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Abstract 1 

Vanillylthiol, a chemical compound reminiscent of clove and smoke, has been identified for 2 

the first time in young red and dry white wines. The chemical structure of this new aroma was 3 

confirmed by original chemical synthesis. Vanillylthiol was prepared by two-step procedure 4 

from vanillin. The conversion of vanillin to divanillyl disulfide was easily achieved by 5 

treatment with inorganic sulfur-donor reagent. Reduction of the disulfide gave the target thiol 6 

in good yield. The quantification of vanillylthiol in wine was performed by non-specific 7 

liquid/liquid extraction (CH2Cl2), separation of the volatile compounds using gas 8 

chromatography and specific detection using tandem mass spectrometry (triple quadrupole). 9 

Vanillylthiol was found particularly in young wines aged in new oak barrels. These wines 10 

contained between a few 50 ng/L to more than 8300 ng/L. The highest levels were found in 11 

red wines aged 12 months in new oak barrels. Given its perception threshold in a wine model 12 

solution (3.8 µg/L), vanillylthiol may contribute to the spicy, clove-like flavor of red wines 13 

aged in oak barrels. 14 

 15 

Keywords: wine, aroma, thiol, oak barrel, aging 16 

 17 
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 27 

 28 

INTRODUCTION 29 

The use of oak wood is widely recognized as helpful for increasing the intrinsic quality of 30 

wines. Contact with wood can occur during winemaking and aging or only during aging or 31 

maturation. Indeed, the production of great wines often involves maturation in wood barrels. 32 

During barrel-aging, wine flavor and taste are considerably modified by compounds released 33 

directly from oak wood. Oak non-volatile compounds are non-flavonoid polyphenols that 34 

include ellagitannins, phenolic acids, coumarins and polymeric compounds, some of which 35 

contribute to the perception of astringency and bitterness. 1-3 Very recently, lignans such as 36 

lyoniresinol have been shown to contribute to the bitterness taste of oak-matured wines.4 37 

Moreover, Marchal et al.5 identified new triterpenoids extracted from oak wood Quercus 38 

petraea which can contribute to the increase in wine sweetness observed during oak aging. 6  39 

Wines aged in oak barrels are marked by a complex mix of nuances reminiscent of coconut, 40 

wood, vanilla, spice and toasted. Although hundreds of oak-derived volatile compounds have 41 

been identified and are released during the contact between wine and oak wood, only some of 42 

them are really involved in these nuances. For many years, the identification and quantitation 43 

of odorant compounds released during barrel aging have received much attention. Vanillin 44 

(vanilla), β-methyl-γ-octalactone (coconut), volatile phenols (spicy) and 2-furanmethanethiol 45 

or furfurylthiol (FFT, toasted) are now considered to be the key molecules associated with 46 

oak aging in barrels7, 8 and with oak chips.9 Volatile substance content is strongly affected by 47 

natural factors as well as by botanical species (Quercus robur, Quercus petraea, Quercus 48 

alba), geographical origins and cooperage techniques such as seasoning and toasting (also 49 

called hydrothermolysis). Many other odorants are also associated directly or indirectly with 50 

oak wood aging, thus increasing the complexity of wines aged in oak wood barrels.10-13 51 
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These molecules of different chemical nature can be native in oak heartwood or appear during 52 

the cooperage process (oak seasoning and toasting). When contact with oak occurs during 53 

alcoholic fermentation, yeast metabolism may modify the intensity of “oak wood” flavor.14 54 

For example, odorant vanillin can be reduced in flavorless vanillic alcohol. On the other hand, 55 

yeast metabolism gives rise to new very odorant compounds, as evidenced by Blanchard.15 56 

Following on from Tominaga8 who first identified FFT which is reminiscent of coffee in 57 

wines, he demonstrated that furfural was a possible precursor of FFT. Furfural, which 58 

presents a very high perception threshold (Table 1) is released by toasted wood when it comes 59 

into contact with wine. In white wines, FFT was present only in barrel-fermented wines. The 60 

formation of FFT by yeast in the presence of furfural increased when the conditions were 61 

favorable for the production of HS- anions in excess of the amounts required for protein 62 

synthesis: high sulfur content (cysteine, sulfates) and relatively low nitrogen levels.15 63 

It is now widely accepted that understanding the contribution of thiol compounds is essential 64 

for investigating wine flavor at the molecular level. Indeed, compounds responsible for the 65 

fruity character of young Sauvignon Blanc wines and others such as Petite Arvine, Semillon, 66 

Petit and Gros Manseng, Koshu, have been identified as volatile thiols.16-18 The three most 67 

important thiols are thought to be 3-sulfanylhexanol (3SH, grapefruit/passion fruit), 3-68 

sulfanylhexyl acetate (3SHA, grapefruit/passion fruit) and 4-methyl-4-sulfanylpentan-2-one 69 

(4MSP, box tree and broom). More recently, other thiols such as 3-sulfanylpentan-1-ol, 70 

