Alternative Method C.—A cold (0°) mixture of 5.6 g (0.022 mole) of D-phenylalanine methyl ester hydrochloride and 2.2 g (0.022 mole) of Et₃N in 75 ml of DMF was filtered, and to the filtrate was added 9 g (0.022 mole) of O-acetyl-N-carbobenzoxy-serine *p*-nitrophenyl ester.¹⁰ The solution was kept 2 days at 25° and evaporated to an oil which was taken up in EtOAc. This solution was washed with H₂O, 5% NaHCO₃ solution, and dilute HCl, then dried and evaporated to a solid. The product, O-acetyl-N-carbobenzoxyseryl-D-phenylalanine methyl ester was recrystallized from EtOAc-petroleum ether, 7.5 g (77%), mp 132–133°, [α]²³D +4.4 (c 2, DMF).

Anal. Calcd for $C_{23}H_{26}N_2O_7$: C, 62.43; H, 5.93; N, 6.33. Found: C, 62.44; H, 5.96; N, 6.52.

The methyl ester and O-acetyl groups were removed using an excess of 2 N NaOH in MeOH affording carbobenzoxyseryl-pphenylalanine in 72% yield, mp 137-139°.

Method D.—To a cold (5°) solution of 7.9 g (0.03 mole) of carbobenzoxyhydroxyproline in 150 ml of MeCN was added 3 g of Et₃N and 7.5 g (0.03 mole) of Woodward's⁵ reagent K. The mixture was stirred 1 hr at 5°, and 5 g (0.03 mole) of p-valine methyl ester hydrochloride and 3 g of Et₃N were added. The mixture was stirred 48 hr at 25°. The solvent was evaporated, the residue was taken up in EtOAc, and the solution was washed with H₂O, 5% NaHCO₃ solution, and dilute HCl and dried. Evaporation of the solvent left an oil which would not crystallize: yield 8.4 g (74%).

Anal. Caled for $C_{19}H_{26}N_2O_6 \cdot H_2O$: C, 57.35; H, 7.12; N, 7.06. Found: C, 57.28; H, 7.00; N, 6.63.

Hydrolysis of the above methyl ester with NaOH in MeOH

(10) E. D. Nicolaides and H. A. DeWald, U. S. Patent 3,164,614 (1965).

gave carbobenzoxyhydroxyprolyl-
p-valine in 80% yield, mp 62–68°.

Method E.—To a cold (7°) solution of 6 g (0.0238 mole) of carbobenzoxy-p-serine hydrazide in 50 ml of glacial HOAc and 30 ml of 1 N HCl was added over 15 min, 1.7 g (0.025 mole) of NaNO₂ in 5 ml of H₂O. After an additional 5 min, the solution was diluted with 200 ml of ice-H₂O and extracted with cold (-5°) EtOAc. The EtOAc solution was washed with ice-H₂O several times and with cold 5% Na₂CO₃ solution until neutral and dried. To this filtered solution at 0° was added a cold (0°) mixture of 5.5 g (0.024 mole) of p-phenylalanine methyl ester hydrochloride and 2.5 g of Et₃N in 50 ml of DMF. The solution was kept 24 hr at 5° and washed with 5% NaHCO₃ solution, and dilute HCl then dried and the solvent was evaporated. Et₃O-cyclohexane was added producing a colorless solid, 4.5 g (46%), mp 77–78°.

Anal. Calcd for $C_{21}H_{24}N_2O_6$: C, 62.99; H, 6.04; N, 7.00. Found: C, 62.73; H, 6.23; N, 6.93.

The methyl ester was removed in the usual manner giving carbobenzoxy-D-seryl-D-phenylalanine, mp 138-139°.

