

Au-Catalyzed Addition of Nucleophiles to Chloroalkynes: A Regio- and Stereoselective Synthesis of (*Z*)- Alkenyl Chlorides

Congrong Liu, *^[a] Yunbo Xue, ^[a] Lianghui Ding, ^[a] Haiyun Zhang, ^[a] and Fulai Yang*^[b]

Abstract: An unprecedented protocol has been developed for the regio- and stereoselective synthesis of (*Z*)- alkenyl chlorides via the gold-catalyzed addition of nucleophiles to chloroalkynes. In the presence of 1 mol % BrettPhosAuCl, a broad range of nucleophiles smoothly react with aromatic, vinylic or aliphatic chloroalkynes to afford various functionalized (*Z*)- alkenyl chlorides with high to excellent yield and extremely high stereoselectivity.

Introduction

Functionalized olefins are ubiquitous structures in organic chemistry because of its presence in natural and biologically active compounds and are very frequently encountered structural motifs in organic synthesis.^[1] In this respect, multisubstituted alkenyl chlorides are valuable intermediates in organic synthesis because of their ability to serve as convenient substrates in hydration, [2] amination [3] and transition metalcatalyzed cross-coupling reactions,^[4] such as Buchwald-Hartwig aminations, Sonogashira couplings, Suzuki couplings, Stille couplings and so on. For example, the 2-chloroalkenyl sulfides smoothly couple with aryl/alkylboronic acid with high chemoselectivity and efficience. ^[5] The 2-chloroalkenyl ethers would be expected to be novel precursors for any chloromethyl ketones and a prodrug in the treatment of Alzheimer's disease by hydration.^[2] In addition, alkenyl chlorides are commomly found in biologically active natural products. ^[6] So developing efficient synthetic approaches to construct functionalized alkenyl chlorides is one of the most exciting topics in organic synthesis. ^[7] Recently, Dérien and co-workers reported a Ru-catalyzed addition of HCl to alkynes for the substituted alkenyl chlorides (Scheme 1a).^[8] Ram's group discovered an efficient method for the synthesis of 2-chloroalkeneyl ethers via CuCl/bpy-promoted stereoselective dechlorination of 2,2,2-Trichloroethyl Alkyl Ethers (Scheme 1b).^[9] Hultin's group reported a useful method for the formation of (Z)-2-chloroalkenyl ethers via palladiumcatalyzed cross coupling of (E)-1,2-dichlorovinyl ethers with aryl boronic acid (Scheme 1c). ^[10] In spite of the great success achieved so far in this area, some important challenges still remain, such as difficulties in controlling regioand stereoselectivities, expensive substrates, moderate scope and

[a]	Prof.Dr. C. R. Liu, Y. B. Xue, H. Y. Zhang, L. H. Ding
	School of Environment Engineering
	Nanjing Institute of Technology
	1 Hongjingdadao, Nanjing, Jiangsu 211167, China
	Email: congrong@njit.edu.cn
[b]	Prof.Dr. F. L. Yang
	Department State Key Laboratory of Natural Medicines, Department
	of Organic Chemistry,
	China Pharmaceutical University, Nanjing, 210009, P. R. China
	Institution
	Fly1986@mail.ustc.edu.cn
	Supporting information for this orticle is given via a link at the and of

Supporting information for this article is given via a link at the end of the document.

functional group tolerance. Therefore, a new general, flexible, high stereoselective and regioselective approach for the synthesis of functionalized alkenyl chlorides is still necessary.

Chloroalkynes are one of the most important intermediates and versatile building blocks for synthetic organic chemistry due to their versatile reactivity in a number of chemical transformations.^[11] The chloride moiety could also be used for further functionalization, thereby providing a complementary method for the preparation of products that are difficult or impossible to obtain via direct reaction. Although chloroalkynes have versatile applications in organic chemistry, there are very few examples describing the addition of nucleophiles to chloroalkynes.^[12] Herein, we report an efficient and facile method for the synthesis of alkenyl chlorides via Au-catalyzed regioselective and stereoselective addition of nucleophiles to chloroalkynes (Scheme 1d).