3-sulfanylheptan-1-ol which evoke citrus-like note, and the 2-methyl-3-sulfanylbutan-1-ol 71 

reminiscent of raw onion, were identified in Sauternes wines.19 Absent from must, they were 72 

found in wine after alcoholic fermentation and their concentrations were much higher when 73 

Botrytis cinerea had developed on the grapes. 74 

Other volatile thiols have also been identified in dry white wines and old champagnes20; 75 

ethyl-3-thiopropionate and benzenmethanthiol (smoke). More recently, a new odoriferous 76 
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thiol associated with an unpleasant odor, ethyl 2-sulfanylacetate (baked beans), was identified 77 

in dry wine.21 Unlike other varietal thiols, it appears in wine during bottle aging and its 78 

concentrations are related to oxygen levels during the pre-fermentative procedures of 79 

vinification. 80 

4-Hydroxy-3-methoxybenzenemethanthiol (Vanillylthiol) is a sulfur organic compound (2) 81 

described for the first time in 1949 by Kipnis.22 Its structure was validated with no convincing 82 

instrumental results compared to the current analytical tools. Moreover, the presence of 83 

vanillylthiol in wine and in general in food and beverages has never been reported. This paper 84 

describes the synthesis, identification and a methodology for the quantitation of vanillylthiol 85 

in red and white wines made with different grapes. 86 

 87 

Materials and methods 88 

Chemicals. 4-Hydroxy-3-methoxybenzaldehyde (Vanillin, 98 %) and sodium hydrogen 89 

sulfide (98 %) were obtained from Alfa Aesar (Bischheim, France). Anhydrous sodium 90 

sulfate (99 %), Ethanol (HPLC grade), dichloromethane (Rectapur grade) diethylether and 91 

pentane were supplied by Prolabo (France). Lithium aluminum hydride (97 %), thiourea (99 92 

%) and 3,4-dimethylphenol (99 %) were purchased from Sigma-Aldrich Chemicals (Lyon, 93 

France). All organic solvents and inorganic salts used for organic synthesis were also 94 

purchased from Sigma-Aldrich Chemicals (Lyon, France). Acetone-d6 was obtained from 95 

Euriso-Top (Saint-Aubin, France). L(+) tartaric acid (99.5 %) was from Fluka (France). 96 

Tetrahydrofuran was dried by refluxing a solution containing sodium wires and 97 

benzophenone under nitrogen and distilled immediately before use. The solution of sodium 98 

hydrogen sulfide was prepared with distilled water immediately before use. All moisture-99 

sensitive reactions were carried out in an argon atmosphere. 100 
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Wines. A Sauvignon Blanc batch from the 2014 vintage was selected for this experiment. 101 

After pressing of the grapes (pneumatic press, Vaslin Bucher, France), the must (25 HL) was 102 

settled at 200 NTU (nephelometric turbidity unit) and inoculated with Saccharomyces 103 

cerevisiae Zymaflore X5 strain (100 mg/L; Laffort SA, Floirac, France) and the assimilable 104 

nitrogen content was adjusted to 200 mg/L. When one third of the alcoholic fermentation had 105 

been completed, the must was placed in three barrels (225 L): two barrels made of new oak, 106 

two 1-year-old oak barrels and two 2-year-old oak barrels. The barrels were made from 107 

French oak wood (Quercus petraea) that was chosen by the cooperage (Seguin Moreau, 108 

Cognac) as representative of its production. After the end of alcoholic fermentation, the wines 109 

were aged on total lees (7 months). The level of free sulfur dioxide was maintained at 30 110 

mg/L during the overall experiment to avoid oxidation and malolactic fermentation. Wine 111 

samples were taken from each barrel at the end of alcoholic fermentation and during aging 112 

where vanillylthiol were assayed. 113 

Moreover, several red and white wines aged or not in oak barrels were provided from 114 

wineries located in several appellations of Bordeaux and Burgundy.  115 

Synthesis. Divanillyl disulfide (1). A solution of sodium hydrogen sulfide (10.8 g, 210 mmol) 116 

in water (90 mL) was added dropwise to a solution of vanillin (5.0 g, 33 mmol) in ethanol (25 117 

mL) at room temperature and stirred overnight. The mixture was then heated at 60°C for 3h, 118 

cooled to room temperature and the resulting precipitate was filtered to give the 119 

corresponding disulfide in 30 % yield as an odorless white powder (1.62 g; Rf= 0.52, Diethyl 120 

ether/Pentane: 80/20). FD-MS (+): m/z 338.0647 for [M]+ (calculated for [C16H18O4S2]
+, 121 

338.0646) MS (EI, 70 eV) m/z  (%) 170 (41), 138 (25), 137 (100), 136 (24), 122 (37), 107 122 

(31), 106 (20), 105 (19), 94 (27), 78 (20), 77 (14), 65 (26), 66 (11). 1H NMR (Acetone-d6) δ 123 

6.88 (d, J = 1.5 Hz, 1H, CH-2), 6.79 (d, J = 8.0 Hz, 1H, CH-5), 6.76 (dd, J = 8.0 Hz, 1.5H, 124 