Acknowledgment.—We are indebted to Mr. C. E. Childs and his staff for the microanalyses, to Mrs. Carola Spurlock and Arlene Stee for the rotations, and to Dr. Harry Crooks and Dr. John Dice for many valuable discussions and encouragement during this investigation. We wish to thank Dr. Morton Munk for the preparation of two of the peptides and Drs. G. J. Dixon and F. M. Schabel, Jr., Southern Research Institute, for some of the testing.

Nitrofuryl Heterocycles. VII.¹ 4-Amino-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-*d*]pyrimidines

HOMER A. BURCH

Chemistry Division, The Norwich Pharmacal Company, Norwich, New York 13815

Received July 14, 1967

Fifty-two 1-alkyl-4-amino-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d]pyrimidine derivatives were prepared and were found to possess excellent antibacterial activity. The most active compound was the 4-bis(2-hydroxy-propyl)amino-1-methyl derivative, which showed an oral ED_{50} of about 2 mg/kg against *Staphylococcus aureus* infections in mice.

In a previous paper in this series² it was shown that the attachment of a condensed pyrimidine ring system at the 2 position of the nitrofuran ring would give compounds possessing exceptional antibacterial activity. That paper described the antibacterial activity of numerous 4-amino-2-(5-nitro-2-furyl)quinazoline derivatives. The present paper is concerned with the synthesis and biological evaluation of derivatives of another condensed pyrimidine system, 1-alkyl-4-amino-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d]pyrimidine.

Chemistry.—The excellent procedure of Taylor and Borror³ for condensing nitriles with 5-amino-4-cyanopyrazoles (1) in the presence of base to yield 6-substituted 4-aminopyrazolo [3,4-d] pyrimidines (2) was adapted to include the reaction of 2-furonitrile with 1. The desired nitrofuran derivatives were then prepared by mixed-acid nitration of 2. Unfortunately, this short synthesis was not applicable to the preparation of 4-substituted amino derivatives. These compounds were prepared with little difficulty, however, by the synthesis devised by Cheng and Robins.⁴ The reactions are summarized in Scheme I.

Thus, aminocyanopyrazole (1) was acylated with 2-furoyl chloride to give amide 3 which was cyclized in hot, alkaline, peroxide solution to pyrazolopyrimidinone (4). Mixed-acid nitration of 4 gave the nitrofuryl derivative 5 in excellent yield. The assignment of the keto form to the oxygen function in position 4 of compounds 4 and 5, rather than the frequently reported tautomeric hydroxy form, was based on the observation that carbonyl absorption occurred at 1650–1670 cm⁻¹ in the infrared. Chlorination of 5with PCl_5 in $POCl_3$ gave the 4-chloro compounds 6. Displacement of the chlorine atom in 6 with a variety of amines proceeded smoothly in DMF solution to give the amino derivatives 10-46, 49-55, and 58 listed in Table I. Displacement of the halogen in 6 with ammonia in aqueous DMF gave 7–9, identical by mixture melting points and infrared spectra with those obtained by the nitration of **2**.

Biological Screening Results.-The in vitro and

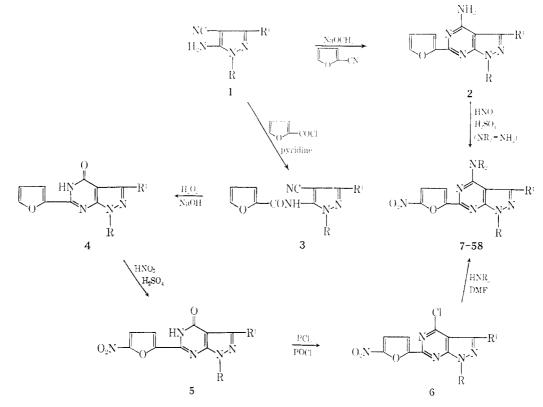
⁽¹⁾ For the previous paper in this series see H. R Snyder, Jr., J. Med. Chem., ${\bf 10},\;737\;(1967).$

⁽²⁾ H. A. Burch, *ibid.*, **9**, 408 (1966).

