ISSN 1070-3632, Russian Journal of General Chemistry, 2019, Vol. 89, No. 3, pp. 543–545. © Pleiades Publishing, Ltd., 2019. Russian Text © P.A. Volkov, A.A. Telezhkin, N.I. Ivanova, K.O. Khrapova, N.K. Gusarova, B.A. Trofimov, 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 3, pp. 475–478.

> LETTERS TO THE EDITOR

## Unexpected Reaction of Secondary Phosphine Chalcogenides with Acridine

P. A. Volkov<sup>*a*</sup>, A. A. Telezhkin<sup>*a*</sup>, N. I. Ivanova<sup>*a*</sup>, K. O. Khrapova<sup>*a*</sup>, N. K. Gusarova<sup>*a*</sup>, and B. A. Trofimov<sup>*a*</sup>\*

<sup>a</sup> Favorskii Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia \*e-mail: boris\_trofimov@irioch.irk.ru

Received November 1, 2018; revised November 1, 2018; accepted November 11, 2018

Abstract—Secondary phosphine chalcogenides reacted with acridine under mild conditions according to the nucleophilic addition scheme to form 9-chalcogenophosphoryl-9,10-dihydroacridines.

**Keywords:** acridine, secondary phosphine chalcogenides, nucleophilic addition, 9-chalcogenophosphoryl-9,10dihydroacridines

**DOI:** 10.1134/S1070363219030290

We have recently reported on an original threecomponent reaction of azines, secondary phosphine chalcogenides, and alkyl propiolates exemplified by pyridines and quinolines [1–3]. The reaction proceeds under mild conditions (20–72°C, 3–19 h, MeCN) with regio- and stereoselective formation of the *C*-phosphorylated (*E*)-*N*-ethenyl-1,4(or 1,2)-dihydropyridines (or quinolines) [1–3] (Scheme 1).

In this study, we attempted to realize that threecomponent reaction using acridine as the azine. However, heating (50–52°C) of acridine, secondary phosphine chalcogenides **1a–1c**, and methyl propiolate in acetonitrile for 4–7 h did not give the expected C<sup>9</sup>-phosphorylated *N*-ethenyl-9,10-dihydroacridines (Scheme 2). Under those conditions, methyl propiolate was not involved in the reaction, but 1 : 1 adducts of phosphine chalcogenides with acridine – 9-chalcogenophosphoryl-9,10-dihydroacridines 2a-2c were formed in 60–65% yield. Such addition of secondary phosphine chalcogenides to acridine readily proceeded also in the absence of methyl propiolate, the yield of dihydroacridines 2a-2c being 64–69%. That meant that the electron-deficient acetylene did not participate in the reaction even at the intermediate stages (Scheme 2).

At the same time, according to the reference data, acridine can enter three-component reactions with methyl propiolate [4] or dimethyl acetylenedicarboxylate [5] and some CH- or OH-acids (nitromethane [4] and methanol [5]) to form the corresponding functionalized *N*-ethenyl adducts.

Therefore, phosphorylation of acridine by secondary phosphine chalcogenides easily prepared





 $R = Ph, X = O(a); R = Ph(CH_2)_2, X = S(b), X = Se(c).$ 

from elemental phosphorus, styrene, and chalcogens [6] opens a convenient way to the earlier unknown phosphorylated dihydroacridines, promising precursors for the design of drugs [7–9], reagents for preparation of innovative materials [10, 11], ligands for the synthesis of metal complexes [12–14], and building blocks for organic and organoelement synthesis [15–17].

The mentioned experiments were performed under inert atmosphere (argon). The reactions were monitored by <sup>31</sup>P NMR spectroscopy.