CH-6), 3.84 (s, 3H, CH3), 3.67 (s, 2H, CH2). 
13C NMR (Acetone-d6) δ 148.3 (CH-4), 147.1 125 
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(CH-3), 129.5 (CH-1), 123.1 (CH-6), 115.7 (CH-5), 113.8 (CH-2), 56.3 (CH3), 43.7 (CH2). IR 126 

(solid, KBr) cm-1 3450 (s), 2979 (m), 1611 (s), 1510 (s), 1463 (s), 1436 (s), 1383 (s), 1368 (s), 127 

1302 (s), 1263 (s), 1233 (s), 1150 (s), 1116 (s), 1028 (s). 128 

Vanillyl thiol (4-Hydroxy-3-methoxybenzenemethanthiol, 2). A solution of divanillyl disulfide 129 

1 (552 mg, 1.6 mmol) in dry tetrahydrofuran (20 mL) was added to a suspension of lithium 130 

aluminum hydride (354 mg, 9.3 mmol) in dry tetrahydrofuran (20 mL) at -78°C under argon 131 

atmosphere. The reaction was allowed to warm to room temperature for 12 h and then cooled 132 

again (ice bath). The reaction was carefully quenched with ice-cold saturated aqueous 133 

ammonium chloride solution (40 mL) and pH was adjusted to pH 2-3 with 1 M hydrochloric 134 

acid. The resultant mixture was extracted with ethyl acetate (3 x 50 mL). The combined 135 

organic phases were washed with saturated sodium chloride solution (2 x 50 mL), dried over 136 

magnesium sulfate, filtered, and concentrated under reduced pressure to give the title 137 

compound as a colorless oil (476 mg, 86 % yield, Rf=0.72, Diethyl ether/Pentane: 80/20). The 138 

purity of the compound obtained, which was determined by GC-MS and 1H NMR, was > 95 %. 139 

This compound was thus used without purification. FD-MS (+): m/z 170.0408 for [M]+ 140 

(calculated for [C8H10O2S]+, 170.0401). MS (EI, 70 eV) m/z (%) 170 (17), 137 (100), 138 141 

(10), 122 (16), 107 (2), 94 (9), 78 (3), 65 (5), 66 (2). 1H NMR (Acetone-d6) δ 7.51 (s, 1H, 142 

OH), 6.95 (d, J = 1.4 Hz, 1H, CH-2), 6.79 (dd, J = 8.0, 1.4 Hz, 1H, CH-6), 6.75 (d, J = 8.0 143 

Hz, 1H, CH-5), 3.83 (s, 3H, CH3), 3.69 (d, J = 7.4 Hz, 2H, CH2), 2.10 (t, J = 7.4 Hz, 1H, SH). 144 

13C NMR (Acetone-d6) δ 148.2 (CH-3), 146.3 (CH-4), 133.8 (CH-1), 121.4 (CH-6), 115.6 145 

(CH-5), 112.5 (CH-2), 56.2 (CH3), 28.9 (CH2). IR (liquid) cm-1 3436 (s), 2963 (m), 2937 (s), 146 

2842 (s), 2563 (s), 1726 (s), 1606 (s), 1513 (s), 1463 (s), 1432 (s), 1370 (s), 1271 (s), 1232 147 

(s), 1152 (s), 1121 (s), 1032 (s). 148 

Reaction of vanillyl alcohol with thiourea.
23

 A solution of vanillyl alcohol 3 (2.87 g, 18.6 149 

mmol) in dry tetrahydrofuran (20 mL) was added to a solution of thiourea (1.5 g, 19.7 mmol) 150 
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in 2 M hydrochloric acid (15 mL) at room temperature. The reaction was heated at 55 °C for 1 151 

h and stirred at room temperature for 12 h. The resulting mixture was then treated with a 3 M 152 

NaOH solution (11 mL) and heated at 50 °C for 4 h.  The reaction mixture was cooled to 153 

room temperature and then extracted with diethyl ether (3 x 50 mL). The pooled organic 154 

phases were washed with brine (3 x 50 mL), dried over magnesium sulfate, and filtered. The 155 

solvent was removed in vacuo to give a mixture of four compounds as a yellow oil (1.2 g). 156 

The crude was purified by flash chromatography by using a polarity elution gradient 157 

(Pentane/Et2O: 7/3 to 4/6). 158 

Divanillyl sulfide 4 (white solid, 0.584 g, 44 % yield, Rf = 0.54, Diethyl ether/Pentane: 159 

80/20). FD-MS (+): m/z 306.0934 for [M]+ (calculated for [C16H18O4S]+, 306.0925). MS (EI, 160 

70 eV) m/z (%) 306 (40), 170 (25), 138 (53), 137 (100), 122 (29), 107 (23), 94 (19), 78 (10), 161 

65 (14). ESI (-): [M-H]- = 305.1; TOF (+): [M+Na]+ = 329.1; FD-MS (+): [M]+.= 306.1. 1H 162 

NMR (Acetone-d6) δ 7.48 (s, 1H, OH), 6.89 (s, 1H, CH-2), 6.76 (m, 2H, CH-5, CH-6), 3.82 163 