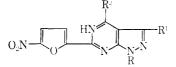
⁽³⁾ E. C. Taylor and A. L. Borror, J. Org. Chem., 26, 4967 (1961).

⁽⁴⁾ C. C. Cheng and R. K. Robins, ibid., 23, 191 (1958).

us aureus	њ120 (mice). mg/kg otal		: : : :	· · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5300		828	<u></u>	÷	195	>50 2	02	르뉘쓚쫋	9 <u>9</u> 921	4×83
TAMER 1 Staphydococcus aureus	MIC, μ⊯/mi			· · · · · ·	999 ;	ন জন্ম হ হ	12.22 22.22	>100 0.75 1.5	0.19	$\begin{array}{c} 0.012\\ 0.38\end{array}$	0.38	0.38 0.19 0.095	6.5 S 0	0.75	8.00 21 2.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	२ २ २ २ २ २ २ २ २ २ २ २	<u>संहित</u> ००००
	ыd, ⁷ , , н		99 30.46 38 28.59 16 27.23 84 26.02			$\begin{array}{c} 61 & 22 & 92 \\ 61 & 22 & 92 \\ 88 & 24 & 52 \\ 35 & 19 & 64^a \end{array}$			06 27.72 00 30.73 29 14		.44 24.43	34 32 26 27 26	.89 20.21 37 26 67	19 24	94 27.91 36 26.45 74 25.25 61 24 19	2888	2822
	CFound. C II		57.42 4 59.28 5 55.61 5 55.49 3	57.36 59.19 55.46 55.46 54 55.40	8283 8283 401024	85285 1 2 2 2 2 3	10100 00 1356 20	46.91 48.37 50.22 48.37 48.37 4	47.31 48.39 48.39 49 49	53.09 54.37 5	56.05 5	588	50.34 3. 53 39 4		47.31 3 49.10 4 50.71 4 48.14 4	$50.67 \pm 48.99 \pm 48.99 \pm 4$	50.65 4 53.45 54 55.76 6 48.25 4
			84 30.55 39 28.79 05 27.02 73 25.92		2222	2225	21.52" 23.85 23.85 21.52"	388	20.22	29 25 29	24	888	.52 29.36 49 26 74	24.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8855
	C Caled		57.63 4.8 59.25 5.3 56.59 5.6 56.59 5.0	~ ~ ~ ~	4 01 00 0	i ei ei e	101000	eo eo →	०० ०२ च	io io	10	ي. ما تەرىچ	50.35 3.7 53 50 4 2	51	47.37 3.9 49.05 4.4 50.60 4.8 48.27 4.0	र र न न	ਚ ਨੇ ਤੱਥੋਂ
	Formula		$C_{11}H_{11}N_{5}()$ $C_{12}H_{13}N_{5}()$ $C_{12}H_{13}N_{5}()$ $C_{10}H_{8}N_{5}O_{2}$	$C_{11}H_{10}N_4O_2$ $C_{12}H_{12}N_4O_2$ $C_{12}H_{12}N_4O_3$	Cr2H12N4O2 Cr0H7N5O4 Cr1H5N5O4 Cr1H5N5O4	CIPHINSO CIPHINSOS CEPHINSOS	Cliffenson Cliffenso Cliffenso	C ₁₂ H ₁₆ CIN ₆ O ₃ C ₁₁ H ₁₆ N ₆ O ₃ C ₁₂ H ₁₅ N ₅ O ₃	Cirlin, 0, Cirlin, 0, Cirlin, 0,	$C_{15}H_{18}N_6O_3$ $C_{15}H_{18}N_6O_3$	$\mathrm{C}_{16}\mathrm{H}_{18}\mathrm{N}_6\mathrm{O}_3$	C12H12N6O3 C14H16N6O3 C16H20N6O3	C12H10N6O3 C2.HN.O.	