Nucleophilic addition of secondary phosphine chalcogenides 1a-1c to acridine. 1.0 mmol of acridine was added to a solution of secondary phosphine chalcogenide 1a-1c (1.0 mmol) in 3 mL of acetonitrile. The reaction mixture was stirred at 50-52°C during 4 h (in the case of phosphine chalcogenide 1c) or 7 h (in the cases of phosphine chalcogenides 1a, 1b) until disappearance of the signal of the starting phosphine chalcogenide (2–23 ppm) in the <sup>31</sup>P NMR spectrum and appearance of the signal of compounds 2a-2c at 30-60 ppm. The solvent was removed under reduced pressure, the residue was washed with Et<sub>2</sub>O  $(5 \times 1 \text{ mL})$  via decantation (in the case of dihydroacridine 2a) or resedimented from acetone to hexane (in the cases of dihvdroacridines **2b**, **2c**).

9-(Diphenylphosphoryl)-9,10-dihydroacridine (2a). Yield 263 mg (69%), white powder, mp 218–219°C. IR spectrum (KBr), v, cm<sup>-1</sup>: 3391, 3055, 2903, 1631, 1473, 1435, 1301, 1252, 1181, 1106, 1031, 752, 697, 560, 533. <sup>1</sup>H NMR spectrum (DMSO- $d_6$ ),  $\delta$ , ppm: 5.40 d (1H, CHP,  ${}^{2}J_{PH} = 11.3$  Hz); 6.46 d. d [2H, H<sub>2.7</sub>,  ${}^{3}J_{2(7)-1(8)} \approx {}^{3}J_{2(7)-3(6)} = 7.2 \text{ Hz}]; 6.62 \text{ d} [2\text{H}, \text{H}_{1,8}, {}^{3}J_{1(8)-2(7)} =$ 7.2 Hz]; 6.68 d [2H, H<sub>4,5</sub>,  ${}^{3}J_{4(5)-3(6)} = 8.2$  Hz]; 6.98 d. d [2H, H<sub>3,6</sub>,  ${}^{3}J_{3(6)-4(5)} \approx {}^{3}J_{3(6)-2(7)} = 7.5$  Hz]; 7.41 m (4H,  $H_m$ ; 7.54 m (2H,  $H_p$ ); 7.72 m (4H,  $H_o$ ); 8.56 s (1H, NH). <sup>13</sup>C NMR spectrum (DMSO- $d_6$ ),  $\delta_C$ , ppm: 45.7 d (CHP,  ${}^{1}J_{CP} = 64.0$  Hz); 113.6 d (C<sub>4.5</sub>,  ${}^{4}J_{CP} = 2.1$  Hz);

114.2 d ( $C_{8a}$ ,  ${}^{2}J_{CP}$  = 5.6 Hz); 119.0 d ( $C_{2,7}$ ,  ${}^{4}J_{CP}$  = 2.3 Hz); 127.6 d ( $C_{3,6}$ ,  ${}^{5}J_{CP}$  = 2.7 Hz); 128.1 d ( $C_{m}$ ,  ${}^{3}J_{CP}$  = 10.7 Hz); 129.9 d ( $C_{1,8}$ ,  ${}^{3}J_{CP}$  = 3.8 Hz); 131.5 d ( $C_{pso}$ ,  ${}^{1}J_{CP}$  = 91.5 Hz); 131.6 d ( $C_{p}$ ,  ${}^{4}J_{CP}$  = 2.7 Hz); 131.9 d ( $C_o$ ,  ${}^2J_{CP} = 8.7 \text{ Hz}$ ); 141.8 d ( $C_{4a}$ ,  ${}^3J_{CP} = 3.4 \text{ Hz}$ ). <sup>15</sup>N NMR spectrum (DMSO- $d_6$ ),  $\delta_N$ : –279.6 ppm. <sup>31</sup>P NMR spectrum (DMSO- $d_6$ ),  $\delta_P$ : 30.3 ppm. Found, %: C 78.89; H 5.43; N 3.75; P 7.93. C<sub>25</sub>H<sub>20</sub>NOP. Calculated, %: C 78.73; H 5.29; N 3.67; P 8.12.