(s, 3H, CH3), 3.59 (s, 2H, , CH2). 
13C NMR (Acetone-d6) δ 148.3 (CH-4), 146.5 (CH-3), 164 

130.7 (CH-1), 122.5 (CH-6), 115.4 (CH-5), 113.2 (CH-2), 56.2 (CH3), 36.2 (CH2). IR (solid, 165 

KBr) cm-1 3497 (s), 3439 (s), 3061 (m), 3034 (m), 2983 (s), 2950 (s), 2917 (s), 2843 (s), 1605 166 

(s), 1513 (s), 1460 (s), 1446 (s), 1428 (s), 1358 (s), 1267 (s), 1227 (s), 1206 (s), 1157 (s), 167 

1140 (s), 1113 (s), 1020 (s). 168 

Bis(4-hydroxy-3-methoxyphenyl)methane 5 (white solid, 0.284 g, 15 % yield, Rf = 0.55, 169 

Diethyl ether/Pentane: 80/20). FD-MS (+): m/z 260.284 for [M]+ (calculated for [C15H16O4]
+, 170 

260.2851). MS (EI, 70 eV) m/z (%) 261 (62), 260 (100), 243 (40), 229 (100), 213 (30), 197 171 

(20), 185 (28), 157 (18), 137 (50), 124 (25), 107 (23), 94 (19), 77 (14), 65 (14). 1H NMR 172 

(Acetone-d6) δ 7.34 (s, 2H, OH), 6.82 (d, J = 1.8 Hz, 2H, CH-2), 6.73 (d, J = 8.0 Hz, 2H, CH-173 

5), 6.65 (dd, J = 8.0, 1.8 Hz, 2H, CH-6), 3.78 (s, 8H, CH3, CH2). 
13C NMR (Acetone-d6) δ 174 

148.2 (CH-4), 145.6 (CH-3), 134.2 (CH-1), 122.0 (CH-6), 115.5 (CH-5), 113.2 (CH-2), 56.2 175 
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(CH3), 41.6 (CH2). IR (solid, KBr) cm-1 3433 (s), 3052 (m), 3027 (m), 2961 (s), 2936 (s), 176 

2904 (s), 2836 (m), 1604 (s), 1515 (s), 1454 (s), 1427 (s), 1374 (s), 1318 (m), 1265 (s), 1233 177 

(s), 1206 (s), 1183 (s), 1142 (s), 1114 (s), 1035 (s), 1018 (s). 178 

Extraction. Solvent extraction. 50 mL of wine sample were spiked with 50 µL of 3,4-179 

dimethylphenol (10 mg/L, EtOH) as internal standard. The wines were also extracted at room 180 

temperature with 10 mL of CH2Cl2 followed by 5 mL of CH2Cl2 under magnetic stirring (10 181 

and 5 min at 700 rpm, respectively). Organic phases obtained were blended, dried over 182 

anhydrous sodium sulfate, and concentrated to 500 µL under a nitrogen stream. The sample 183 

was stable 5 days at -20°C. 184 

SPME experiments. 65 µm SPME fibers coated with Carboxen/Polydimethylsiloxane 185 

(Carboxen/PDMS, StableFlex, Supelco) and Divinylbenzene/Carboxen/ Polydimethylsiloxane 186 

(DVB/Carboxen/PDMS, StableFlex, Supelco) were used, and the extraction procedure was 187 

carried out in the gas phase of the SPME vial without immersion in the sample solution, i.e., 188 

by HS-SPME method. During analysis of vanillylthiol by SPME, 10 mL of the wine sample 189 

was injected into a 20 mL SPME vial. The SPME efficiency was evaluated using the 190 

following parameters: (a) extraction temperature, 40 and 60 °C; (b) extraction time, 20 and 50 191 

min; (c) ammonium sulfate addition, 0 and 5 g; (d) dilution factor 1 and 10. 192 

Instrumentation. The chromatographic system comprised a gas chromatograph Trace GC 193 

Ultra (Thermo Electron, USA) coupled to a triple quadrupole mass spectrometer TSQ 194 

Quantum XLS operated in EI mode. The GC system was equipped with a Triplus RSH auto-195 

sampler.  196 

Gas chromatography method. GC separation was carried out on a non-polar ZB-1MS 197 

capillary column (100 % polydimethylsiloxane, 60 m; 0.25 mm; 1 µm) from Phenomenex 198 

(France). The carrier gas was He (Linde gas, Bordeaux), 5.3 grade, with a flow rate of 1 199 

mL/min. A 1 µL sample was injected via the autosampler into a split/splitless programmable-200 
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temperature injector (closure time: 1 min, split flow 30 mL/min) and set as follows: 0.5 min at 201 