$\mathrm{C_{16}H_{18}N_6O_3}$	$\begin{array}{c} C_{12}H_{12}N_6O_4\\ C_{13}H_{14}N_6O_1\\ C_{14}H_16N_6O_1\\ C_{14}H_6N_6O_1\\ C_{14}H_6N_6O_2\\ \end{array}$	C ₁ ,H ₁ ,N ₆ O ₁ C ₁ ,H ₁ ,N ₆ O ₁ C ₁ ,H ₁ ,N ₆ O ₁ C ₁ ,H ₁ ,N ₆ O ₁	Ct ₁ H ₁₆ N ₆ O ₄ Ct ₆ H ₂₀ N ₆ O ₄ Ct ₈ H ₂₄ N ₆ O ₄ Ct ₁ H ₁₆ N ₆ H ₅
	Yield, %		65.5 71.4 78.6 64	40.6 70.6	98.5 86.5 86.5	69 69 5 19 5 19 5 19 5 19 5 19 5 19 5 19 5 1				\$\$\$	22	77 78 91	51 52 53	83	52 22 86 29 29	91 82.3 84.4	5888 5888 5888
	D° dM		234-235 184-185 192-193 283.5-285	260-261.5 219-220 201-202	290-292 325 dec 271-272.5 941-945	243-245 243-245 293-295	121-122 121-122 156-157	163-165 320-321.5 306-307	289.5-200.5 227-228 237-238	151 - 153 108 - 110	209-210	217-218 172-173 159-160	202-205 216-917	181-183	$\begin{array}{c} 226 & 226.5 \\ 188-190 \\ 193-195 \\ 202-204 \end{array}$	246-248 216-217 226-227 204.5-205	$\frac{188-190}{147-148}$ $\frac{120-121}{208-209}$
	* 4		====		ççç NNN					Son NN	NO_2	ço NNN	NO. NO.	NO	oooo xxxx	õõõõ XXXX	ŐŐŐŐ ZZZZ
			NH2 NH2 NH2 OH	HO	HO		5555	CI NH2 NH2	NHCH _a NHCH _a NHCH _a	NH(CH2),CH, NH(CH2),CH3	NH S HN	N(CH ₂ CH ₃)2 N(CH ₂ CH ₃)2 N(CH ₂ CH ₂ CH ₃)2	V v		NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OH NHCH ₂ CH ₂ OH	NIICH ₂ CH ₂ OH NII(CH ₂) ₃ OH NHCH ₂ CHMeOH NMeCH ₂ CH ₂ OH	NMeCH ₂ CH ₂ OH NBuCH ₂ CH ₂ OH NBuCH ₂ CH ₂ OH NBuCH ₂ CH ₂ OH) ₃ N(CH ₂ CH ₂ OH) ₃
	Rı	R O	====			п СП ₃ СН ₃	===	CH ₂ CH ₃ II		H	11			II	====	CH ₂ CH ₃ II II	
	ж		CH4CH4 CH4CH4CH3 CH2CH4CH3 CH2CH2OCH3 CH3	CH ₂ CH ₂ CH ₁ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ OCH ₃	CH ₃ CH ₃ CH ₂ CH ₃	CHICHIOCH CHICHIOCH	CH2CH3 CH2CH3 CH2CH2CH3 CH2CH2OCH3	CH,CH, CH,CH, CH,CH,CH,	CH ² CH ² OCH ₃ CH ₃ CH ₅	CII CII	CH_{s}	CH _a CH _a CH _a	CII3 CIII	CII ₃	CH3 CH2CH3 CH2CH2CH3 CH2CH2OCH3	CH, CH, CH,	CH2CH3 CH3 CH2CH2CH3 CH3
	No.		22 26 49 80	4 9 9 9 9 7 9 7 9 9 7 9 7 9	5 5 5 4 6	32.83	8-8-9-8- 8-9-8-8-8-8-8-8-8-8-8-8-8-8-8-8	g⊳ x	691	22	14	195 1	10	20	2222	2225 2228 2228	8858