Previous reports

Scheme 1. Literature reports on the synthesis of differently substituted alkenyl chloride

Results and Discussion

At the outset of this investigation, We examined the addition reaction between anisole (1a) and phenylethynyl chloride (2a) using 1 mol% IPrAuNTf₂ in DCE at 40 °C. Gratifyingly, the reaction gave the desired (Z)- alkenyl chloride (3a) in 61% yield (Table 1, Entry 1). Inspired by this result, we further examined the reaction conditions, and the results were summarized in table 1. Gold catalysts based on other ligands were examined, the use of BrettPhos as ligand resulted in the formation of 3a in 97% yield (Table 1, Entries 2-6). LAuCl is not stable, anionic stabilizer is needed. Replacing BARF⁻ with other counter anions led to decreased yields (Table 1, Entries 7-9). The reaction was

COMMUNICATION

WILEY-VCH

also performed in a common organic solvent other than DCE, but a much lower yield was obtained (Table 1, Entries 10-13). Reducing the reaction temperature led to decreased efficiency (Table 1, Entry 14). In addition, a gram-scale synthesis of (Z)alkenyl chlorides 3a (2.33 g, 96% yield) was successfully performed according to this protocol.

 Table 1 Initial Reaction Conditions Optimization
 [a]

After establishing the optimized conditions (Table 1, entry 6), the scope of this reaction were then investigated in detail with other nucleophiles under the optimal condition. The scope of nucleophiles are very general in the addition with phenylethynyl chloride (Table 2). Appropriately activated arenes could undergo addition with phenylethynyl chloride 2a to give the corresponding products in very good to excellent yields and with absoluted stereoselectivity (Table 2, Entries 1-9). This protocol was also suitable for alcohols^[13] and thiols, and as expected different structural of alcohols/thiols proceeded smoothly with phenylethynyl chloride 2a to give the corresponding (Z)-2chloroalkenyl ethers/(Z)-2-chloroalkenyl thioethers in excellent yields and short reacton times were needed (Table 2, Entries 10-15). Further investigation showed that benzenesulfinic acid also served as suitable substrate in the addition with phenylethynyl chloride 2a, but the reaction gave the corresponding 2-chloroalkeneyl sulfone (3p) instead of sulfinic ester (Table 2, Entry 16).

Table 2 Gold catalyzed regioselective and stereoselective addition of nucleophile 1 to phenylethynyl chloride 2a [a]

3

3a

3b

3c

3d

3e

3f

3g

3h

OMe

OMe

OMe

·H

ÒМе

Me

O⊦

н

·H

Ph

1, Nu-H

1a,

1b,

MeO

MeC

MeO 1c,

MeO

1d.

1e,

1f,

1g,

1h,

8

HO

Et

2a

1

BrettPhosAuCI (1 mol %)

NaBARF (1 mol %)

DCE (0.5 mL), 40°C

and U U U

Н

ÌΟΙ

3

Yield $(\%)^{[b]}$

Nú

97

89

95

99

85

80

90

86

Time

(h)

8

5

4

3

3

10

7

10

[a] Reaction conditions: anisole 1a (0.24 mmol), Chloroalkyne 2a (0.2 mmol), [Au] (1 mol%), MX (1 mol%), solvent (0.5 mL), 40 °C. [b] Isolated yield. [c] Room temperature.

BrettPhos

JohnPhos

IPr

COMMUNICATION

9	Br-OH	3i	24	80
10 ^[c]	_{1j,} EtO−H	3j	1	96
11 ^[c]	_{1k,} <i>п</i> -ВиО-Н	3k	1	99
12 ^[c]	1I, N≡CCH ₂ CH ₂ O-H	31	12	90
13 ^[c]	1m , BnO-H	3m	1	99
14	1n , PhS-H	3n	0.5	88
15	10, S`H	30	0.5	91
16	1p, PhSOOH	3p, Ph H O∖ O=S, Cl Ph	15	76

[a] Reaction conditions: anisole **1a** (0.24 mmol), Chloroalkyne **2** (0.2 mmol), BrettphosAuCl (1 mol%), NaBARF(1 mol%), DCE (0.5 mL), 40 °C. [b] Isolated yield. [c] alcohol (0.5 mL), without DCE

A broad range of chloroalkynes were found to react with anisole in the presence of 1 mol % BrettPhosAuCl and 1mol % NaBARF to yield structurally diverse (Z)- alkenyl chlorides (Table 3).^[14] Either electron-donating or electron-withdrawing chloroalkynes were efficiently converted into (Z)- alkenyl chlorides in excellent yields with excellent stereoselectivity (Table 3, Entries 1-6). 2-(2-chloroethynyl)naphthalene 2h reacted smoothly to afford the corresponding product 3w in 99% yield (Table 3, Entry 7). Notably, the addition anisole to 1chlorodeca-1,3-diyne 2i took place only at C-1 and C-2 position in 78% yield (Table 3, Entry 8). Vinylic or aliphatic chloroalkynes also participated well in this reaction. For example, the addition of chloroalkynes 2j and 2k afforded the corresponding products 3y and 3z in 81% and 70% yields, respectively (Table 3, Entries 9-10).