230 °C and increasing to 250 °C at 14 °C/min and kept at that temperature for 10 min. Oven 202 

temperature was initially set at 50 °C, held for 1 min, then increased to 160 °C at 6 °C/min, 203 

increased to 222 °C at 3 °C/min and finally kept at 260 °C at 20 °C/min for 10 min. The MS 204 

transfer line temperature was set at 250 °C.  205 

Mass spectrometry. The mass spectrometer was used in electron impact mode (EI). Source 206 

parameters were optimized as follows: source temperature, electron energy and emission 207 

current were set at 230 °C, 70 eV and 30 µA, respectively. The mass spectrometer was 208 

operated in Selected Reaction Monitoring (SRM) mode using argon as collision gas in cell 209 

collision (1.5 mTorr). SRM conditions were optimized, as well as collision energy and gas 210 

pressure values applied to each precursor ion and were dependent on each transition. PFTBA 211 

(Perfluorotri-n-butylamine) was used for mass calibration. Data acquisition and analyses were 212 

performed using the Xcalibur software version 2.1 supplied by the manufacturer. 213 

To determine the retention times of the analytes and their characteristic mass fragments, the 214 

primary EI mass spectra were recorded in full-scan mode (m/z 45–250). For selected reaction 215 

monitoring (SRM) experiments, precursor ions were selected according to abundance and 216 

product ion scans were investigated using the energy ramp function from 5 to 25 V. We also 217 

repeated the analysis at different argon collision gas pressures (0.5, 1, 1.5 mTorr). SRM 218 

conditions were set to a mass resolution of full width at half maximum height (FWHM) in Q1 219 

and Q3 with a value of 0.7 Da and a scan time of 0.1 s. Collision energy was systematically 220 

set to 10 V. The transitions were chosen with respect to optimized signal-to-noise (S/N) ratios 221 

as well as absolute ion intensities for a standard solution of the analytes at 50 µg/L. 222 

Vanillylthiol was monitored at m/z  170 → 137 (quantifier) and m/z  137 → 94 and 137 → 223 

122 (qualifier). As the internal standard was detected in selected ion monitoring (SIM, m/z = 224 

107), analyses were performed in two segments: IS (seg. 1), vanillylthiol (seg. 2). For 225 
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quantitation, peak area ratios of the analytes and the IS were calculated as a function of the 226 

concentration of the substances. Linear retention indices (LRI) were obtained by simultaneous 227 

injection of samples and a series of alkanes (C7-C23), detection was performed in scan mode.24 228 

Validation of the method. The calibration curves were established between 0.02 and 20 µg/L 229 

of vanillylthiol in a white wine (8 points). The limit of detection (LOD) was defined as the 230 

concentration which gave a signal-to-noise ratio (S/N) of 3. The limit of quantitation (LOQ) 231 

was defined as the concentration which gave an S/N ratio of 10. These parameters were 232 

experimentally calculated from the S/N obtained in wine sample analyses. Accuracy of the 233 

method was assessed using replicates spiked at one level. Five replicate analyses were 234 

performed for the determination of relative standard deviation (RSD). 235 

Determination of detection thresholds. The detection threshold of vanillylthiol in model 236 

solution (12 % ethanol, 5 g/L tartaric acid, pH 3.5) and wines was determined by using a 237 

three-alternative forced choice presentation (3-AFC). The solutions were presented in glasses 238 

corresponding to AFNOR (Association Française des Normes) standards. The odor detection 239 

threshold corresponded to the minimum concentration below which 50 % the tasters 240 

statistically failed to recognize the difference from the control.25 The sensory panel consisted 241 

of 20 students and researchers (half of male and female) between 20 and 40 years old, from 242 

the ISVV. 243 

General features. Magnetic Resonance Spectroscopy (NMR): 1H and 13C NMR spectra were 244 

recorded on a Bruker AC-300 FT (1H: 300.13 MHz, 13C: 75.4 MHz), spectra referenced using 245 

the lock frequency of deuterated solvent. Chemical shifts (δ) and coupling constants (J) are 246 

expressed in ppm and Hz, respectively. Infrared (IR) spectra were recorded with a Perkin–247 

Elmer paragon 1000 FT-IR spectrophotometer in the 4000-600 cm-1 range. Field desorption 248 

mass spectra (FD-MS) were performed by the CESAMO (University of Bordeaux, France). 249 

The measurements were carried out on a TOF mass spectrometer AccuTOF GCv by JEOL 250 
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(Croissy sur Seine, France) using an FD emitter with an emission voltage of 10 kV. One to 251 

two microliters of the compound solution in methanol were deposited on a 13-mm emitter 252 

wire. Thin-layer chromatography (TLC) was performed on 60F TLC plates: thickness 0.25 253 

mm, particle size 10 µm, pore size 60 Å. Merck silica gel 60 (70–230 mesh and 0.063–0.200 254 

mm) was used for flash chromatography. Spots were revealed with UV as well as with 255 

sodium nitroprussiate (1.5% in MeOH/NH3/HCl). 256 

Results and discussion 257 

Chemical synthesis. Vanillylthiol was mentioned in 1949 by Kipnis et al.
22, who studied the 258 

preparation of aromatic and heterocyclic thiols by the interactions of aldehydes with hydrogen 259 

disulfide. This was the only time when vanillylthiol was reported and it was characterized 260 

simply by elemental analysis and refraction index, methods that are clearly insufficient for 261 

strict structural identification.  262 

In the current literature, thiols are classically synthesized in two steps via the formation of a 263 

reactional intermediate either by addition to a multiple bond of thiol derivatives (RSH, ArSH, 264 