HOMER A. BURCH

Vol. 11


January	1968				NITROFURYL HETEROCYCLES.	VI	I		
2 0 65	10	1	21	44	$\begin{smallmatrix}&&&2\\2&&&&\\100&&&&\\100&&&&\\110&&&&\\120&&&&\\$	93	100	50 7 7	· · · · · · · · · · · · · · · · · · ·
1.ö 3	0.2	0.38	0.38	1.5	0.09 0.38 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	1.5	1.5	0.2	 12.5
23,02 21.45	23.15	22.15	21.24	20.57	2 5255651285555655 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22.12	20.68	23.36 20.99 30.89	25.95 24.37 23.05 21.59 23.16 23.16
5.10 5.18	5.12	5.22	5.86	5.59	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.62	5.64	$\begin{array}{c} 4.42 \\ 4.54 \\ 3.98 \end{array}$	$\begin{array}{c} 4.03 \\ 5.10 \\ 4.62 \\ 4.90 \end{array}$
49.63 49.04	49.71	51.01	52.16	50.36	$\begin{array}{c} 50.60\\ 52.12\\ 552.12\\ 51.43\\ 51.43\\ 51.28\\ 52.13\\ 550.68\\ 550.27\\ 550.68\\ 550.27\\ 550.68\\ 550.27\\ 550.68\\ 550.27\\ 550.68\\ 550.27\\ 550.68\\ 550.6$	49.42	48.74	49.78 50.75 45.20	55.36 57.41 58.77 55.36 59.13
$23.20\\21.42$	23.20	22.33	21.53	20.68		22.30	20.96	23.23 20.89 30.88	25.92 24.34 222.94 21.53 22.94
5.01 5.14	5.01	5.36	5.68	5.46	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.52	5.60	$\begin{array}{c} 4.48\\ 4.51\\ 4.10\end{array}$	$\begin{array}{c} 3.73\\ 4.95\\ 4.95\\ 4.95\end{array}$
$49.72 \\ 48.97$	49.72	51.06	52.30	50.24	51.06 52.30 52.30 52.45 52.66 52.66 52.66 52.66 52.66 52.66 52.66 53.45 53.45 53.45 53.45	49.37	48.77	50.00 50.74 45.14	55.55 57.38 59.01 55.38 59.01
C ₁₅ H ₁₈ N ₆ O5 C ₁₆ H ₂₀ N ₆ O6	C ₁₅ H ₁₈ N ₆ O ₅	$\mathrm{C_{16}H_{20}N_6O_5}$	C ₁₇ 11,22N ₆ O5	$\mathrm{C}_{17}\mathrm{H}_{22}\mathrm{N}_6\mathrm{O}_6$	$\begin{array}{c} C_{16}(H_{20},N_{6}O_{5}\\ C_{17}(H_{22}N_{6}O_{5}\\ C_{18}(H_{22}N_{6}O_{5}\\ C_{18}(H_{21}N_{6}O_{6}\\ C_{18}(H_{18}N_{6}O_{4}\\ C_{16}(H_{18}N_{6}O_{4}\\ C_{16}(H_{18}N_{6}O_{4}\\ C_{16}(H_{18}N_{6}O_{5}\\ C_{16}(H_{18}N_{6}O_{5}\\ C_{16}(H_{18}N_{6}O_{5}\\ C_{16}(H_{18}N_{6}O_{5}\\ C_{16}(H_{16}N_{6}O_{5}\\ C_{16}(H_{16}N_{6}O_{5}\\ C_{16}(H_{16}N_{6}O_{5}\\ C_{16}(H_{16}N_{6}O_{5}\\ C_{18}(H_{28}N_{6}O_{5}\\ C_{18}(H_{28}N_{6}O_{5}\\ C_{18}(H_{28}N_{6}O_{5}\\ C_{17}(H_{12}N_{6}O_{5}\\ C_{17}(H_{28}C(N_{7}O_{5}\\ C_{17}(H_{28}C(N_{7}O_{5}\\ C_{17}(H_{28}C(N_{7}O_{5}\\ C_{17}(H_{28}C(N_{7}O_{5}\\ C_{18}(H_{28}N_{6})) \\ \end{array}$	$\mathrm{C}_{18}\mathrm{H}_{24}\mathrm{ClN}_7\mathrm{O}_4$	$\mathrm{C_{19}H_{26}ClN_7O_5}$	C ₁₅ H ₁₈ N ₆ O ₅ C ₁₇ H ₁₈ N ₆ O ₅ C ₁₂ H ₁₃ N ₇ O ₄	C ₁₀ H ₃ N ₄ O ₂ C ₁₁ H ₄ N ₄ O ₂ C ₁₂ H ₁₂ N ₄ O ₂ C ₁₂ H ₁₂ N ₄ O ₃ C ₁₂ H ₁₂ N ₄ O ₃