Table 3 Gold catalyzed regioselective and stereoselective addition of anisole 1a with chloroalkyne $\mathbf{2}^{[a]}$

MeO-	$H + R - CI \frac{Na}{D}$	BrettPhosAuCl (1 mol %) NaBARF (1 mol %) DCE (0.5 mL), 40°C		R H Cl
Entry	2 , R	3	Time (h)	Yield (%)
1	2b , 4-Me C ₆ H ₄	3q	4	98
2	2c , 4-Ph C ₆ H₄	3r	7	95
3	2d , 4-BrC ₆ H ₄	3s	11	94
4	2e , 2-Br C ₆ H ₄	3t	20	90
5	2f , 2,4- Cl ₂ C ₆ H ₃	3u	24	86
6	2g , 2,4,6-Me ₃ C ₆ H ₂	3v	24	84
7	2h, 2-naphthyl	3w	4	99

8	2i , <i>n</i> -C ₆ H ₁₃ CC	3x	24	78
9	2j, 1-cyclohexenyl	Зу	24	81
10	2k,PhSO ₂ CH ₂ CH ₂	3z	30	70

[a] Reaction conditions: anisole **1a** (0.24 mmol), Chloroalkyne **2** (0.2 mmol), BrettphosAuCl (1 mol %), NaBARF (1 mol %), DCE (0.5 mL), 40 °C. [b] Isolated yield.

On the basis of our results and previous studies,^[15] we proposed the reaction pathway depicted in Scheme 2 for the steroselective synthesis of functionalized (*Z*)-alkenyl chlorides from chloroalkynes and nucleophiles (Scheme 2). A gold-activated haloalkyne 4 is initially attacked by nucleophile from the back, the chlorine is an electron-withdrawing group, so C-2 is the electrophilic position. The alkenyl gold intermediate **5** is generated, then followed a proton transfer to afford the alkenyl chlorides **3**.

Scheme 2. Proposed mechanism for Au-catalyzed addition of haloalkynes with protic nucleophiles

Conclusions

In summary, we have developed an unprecedented protocol for the regio- and stereoselective synthesis of (Z)- alkenyl chlorides via the gold-catalyzed addition between chloroalkynes and nucleophiles with good to excellent yields. In the presence of 1 mol % BrettPhosAuCl, a broad range of nucleophiles (such as arenes, alcohols, thiols, sulfinic acid) smoothly react with aromatic, vinylic or aliphatic chloroalkynes to afford various functionalized (Z)- alkenyl chlorides with high to excellent yield. Current efforts are directed toward further methodological refinement and synthetic applications.

Experimental Section

General procedure for the gold catalyzed addition of choloalkynes with pronic nucleophiles (Tables 2 and 3): To a solution of protic nucleophile 1 (0.24 mmol) in dry DCE (0.50 mL) were added chloroalkyne 2 (0.20 mmol), BrettPhosAuCI (1.56 mg, 0.0020 mmol) and NaBARF(1.77 mg, 0.0020 mmol) subsequently. The resulting mixture was stirred at 40 °C until no further transformation was detected by TLC analysis. The mixture was cooled to room temperature, and purified by silica gel column chromatography, eluting with petroleum ether/ethyl acetate (100:0 to 10:1), to give alkenyl chlorides 3. Parts of the product are known. The regiochemistry and stereochemistry of new products 3a

COMMUNICATION

and 3k was assigned by 2D NOESY analysis, and the regiochemistry and stereochemistry of other new products was assigned by analogy.

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (No. 21502182, 21202154), Natural Science Foundation of The Jiangsu Higher Education Institutes of China (15KJB150007), Nanjing Institute of Technology Scientific Research Foundation for Introducing Talents (No. ZKJ201614), Nanjing Institute of Technology.

Keywords: alkenyl chlorides • chloroalkynes • nucleophiles • gold-catalysis • addition reaction