RCOSH)19, 26-28 or by substitution with a sulfur containing nucleophiles.23, 29-31 Thioacetic acid 265 

and potassium thioacetate are the most popular sulfur reagents used for the formation of stable 266 

thioester intermediates, which can be easily isolated and purified before the next step. Target 267 

thiols can then be obtained in good yield by mild saponification or reduction.30, 31 268 

Alternatively, thiourea can also be used as an odorless sulfur reagent to convert alcohols to 269 

the corresponding thiols via the basic hydrolysis of the unstable isothiouronium salt.23  270 

As a single procedure described in literature for vanillylthiol preparation cannot be considered 271 

as safe and environmentally friendly,22 using thiourea as sulfur atom source in reaction with 272 

vanillyl alcohol 3, which was obtained by the reduction of vanillin with sodium borohydride 273 

in methanol, as previously described by Feng,32 was chosen as the first approach (Figure 1). 274 

In our case, the target thiol vanillylthiol 2 and its corresponding disulfide 1 were obtained 275 
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only at trace amounts. The major disadvantage of this approach was the formation of a 276 

number of coproducts, mainly divanillyl sulfide 4 and bis(4-hydroxy-3-277 

methoxyphenyl)methane 5. Compound 4 probably resulted from desulfurization of 1 or from 278 

C-sulfanylation of 3 by thiol 2.33 The presence of 5 can be explained by the self-condensation 279 

of 3.34 Interestingly, our result differed from that of Kofod, who used thiourea for direct one-280 

pot conversion of furfuryl alcohol to the corresponding thiol,23 and from that of Firouzabadi, 281 

who used thiourea to synthesize disulfides from halides.35 The identification and the structural 282 

characterization of all coproducts became possible only after the meticulous purification of 283 

the crude by flash chromatography using a polarity gradient. All attempts to convert isolated 284 

divanillyl sulfide 4 to vanillylthiol using various reducing agents were unsuccessful.  285 

Since a simpler procedure was needed, vanillin was directly treated by inorganic H2S donors, 286 

sodium hydrogen sulfide (NaSH), in hydro-alcoholic solution under gentle heating. The 287 

formation of a precipitate indicated the progress of the reaction. In these eco-friendly 288 

conditions, divanillyl disulfide 1 was produced cleanly. Furthermore, no work-up or 289 

purification procedures were needed and it was isolated in 30 % yield by simple filtration of 290 

the reaction mixture. The disulfide 1 was then easily transformed into the target thiol 2 using 291 

lithium aluminum hydride as reducing agent. 292 

Identifying vanillylthiol in wine by GC-MS/MS. We first injected the pure compound in 293 

order to determine its retention time and its linear retention indice (LRInon polar 1495) as well as 294 

its mass fragmentation (Figure 2) in which we could observe the characteristic fragmentation 295 

of thiol, with the loss of -SH [M-33]. Volatile compounds of a young white wine and a red 296 

wine both aged in oak barrels were extracted with CH2Cl2 and analyzed first by GC-MS/MS 297 

in scan, SIM and finally in SRM mode. In white wine, a peak corresponding with the same 298 

retention time (Rt 37,65 min) and the same mass fragmentation as that of pure vanillylthiol 299 

was observed, thereby validating its identification (result not shown). A clean mass spectrum 300 
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was not obtained in red wine owing to coelution, so its identification in scan (EI) mode was 301 

not possible. Indeed, as depicted in Figure 3, a small overlapping peak was observed at 37.65 302 

min for ion m/z 137, but no clear peak was detected at m/z 170. For this reason we decided to 303 

validate its identification using an MS/MS, optimized first with pure vanillylthiol and using 304 

two transitions: m/z 170 → 137 and m/z 137 → 120+94 (Figure 4). GC-MS/MS demonstrated 305 

the existence of vanillylthiol in the same red wine extract with a peak at the retention time of 306 

vanillylthiol (Figure 5). Furthermore, whatever the transition chosen, the peak shape formed 307 

by the selected ions was not modified by coinjection of a comparable quantity of the reference 308 

compound. To our knowledge, this is the first time that this new volatile thiol has been 309 

reported in nature and consequently in wines. 310 

Sensorial considerations. The olfactory impact of this new thiol on the overall aroma of 311 

wines was examined by determining its odor threshold. Both in pure and diluted form (50 312 