9-[Bis(2-phenylethyl)phosphorothioyl]-9,10-dihydroacridine (2b). Yield 290 mg (64%), yellow powder, mp 133–135°C. IR spectrum (film), v, cm<sup>-1</sup>: 3388, 3289, 3204, 3057, 3029, 2921, 1602, 1484, 1450, 1406, 1301, 1214, 1072, 1033, 906, 835, 737, 703, 646, 603, 470. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm: 1.86, 2.10 m (4H, CH<sub>2</sub>P); 2.76 m (4H, CH<sub>2</sub>Ph); ppm: 1.66, 2.16 m (11, CH<sub>2</sub>, 1), 2.76 m (11, CH<sub>2</sub>), 2.76 m (11, CH<sub>2</sub>), 4.60 d (1H, CHP,  ${}^{2}J_{PH} = 15.1 \text{ Hz})$ ; 6.14 s (1H, NH); 6.75 d [2H, H<sub>4,5</sub>,  ${}^{3}J_{4(5)-3(6)} = 7.8 \text{ Hz}]$ ; 7.04 d. d [2H, H<sub>2,7</sub>,  ${}^{3}J_{2(7)-1(8)} \approx {}^{3}J_{2(7)-3(6)} = 7.3 \text{ Hz}]$ ; 7.15 m (4H, H<sub>o</sub>); 7.21 m (2H, H<sub>3,6</sub>); 7.24 m (2H, H<sub>p</sub>); 7.29 m (4H, H<sub>m</sub>); 7.37 d [(2H, H<sub>1,8</sub>,  ${}^{3}J_{1(8)-2(7)} = 7.3$  Hz].  ${}^{13}C$  NMR spectrum (CDCl<sub>3</sub>),  $\delta_{\rm C}$ , ppm: 28.7 d (<u>C</u>H<sub>2</sub>Ph, <sup>2</sup>J<sub>CP</sub> = 2.9 Hz); 29.2 d (CH<sub>2</sub>P, <sup>1</sup>J<sub>CP</sub> = 43.3 Hz); 49.9 d (CHP,  ${}^{1}J_{CP} = 42.2$  Hz); 114.3 (C<sub>4,5</sub>); 115.4 d (C<sub>8a</sub>,  ${}^{2}J_{CP} =$ 3.6 Hz); 121.0 (C<sub>2,7</sub>); 126.4 (C<sub>p</sub>); 128.2 (C<sub>o</sub>); 128.7 (C<sub>m</sub>); 128.9 d (C<sub>3,6</sub>,  ${}^{5}J_{CP} = 3.4 \text{ Hz}$ ); 130.6 d (C<sub>1,8</sub>,  ${}^{3}J_{CP} = 3.2 \text{ Hz}$ ); 140.0 d (C<sub>4a</sub>,  ${}^{3}J_{CP} = 3.1 \text{ Hz}$ ); 141.3 d (C<sub>ipso</sub>,  ${}^{3}J_{CP} =$ 14.6 Hz). <sup>15</sup>N NMR spectrum (CDCl<sub>3</sub>),  $\delta_N$ : -284.1 ppm. <sup>31</sup>P NMR spectrum (CDCl<sub>3</sub>),  $\delta_P$ : 59.3 ppm. Found, %: C 76.53; H 6.39; N 3.24; P 6.62; S 6.79. C<sub>29</sub>H<sub>28</sub>NPS. Calculated, %: C 76.79; H 6.22; N 3.09; P 6.83; S 7.07.

