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For similar slider-on-deck systems,21,22 we recently discus-

sed various mechanistic options, but only one scenario agreed 

with the kinetic data. Alike, in both DS1 and DS2 the exchange 

could occur through complete dissociation followed by re-

association of 1 and 2 (intermolecular hopping) or a single 

Npy�ZnPor bond dissociation-rotation-association (sliding) 

mechanism. Since the barrier in a rotor23 operating via a well-

defined single Npy�ZnPor dissociation amounted to TG� = 47.6 

± 0.1 kJ mol�1, the pathway involving complete dissociation is 

rigorously ruled out for DS1 and DS2 as their barriers are 

almost identical to that of the rotor: TG� (DS1) = 47.1 ± 0.1 kJ 

mol�1 and TG� (DS2) = 47.9 ± 0.1 kJ mol�1.

Comparing the kinetic data of both slider-on-deck systems 

leads us to interesting mechanistic corollaries. Specifically, one 

could hypothesize that the exchange motion at both ZnPor 

decks of DS2 could be either coupled or decoupled. If the ex-

change would be decoupled, i.e. the motion at both decks is 

fully independent, then the frequency should be identical to 

that of DS1. If it were coupled, positions at deck A and B would 

communicate and then a full exchange would require that all 

combinations be passed through equally. As a result, the fre-

quency could be derived from the exchange rate at the single 

site in DS1 and a statistical correction. In principle, this consti-

tutes a case of multiplicative constrained probabilities as P(total) 

= P(event 1) � P(event 2; given event 1 has happened). In the coupled case one 

would expect P(total) = (1/3) �  (1) = 1/3. However, the observed 

rate of DS2 is not 1/3 that of DS1; the frequency at DS2 is only 

slower by 10-15%. On the other hand, the two rates are not 

identical, as expected for the decoupled case. Rather they 

remain different even considering the error range (k298 = 34.9 

± 1.8 kHz for DS1 and k298 = 27.9 ± 1.4 kHz for DS2). 

Nevertheless, it is obvious to postulate for DS2 that the motion 

at both decks is decoupled. But why is the observed frequency 

lower? We can exclude metal coordination at the remote 

phenanthroline to be responsible for this effect. Actually, 

metal coordination should lower the donor quality of the 

pyridine feet in the Npy�ZnPor interaction. As a net effect, in 

such case, exchange in DS2 should be faster than in DS1, 

contrary to our findings.  

Ultimately, an inspection of the DFT-computed slider-on-

deck structures provides a convincing reason for the rate diffe-

rences. The data suggest that biped 1 in DS1 (ESI�, Fig. S35) is 

strained once axial Npy�ZnPor coordination at both ZnPor 

units is realized. The strain is indirectly visible from the intra-

molecular pyridine-pyridine distance when one compares the 

d(Npy-N�
py) of the free biped 1 in its unstrained state with the 

one enforced for 1 when combining with deck 2 in DS1, i.e. 

25.1 vs. 22.2 Å, respectively (Figure 4a, b). Consequently, some 

release of strain energy is expected to promote the 

Npy�ZnPor dissociation step in DS1. On the other hand, the 

computed [Cu(1)2]+ fragment in DS2 (ESI�, Fig. S36) has an 

intramolecular pyridine-pyridine distance d(Npy-N�
py) = 21.7 Å 

that almost exactly matches that of the unstrained free deck 2 

{d(Zn-Zn) = 22.2 Å} (Figure 4a,c) leading to a possibly strain-

free axial Npy�ZnPor coordination in DS2. The reduced Npy-

N�
py distance in the [Cu(1)2]+ unit as compared to that in 1 

indicates a long-range effect of the Cu+ coordination on the bi- 

Figure 4. Ball and stick representation of (a) partial structure of deck 2. (b) 

Structure of biped 1. (c) Structure of [Cu(1)2]+. All figures show the energy-

minimized structures (B3LYP/6-31G(d); Lanl2dz basis set for metals). Counter 

anions are not included.

ped�s spatial arrangement. This finding points to an allosteric 

effect originating from the four-fold �-� stacking between the 

2,9-phenyl groups with the opposite phenanthroline�s � cloud 

in the homoleptic complex [Cu(1)2]PF6. 

Finally, due to the reduced strain release in the transition 

state of the exchange in DS2 as compared to that in DS1, the 

slower sliding speed of 27.9 ± 1.4 kHz in DS2 is readily under-

stood (cf. DS1, k = 34.9 ± 1.8 kHz). 

In summary, we have demonstrated two dynamic slider-on-

deck systems that are quantitatively and reversibly toggled 

through catenation/decatenation. The interconversion bet-

ween the two-component macrocyclic and the three-com-

ponent slider-on-deck catenate is accomplished by addition 

and removal of Cu+ ions. A rigorous kinetic analysis of the 

three- vs. nine-fold degenerate rearrangement indicates that 

allosteric effects are switched off/on in the DS1 � DS2 

transformation. The fine tuning of dynamic allosteric effects in 

switchable multicomponent assemblies opens new routes for 

the modulation of molecular machine processes.
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