G.; Andeme Edzang, J.; Chen, Z.; Chessé, M.; Elhabiri, M.; Giorgi, M.; Siri, O., 1,3-Alternate Tetraamido-Azacalix[4]arenes as Selective Anion Receptors. *Chem. Eur. J.* **2016**, *22* (16), 5756-5766.

(26) Ito, A.; Ono, Y.; Tanaka, K., The Tetraaza[1.1.1.1]m,p,m,p-cyclophane Dication: A Triplet Diradical Having Two m-Phenylenediamine Radical Cations Linked by Twisted Benzenes. *Angew. Chem. Int. Ed.* **2000**, 39 (6), 1072-1075.

(27) Ito, A., Macrocyclic oligoarylamines as hole- and spincontaining scaffolds for molecule-based electronics. *J. Mater. Chem. C* 2016, *4* (21), 4614-4625.

(28) Chen, Z.; Giorgi, M.; Jacquemin, D.; Elhabiri, M.; Siri, O., Azacalixphyrin: The Hidden Porphyrin Cousin Brought to Light. *Angew. Chem. Int. Ed.* **2013**, 52 (24), 6250-6254.

(29) Marchand, G.; Laurent, A. D.; Chen, Z.; Siri, O.; Jacquemin, D., Exceptional Stability of Azacalixphyrin and Its Dianion. J. Phys. Chem. A 2014, 118 (38), 8883-8888.

(30) Chen, Z.; Haddoub, R.; Mahé, J.; Marchand, G.; Jacquemin, D.; Andeme Edzang, J.; Canard, G.; Ferry, D.; Grauby, O.; Ranguis, A.; Siri, O., N-Substituted Azacalixphyrins: Synthesis, Properties, and Self-Assembly. *Chem. Eur. J.* **2016**, *22* (49), 17820-17832.

(31) Marchand, G.; Siri, O.; Jacquemin, D., Effects of chemical substitutions on the properties of azacalixphyrins: a first-principles study. *Phys. Chem. Chem. Phys.* **2016**, *18* (39), 27308-27316.

(32) Marchand, G.; Giraudeau, P.; Chen, Z.; Elhabiri, M.; Siri, O.; Jacquemin, D., Understanding the tautomerism in azacalixphyrins. *Phys. Chem. Chem. Phys.* **2016**, *18* (14), 9608-9615. (33) Azarias, C.; Pascal, S.; Siri, O.; Jacquemin, D., Central substitution of azacalixphyrins: a strategy towards acidochromic NIR dyes. *Phys. Chem. Chem. Phys.* **2018**, 20 (30), 20056-20069.

(34) Lavaud, L.; Pascal, S.; Metwally, K.; Gasteau, D.; Da Silva, A.; Chen, Z.; Elhabiri, M.; Canard, G.; Jacquemin, D.; Siri, O., Azacalixphyrins as NIR photoacoustic contrast agents. *Chem. Commun.* **2018**, *54* (87), 12365-12368.

(35) Pascal, S.; Lavaud, L.; Azarias, C.; Canard, G.; Giorgi, M.; Jacquemin, D.; Siri, O., Controlling the canonical/zwitterionic balance through intramolecular proton transfer: a strategy for vapochromism. *Mater. Chem. Front.* **2018**, 2 (9), 1618-1625.

(36) Konishi, H.; Hashimoto, S.; Sakakibara, T.; Matsubara, S.; Yasukawa, Y.; Morikawa, O.; Kobayashi, K., Synthesis and conformational properties of tetranitroazacalix[4]arenes. *Tetrahedron Lett.* **2009**, 50 (6), 620-623.

(37) Vale, M.; Pink, M.; Rajca, S.; Rajca, A., Synthesis, Structure, and Conformation of Aza[11]metacyclophanes. *J. Org. Chem.* **2008**, *73* (1), 27-35.

(38) Fang, Y.-X.; Zhao, L.; Wang, D.-X.; Wang, M.-X., Synthesis, Structure and Metal Binding Property of Internally 1,3-Arylene-Bridged Azacalix[6]aromatics. *J. Org. Chem.* **2012**, *77* (22), 10073-10082.

(39) Lavaud, L.; Chen, Z.; Elhabiri, M.; Jacquemin, D.; Canard, G.; Siri, O., Di- vs. tetra-substituted quinonediimines: a drastic effect on coordination chemistry. *Dalton Trans.* **2017**, *46* (38), 12794-12803.

(40) Pascal, S.; Siri, O., Benzoquinonediimine ligands: Synthesis, coordination chemistry and properties. *Coord. Chem. Rev.* 2017, 350 (Supplement C), 178-195.

(41) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42* (2), 339-341.

(42) Sheldrick, G., SHELXT - Integrated space-group and crystal-structure determination. *Acta Crystallogr. A* **2015**, *71* (1), 3-8.

(43) Connelly, N. G.; Geiger, W. E., Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96* (2), 877-910.

(44) M. J. Frisch, et al., Gaussian 16, revision A.o3, Wallignford, CT, USA, **2016**.

(45) Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **1999**, *110* (13), 6158-6169.

(46) Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). *Chem. Phys. Lett.* **2004**, *393* (1-3), 51-57.

(47) Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation Models. *Chem. Rev.* 2005, *1*05 (8), 2999-3093.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58