- a) G. Pattenden in: Comprehensive Organic Chemistry, Vol. 1 (Eds.: J. F. Stoddart), Pergamon, Oxford, **1979**, pp. 171-189; b)S. E. Denmark, J. Amburgey, J. Am. Chem. Soc. **1993**, *115*, 10386-10387; c) J. D. White, M. S. Jensen, *Tetrahedron*. **1995**, *51*, 5743-5746; d) I. Creton, I. Marek, J. F. Normant, Synthesis. **1996**, *12*, 1499-1503; e) S. D. Brown, R. W. Armstrong, J. Am. Chem. Soc. **1996**, *118*, 6331-6332; f) J. Fauvarque, *Pure Appl. Chem.* **1996**, *68*, 1713-1719; g) M. G. Organ, J. T. Cooper, L. R. Rogers, F. Soleymanzadeh, T. Paul, J. Org. Chem. **2000**, *65*, 7959-7970; h) D. Zhang, J. M. Ready, Org. Lett. **2005**, *7*, 5681-5683; i) J. R. DeBergh, K. M. Spivey, J. M. Ready, J. Am. Chem. Soc. **2008**, *130*, 7828-7829; j) C. Wang; Z. Q. Xu; T. Tobrman, E. Negishi , Adv. Synth. Catal. **2010**, *352*, 627-631.
- [2] M. Yoshimatsu, M. Sakai, E. Moriura, Eur. J. Org. Chem. 2007, 498-507.
- a) K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* **1975**, *16*, 4467-4470; b) J. K. Stille, *Angew. Chem., Int. Ed.* **1986**, *25*, 508-524; c) N. Miyaura, A. Suzuki, *Chem. Rev.* **1995**, *95*, 2457-2458; d) E. Negishi, L. Anastasia, *Chem. Rev.* **2003**, *103*, 1979-2018; e) P. Espinet, A. M. Echavarren, *Angew. Chem. Int. Ed.* **2004**, *43*, 4704-4734; f) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, *Angew. Chem. Int. Ed.* **2012**, *51*, 5062-5068; g) W. Wu, H. Jiang, *Acc. Chem. Res.* **2014**, *47*, 2483-2504.
- [4] a) J. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534-1544; b) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12583.
- [5] a) G. Capozzi, G. Romeo, V. Lucchini, G. Modena, J. Chem. Soc. Perkin Trans. 1. 1983, 831-835; b) L. Zhong, P. R. Savoie, A. S. Filatov, J. T. Welch, Angew. Chem. Int. Ed. 2014, 53, 526-529; c) M. Iwasaki, T. Fujii, K. Nakajima, Y. Nishihara, Angew. Chem. Int. Ed. 2014, 53, 13880-13883.
- [6] a) A. B. Dounay, L. E. Overman, *Chem. Rev.* 2003, *103*, 2945-2946; b)
 K. C. Nicolaou, P. G. Bulger, D. Sarlah, *Angew. Chem. Int. Ed.* 2005, *44*, 4442-4489; c) C. Sun, J. E. Camp, S. M. Weinreb, *Org. Lett.* 2006, *37*, 1779-1781; d) R. Jana, T. P. Pathak, M. S. Sigman, *Chem. Rev.* 2011, *111*, 14171492;e) J. K. Nunnery, N. Engene, T. Byrum, Z. Cao, S. V. Jabba, A. R. Pereira, T. Matainaho, T. F. Murray, W. H. Gerwick, *J. Org. Chem.* 2012, *77*, 4198-4208; f) T. Akiyama, K. Takada, T. Oikawa, N. Matsuura, Y. Ise, S. Okada, S. Matsunaga, *Tetrahedron.* 2013, *69*,

6560-6564; g) S. Desrat, C. Remeur, C. Geny, G. Riviere, C. Colas, V. Dumontet, N. Birlirakis, B. I. Iorga, F. Roussi, *Chem. Commun.* **2014**, *50*, 8593-8596; h) W. j. Chung, C. D. Vanderwal, *Angew. Chem. Int. Ed.* **2016**, *55*, 4396-4434.