9-[Bis(2-phenylethyl)phosphoroselenoyl]-9,10dihvdroacridine (2c). Yield 330 mg (66%), beige powder, mp 128–131°C. IR spectrum (film), v, cm<sup>-1</sup>: 3392, 3264, 3188, 3058, 3027, 2928, 1607, 1480, 1455, 1405, 1304, 1211, 1069, 1031, 909, 853, 742, 702, 651, 485. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm: 1.95, 2.19 m (4H, CH<sub>2</sub>P); 2.76 m (4H, C<u>H</u><sub>2</sub>Ph); 4.74 d (1H, CHP,  ${}^{2}J_{PH} = 13.9$  Hz); 6.09 br. s (1H, NH); 6.76 d [2H, H<sub>4,5</sub>,  ${}^{3}J_{4(5)-3(6)} = 7.7$  Hz]; 6.97 d. d [(2H, H<sub>2,7</sub>,  ${}^{3}J_{2(7)-1(8)} \approx {}^{3}J_{2(7)-3(6)} = 7.3$  Hz]; 7.09 m (4H, H<sub>o</sub>); 7.15 m (4H, Ph, Ar); 7.21 m (4H, Ph, Ar); 7.44 br. d [2H, H<sub>1,8</sub>,  ${}^{3}J_{1(8)-2(7)} = 7.3$  Hz].  ${}^{13}$ C NMR spectrum (CDCl<sub>3</sub>),  $\delta_{C}$ , ppm: 29.0 d (CH<sub>2</sub>P,  ${}^{1}J_{CP} = 36.0$  Hz); 29.7 d (d, <u>C</u>H<sub>2</sub>Ph,  ${}^{2}J_{CP} = 2.1$  Hz); 49.6 d (CHP,  ${}^{1}J_{CP} = 34.7$  Hz); 114.2 d (C<sub>4,5</sub>,  ${}^{4}J_{CP} = 2.8$  Hz); 115.4 d (C<sub>8a</sub>,  ${}^{2}J_{CP} = 4.1$  Hz); 121.7 d (C<sub>2,7</sub>,  ${}^{4}J_{CP} = 2.8$  Hz); 126.1 (C<sub>p</sub>); 128.0 (C<sub>o</sub>); 128.3 (C<sub>m</sub>); 128.7 d (C<sub>3,6</sub>,  ${}^{5}J_{CP} = 2.8$  Hz); 130.7 d (C<sub>1,8</sub>,  ${}^{3}J_{CP} = 3.4$  Hz); 141.3 d (C<sub>*ipso*,  ${}^{3}J_{CP} = 15.3$  Hz).  ${}^{15}$ N NMR spectrum (CDCl<sub>3</sub>),  $\delta_{P}$ : 53.5 ppm (+d-satellites,  ${}^{1}J_{PSe} = 709.8$  Hz).  ${}^{77}$ Se NMR spectrum (CDCl<sub>3</sub>),  $\delta_{Se}$ : -379.9 ppm, d ( ${}^{1}J_{PSe} = 709.8$  Hz). Found, %: C 69.43; H 5.82; N 2.64; P 6.04; Se 15.56. C<sub>29</sub>H<sub>28</sub>NPSe. Calculated, %: C 69.60; H 5.64; N 2.80; P 6.19; Se 15.78.</sub>

IR spectra were recorded using a Varian 3100 FT-IR spectrometer (KBr pellet or thin layer). <sup>1</sup>H, <sup>13</sup>C, <sup>15</sup>N, <sup>31</sup>P, and <sup>77</sup>Se NMR spectra were recorded using Bruker DPX-400 and Bruker AV-400 spectrometers (400.13, 10.62, 40.56, 161.98 and 76.31 MHz, respectively) in CDCl<sub>3</sub> or DMSO- $d_6$ , with the following internal [HMDS (<sup>1</sup>H, <sup>13</sup>C), MeNO<sub>2</sub> (<sup>15</sup>N), Me<sub>2</sub>Se (<sup>77</sup>Se)] or external [85% H<sub>3</sub>PO<sub>4</sub> (<sup>31</sup>P)] references. The signals in the proton spectra were assigned using 2D homonuclear correlation method COSY. The <sup>13</sup>C signals were assigned basing on the analysis of the 2D heteronuclear correlation spectra HSQC and HMBC.

## FUNDING

This study was financially supported by the Russian Scientific Foundation (Grant 18-73-10080) and performed using the equipment of the Baikal Analytical Center for Collective Usage, Siberian Branch of Russian Academy of Sciences.

## CONFLICT OF INTEREST

No conflict of interest was declared by authors.