µg/L, 12 % EtOH), it smells clove-like with smoky notes (Table 1). As for other thiols found 313 

in wines and resulting from the biotransformation of aldehydes, the presence of the –SH 314 

function considerably modifies their organoleptic properties.8, 36  315 

To illustrate this phenomenon, Table 1 shows the perception threshold as well as the common 316 

descriptors of aldehydes and their thiol equivalents found in wines. In our case, the presence 317 

of the –SH group in the vanillin structure gives rise to a more intense aroma with new 318 

sensorial properties, ranging from a slightly intense vanilla flavor for vanillin to a more 319 

intense odor of clove and smoke for vanillylthiol with a perception threshold which was lower 320 

by the factor of 15.  321 

Although various hypotheses have been proposed to explain some of these effects,37 the 322 

mechanistic interpretation of the variability in odor perception threshold is still rather 323 

uncertain owing to the multi-step processes involved in olfaction: odorant diffusion in the 324 
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mucus layer, effect of odorant-binding proteins, biotransformation enzymes, and interaction 325 

with a large repertoire of olfactory receptors. 326 

Assay of vanillylthiol in wines. The determination of thiol compounds at low concentrations 327 

in wines is known to be tricky owing to their propensity to undergo oxidative reactions during 328 

extraction and pre-concentration, as well as to their highly fragmented mass spectrum (EI 329 

mode) which leads to low inherent sensitivity and/or matrix effects. To overcome these 330 

drawbacks, several means to remove matrix components and concentrate the sample have 331 

been proposed.17, 39 The original method of Tominaga et al.17 was based upon the selective 332 

extraction of thiols from an organic extract of wine using the reversible chelation between the 333 

SH function and sodium p-hydroxymercuribenzoate. Later, other studies focused on sample 334 

preparation development or derivatization.40-42 335 

As quantitation of thiol compounds might be tricky with conventional GC-MS approaches 336 

according to the compound, we decided to use a more sensitive apparatus based on GC-337 

MS/MS triple quadrupole technology. This approach is widely used when the assay is 338 

performed on LC-MS/MS, but very few studies have reported its use for quantitating odorants 339 

in wines. However, Langen43 reported the usefulness of tandem mass spectrometry in the 340 

specific detection of γ- and δ-lactones and Mayr44 recently reported a similar approach for 341 

quantitating oxidation-related flavors including aldehydes, ketones, furans and some alcohols. 342 

Very recently, Thibon45 used this approach to assay at the same time thiols and oxidation-343 

related compounds in white wine with LOD close to ng/L. 344 

Two approaches were evaluated for the extraction of vanillylthiol from wine: liquid/liquid 345 

extraction and solid phase microextraction (SPME). Two fibers with different coatings of 346 

DVB/Carboxen/PDMS and Carboxen/PDMS and several preparation conditions including the 347 

choice of temperature, extraction time, salt addition, and dilution factor of the wine were 348 

tested. Unfortunately, whatever the conditions, the SPME technique was not able to extract 349 
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this polar organic compound from the wine matrix. On the contrary, our preliminary 350 

experiments showed that the liquid/liquid extraction technique with CH2Cl2 as solvent was 351 

very suitable.  352 

To optimize SRM detection, we had to consider the available mass fragments of vanillylthiol 353 

before starting fragmentation. In the mass spectra, intense (base) peaks at m/z 137 [M – SH]+ 354 

or 170 M+ are the predominant signals (Figure 2). To evaluate the SRM experiments for 355 

vanillylthiol analysis, we chose the transition m/z 170 → 137, which presents a higher signal 356 

intensity compared to the other transition 137 → 122+94 (Figure 4). 357 

Finally, the repeatability of the assay was confirmed by a series of five extractions of a non 358 

wooded sample of a white wine spiked with 500 ng/L of vanillylthiol. Precision estimated in 359 

terms of (RSD) was 9 %. The LOD and LOQ of the method were 24 ng/L and 76 ng/L, 360 

respectively. The linearity of the method was determined by plotting the calibration curves of 361 

the corresponding transition peak areas, normalized by that of the internal standard. In the 362 

concentration range (LOQ-5000 ng/L), the control curve was linear ([Vanillylthiol (ng/L] = 363 

0,334 H/Hei, R2 = 0.995). This standard curve was measured using the height of the peaks 364 

rather than the peak areas because the chromatogram showed a small contaminated peak just 365 

after the vanillylthiol (Figure 5).  366 

Table 2 shows the results obtained for the vanillylthiol assay in six dry white wines and six 367 

red wines aged or not in oak barrels, from different appellations, vines and from several 368 

vintages and bottle aging. The levels found varied according to the type of wine, the age, and 369 

mainly according to the aging period in oak barrels. According to the sample analyzed, white 370 

wines generally contained lower levels of vanillylthiol than red wines. The odor activity value 371 

(OAV) of vanillylthiol in these wines is systematically <1. The wines kept a long time in 372 

barrels had the highest concentrations. The highest level of 8394 ng/L (OAV 2.2) was found 373 

in a young merlot red wine (2013 vintage) kept for 12 months in oak barrels and analyzed at 374 
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that time. It is therefore very likely that this thiol may contribute to the clove-spicy flavor of 375 

this red wine. For aged wines the levels were low (< 100 ng/L). This result is not surprising 376 

owing to the high instability of thiol compounds during aging in bottles.21, 46 377 