- [7] a) J. Ruan, X. Li, O. Saidi, J. Xiao, J. Am. Chem. Soc. 2008, 130, 2424-2425; b) J. Ruan, J. Xiao, Acc. Chem. Res. 2011, 44, 614-626; c) W. Kong, C. Che, J. L. Wu, L. A. Ma, J. J. Zhu, J. Org. Chem. 2014, 79, 5799-5805; d) E. Genin, V. Michelet, J. P. Genêt, J. Organomet. Chem. 2004, 689, 38203830; e) Y. Bai, J. Yin, W. Kong, M. Mao, G. Zhu, Chem. Commun. 2013, 49, 7650-7653; f) W. Cui, J. Ying, R. Zheng, C. Cheng, Y. Bai, G. Zhu, J. Org. Chem. 2014, 79, 3487-3493; g) Y. Yang, L. Wang, J. Zhang, Y. Jin, G. Zhu, Chem. Commun. 2014, 50, 2347-2349; h) L. N. Wang, H. Zhu, J. W. Che, W. F. Yang, G. G. Zhu, Tetrahedron Letters. 2014, 55, 1011; i) N. Endo, K. Goto, K. Murakami, T. Iwasawa, Tetrahedron Letters. 2017, 58, 1842; j) R. Kumar, V. Dwivedi, M. S Reddy, Adv. Synth. Catal. 2017, 359, 2847; k) X. J. Zeng, S. W. Liu, G. B. Hammond, B. Xu, ACS Catal. 2018, 8, 904-907.
- [8] S. Dérien, H. Klein, C. Bruneau, Angew. Chem. Int. Ed. 2015, 54, 12112-12116.
- [9] R. N. Ram, T. P. Manoj, Org. Lett. 2008, 10, 2243-2246.
- [10] L. M. Geary, P. G. Hultin, Org. Lett. 2009, 11, 5478-5481.
- a) K. Kobayahi, M. Arisawa, M. Yamaguchi, J. Am. Chem. [11] Soc., 2002, 124, 8528-8529; b) I. V. Seregin, V. Ryabova, V. Gevorgyan, J. Am. Chem. Soc. 2007, 129, 7742-7743; c) A. Trofimov, N. Chernyak, V. Gevorgyan, J. Am. Chem. Soc. 2008, 130, 13538-13839; d) A. S. Dudnik, V. Gevorgyan, Angew. Chem. Int. Ed. 2010, 49, 2096-2099; e) Y. Gao, M. A. Yin, W. Q. Wu, H. W. Huang, H. F. Jiang, Adv. Synth. Catal. 2013, 355, 2263-2273; f) L. Y. Xie, Y. D. Wu, W. G. Yi, L. Zhu, J. N. Xiang, W. M. He, J. Org. Chem. 2013, 78, 9190-9197; g) J. Tummatorn, P. Poonsilp, P. Nimnual, J. Janprasit, C. Thongsornkleeb, S. Ruchirawat, J. Org. Chem. 2015, 80, 4516-4525; h) X. J. Zeng, S. W. Liu, Z. Y. Shi, B. Xu, Org. Lett. 2016, 18, 4770-4773; i) W. B. Shen, X. Y. Xiao, Q. Sun, B. Zhou, X. Q. Zhu, J. Z. Yan, X. Lu, L. W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605-609; i) R. Kumar, V. Dwivedi, M. S. Reddy, Adv. Synth. Catal. 2017, 359, 2847-2850; k) Y. B. Bai, Z. G. Luo, Y. G. Wang, J. M. Gao, L. M. Zhang, J. Am. Chem. Soc. 2018, 140, 5860-5865.
- [12] X. Zeng, S. Liu, G. B. Hammond and B. Xu, ACS Catal., 2018, 8, 904-909
- [13] When EtOH was 1.2 equiv in DCE, the reaction time 9h and the yield is 87%. Using EtOH as solvents, the reaction time was greatly shorteded to 1h, and the yield was 96%. Alcohols1j-1m are cheap, so these reactions used alcohols as solvents.
- [14] Parts of the products are known. The regiochemistry and stereochemistry of new products 3a and 3k was assigned by 2D NOESY analysis, and the regiochemistry and stereochemistry of other new products wasassigned by analogy. For details, see the Supporting Information.
- [15] a) N. Li, X. L. Lian, Y. H. Li, T. Y. Wang, Z. Y. Han, L. M. Zhang, L. Z. Gong, Org. Lett. 2016, 18, 4178-4181; b) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; c) A. Stephen, K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; d) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028-9072.

WILEY-VCH

COMMUNICATION

Entry for the Table of Contents (Please choose one layout) Layout 2:

Gold catalysis

Nu-H +
$$R^1$$
———CI $\xrightarrow{\text{NaBARF (1 mol \%)}}_{\text{DCE (0.5 mL), 40^{\circ}C}} R$, or R' —S=O C
NuH: ArH, R'OH, R'SH, R'SOOH

An unprecedented protocol has been developed for the regio- and stereoselective synthesis of (*Z*)- alkenyl chlorides via the gold-catalyzed additions between chloroalkynes and protic nucleophiles. In the presence of 1 mol % BrettPhosAuCl, a broad range of protic nucleophiles smoothly react with aromatic, vinylic or aliphatic chloroalkynes to afford various functionalized (*Z*)- alkenyl chlorides with high to excellent yield and extremely high stereoselectivity.

Congrong Liu,* Yunbo Xue, Lianghui Ding, Haiyun Zhang, Fulai Yang*

Page No. 1– Page No.

Au-Catalyzed Addition of Nucleophiles to Chloroalkynes: A Regio- and Stereoselective Synthesis of (Z)- Alkenyl Chlorides