## REFERENCES

 Gusarova, N.K., Volkov, P.A., Ivanova, N.I., Arbuzova, S.N., Khrapova, K.O., Albanov, A.I., Smirnov, V.I., Borodina, T.N., and Trofimov, B.A., *Tetrahedron Lett.*, 2015, vol. 56, p. 4804. doi 10.1016/j.tetlet.2015.06.062

- Gusarova, N.K., Volkov, P.A., Ivanova, N.I., Khrapova, K.O., Albanov, A.I., Afonin, A.V., Borodina, T.N., and Trofimov, B.A., *Tetrahedron Lett.*, 2016, vol. 57, p. 3776. doi 10.1016/j.tetlet.2016.07.024
- Volkov, P.A., Telezhkin, A.A., Ivanova, N.I., Khrapova, K.O., Albanov, A.I., Gusarova, N.K., and Trofimov, B.A., *Russ. J. Gen. Chem.*, 2018, vol. 88, p. 912. doi 10.1134/S1070363218050122
- Acheson, R.M. and Woollard, J., J. Chem. Soc. Perkin Trans. 1, 1975, p. 438. doi 10.1039/P19750000438
- Acheson, R.M. and Burstall, M.L., J. Chem. Soc., 1954, p. 3240. doi 10.1039/JR9540003240
- Gusarova, N.K., Arbuzova, S.N., and Trofimov, B.A., *Pure Appl. Chem.*, 2012, vol. 84, no. 3, p. 439. doi 10.1351/PAC-CON-11-07-11
- Ramesh, K.B. and Pasha, M.A., *Bioorg. Med. Chem. Lett.*, 2014, vol. 24, p. 3907. doi 10.1016/ j.bmcl.2014.06.047
- Pérez, S.A., de Haro, C., Vicente, C., Donaire, A., Zamora, A., Zajac, J., Kostrhunova, H., Brabec, V., Bautista, D., and Ruiz, J., *ACS Chem. Biol.*, 2017, vol. 12, p. 1524. doi 10.1021/acschembio.7b00090
- Kudryavtseva, T.N., Lamanov, A.Yu., Klimova, L.G., and Nazarov, G.V., *Russ. J. Gen. Chem.*, 2018, vol. 88, p. 676. doi 10.1134/S1070363218040102
- Li, Z., Liu, R., Tan, Z., He, L., Lu, Z., and Gong, B., ACS Sensors, 2017, vol. 2, p. 501. doi 10.1021/ acssensors.7b00139
- Zhao, B., Miao, Y., Wang, Z., Wang, K., Wang, H., Hao, Y., Xu, B., and Li, W., *Nanophotonics*, 2017, vol. 6, p. 1133. doi 10.1515/nanoph-2016-0177
- Srimani, D., Diskin-Posner, Y., Ben-David, Y., and Milstein, D., Angew. Chem. Int. Ed., 2013, vol. 52, p. 14131. doi 10.1002/anie.201306629
- Zhu, R.-Y., He, J., Wang, X.-C., and Yu, J.-Q., J. Am. Chem. Soc., 2014, vol. 136, p. 13194. doi 10.1021/ ja508165a
- Chowdhury, M.A.H., Rahman, M.S., Islam, M.R., Rajbangshi, S., Ghosh, S., Hogarth, G., Tocher, D.A., Yang, L., Richmond, M.G., and Kabir, S.E., *J. Organomet. Chem.*, 2016, vol. 805, p. 34. doi 10.1016/j.jorganchem.2015.12.023
- Mironovich, L.M., Ageeva, L.S., and Podol'nikova, A.Yu., *Russ. J. Gen. Chem.*, 2016, vol. 86, p. 420. doi 10.1134/ S1070363216020390
- Cho, A.-N., Chakravarthi, N., Kranthiraja, K., Reddy, S.S., Kim, H.-S., Jin, S.-H., and Park, N.-G., *J. Mater. Chem.* (*A*), 2017, vol. 5, p. 7603. doi 10.1039/C7TA01248A
- 17. Wang, M., Fan, Q., and Jiang, X., *Org. Lett.*, 2018, vol. 20, p. 216. doi 10.1021/acs.orglett.7b03564