Incidence of barrel aging on vanillylthiol formation. Table 3 shows the evolution of 378 

vanillylthiol concentrations in a white wine aged in different barrels. As can be seen, the 379 

vanillylthiol level was strongly affected by the container used. The wines fermented and kept 380 

with their lees in new oak barrels had a higher content than those fermented in used barrels. 381 

Previous work on the formation of FFT in wine fermented and aged in barrels can shed light 382 

on how vanillylthiol can be formed in wine. Blanchard15 found that high levels of furfural 383 

released by toasted oak wood during aging were associated with the formation of FFT. The 384 

substitution of the SH group for the furfural carbonyl group can be biochemical during 385 

alcoholic fermentation (Saccharomyces cerevisiae) or malolactic fermentation (Oenococcus 386 

oeni) and chemical during barrel aging, but it always occurs in the presence of H2S.47 387 

Therefore, vanillylthiol might be formed in the same way but from vanillin, which is also 388 

released by toasted oak wood. As vanillin accumulation is strongly linked with cooper 389 

seasoning procedures,48 aging time and the volume of the barrel49 and heating intensity,50 390 

vanillylthiol concentration might be modulated by this parameter. 391 

Finally, given its odor properties and its levels found in wines, we postulate that it might 392 

contribute to the spicy, clove-like flavor of wine, and particularly red wine, aged for a long 393 

time in new oak barrels. Or course, further works will be necessary to have a better overview 394 

of its distribution in wine and to understand its contribution to the overall aroma of wines 395 

aged in oak barrels, this work is in progress. Moreover, it cannot be excluded that this new 396 

thiol might contribute to the spicy flavor of wines in combination with other volatile 397 

compounds reminiscent of similar flavors and extracted from oak wood such as eugenol and 398 

isoeugenol. 399 
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Figure 1: Chemical pathways studied for vanillylthiol synthesis  527 

Figure 2: Fragmentation spectrum of vanillylthiol under GC-MS in scan mode (EI, 70 eV) 528 

Figure 3: Example of a chromatogram corresponding to the analysis by GC/QqQ-MS in SIM 529 

mode of liquid/liquid extract of a red wine for two selected ions: m/z 170 and m/z 137. The 530 

retention time of vanillylthiol is indicated by an arrow 531 

Figure 4: Product ion scan of m/z 136.8 (A) and 169.7 (B) obtained from vanillylthiol 532 

fragmentation under GC/QqQ-MS 533 

Figure 5: Detection of vanillylthiol and verification of peak purity by co-injection of a 534 

comparable quantity of the reference compound in a merlot red wine (Medoc appellation, 535 

2014 vintage) by GC-MS/MS in SRM mode by overlapping ions selected corresponding to 536 

two transitions 170→137 (A); 137→122+94 (B), at the retention time of the reference 537 

compound indicated by an arrow. 538 

 539 

 540 

 541 
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Table 1: Example of perception thresholds and descriptors of important thiols and their 
corresponding aldehydes identified in wines 

Compounds Perception threshold (µg/L) Descriptors 

Benzaldehyde 3000 38 Almond 

Benzenemethanthiol 0.00003 36 Gun flint 

Furfural 15000 14 Roasted 

Furfurylthiol (FFT) 0.00004 8 Roasted bean, coffee 

Vanillin 65 14 Vanilla 

Vanillylthiol (VSH) 3.8 Clove, smoke 
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Table 2: Vanillylthiol concentrations (ng/L) in young and old wines from various appellations and 
vines. n =2. 

 

Color Vine Appellation Vintage 

Barrel 
aging 
period 
(months) 

Bottle 
aging 
period 
(year) 

Vanillylthiol 
(ng/L) OAV 

W Sauvignon Bordeaux 2014 0 0 < LOQ <1 

W Sauvignon Pessac Leognan 2013 8 1 83 (22) <1 

W Sauvignon Pessac Leognan 2013 8 0 818 (38) <1 

W Semillon Pessac Leognan 2013 8 0 420 (28) <1 

W Chardonnay Burgundy 2013 10 0 1006 (59) <1 

W Chardonnay Burgundy 2013 10 0 1426 (89) <1 

R Merlot Pessac Leognan 2013 12 0 8394 (198) 2.2 

R Cabernet Sauvignon Medoc 2013 10 0.5 867 (44) <1 

R Merlot Medoc 2014 6 0 1022 (31) <1 

R Cabernet Sauvignon Pessac Leognan 2014 6 0 2011 (122) <1 

R Merlot Saint Emilion 2010 12 3.5 < LOQ <1 

R Merlot Saint Emilion 2010 12 3.5 < LOQ <1 
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Table 3: Evolution of vanyllylthiol concentrations in a Sauvignon Blanc wine during barrel aging. n= 
2 

 Must 
Wines (aging period) 

3 months 7 months 

New Barrels nd < LOQ 422 (32) 

1.y Barrels nd < LOQ 231 (28) 

2.y Barrels nd < LOQ 198 (34) 

nd: not detected 
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Figure 1  
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Figure 2  
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Figure 3 
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