$61.8\\86$	80	92	85	48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43.5	79	85 73 78	88 89 70 88
175-176 165-167	218-218.5	144-145	153-154	149-151	$\begin{array}{c} 222-223.5\\ 227-229\\ 188-190\\ 188-190\\ 188-190\\ 183-184.5\\ 147-148\\ 117-148\\ 117-1113\\ 163-164\\ 154-156\\ 163-164\\ 154-156\\ 148-149\\ 154-156\\ 163-166\\ 107.5-108\\ 280-281.5$	264 - 265	248-250	181–183 162–164 220–221	$\begin{array}{c} 171-172.5\\ 149.5-150.5\\ 115-116\\ 101-103\\ 145-147\end{array}$
NO_{2}	NO2	NO_2	NO_2	NO_2	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	NO_2	$\rm NO_2$	NO ² NO ² NO ²	
N(CH2CH2OH)2 N(CH2CH2OH)2 CH2CH2OH)2	N CH2CHMeOH CH2CH20H	N CH4CHMeOH CH4CHMeOH	N CH ₂ CHMeOII CH ₂ CH ₂ OII	N	$\begin{array}{c} \text{CH}_{\text{L}}^{\text{CH}}\text{AGH}_{\text{B}}^{\text{CH}}^$	NH(CH ₂), N	NH(CH ₂),N	NAcCH2CH2OH NAcCH2CH3OH2OA6 N(NH2)CH2CH2OH	
н	Ш	Ш	Н	П	н н СП _С СН ₃ н н	II	Н		к Н Н СН ₂ СП ₃
CH2CH3 CH2CH2OCH3	CH ₃	CH2CH3	CH2CH2CH3	CII2CH2OCII3	CH3 CH2CH3 CH2CH3 CH2CH3 CH2CH2OCH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	CII ₂ CII ₃	CH2CII20CH3	CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ C ₀ CONH	3.4 CH ₃ 3.5 CH ₂ CH ₃ 3.6 CH ₂ CH ₂ CH ₄ 3.4 CH ₂ CH ₂ OCH ₃ 3.6 CH ₃ 3.6 CH ₃ Nitrofurazone ⁵
33 34	35	36	37	38	864444444466 86010844667860 860108 800108 80010 800000000	54	55	56 58 58	3a 3b 3c 3d 3d 3d Nitrofi

^a Cl. ^b Furacin[®] for comparison.

81

in vivo antibacterial properties were determined using the methods described previously.⁵ The data obtained on **5–58** are summarized in Table I. The effects of substitutions at three positions in the pyrazolopyrimidine ring system were investigated. In general,

in vivo activity against Staphylococcus aureus infections in mice was greatest when R was methyl. The activity decreased with increasing chain length. The substitution of alkyl groups for hydrogen at R^1 caused a significant decrease in both in vitro and in vivo antibacterial activity. All pyrazolopyrimidines containing a chlorine atom or a hydroxyl group at \mathbb{R}^2 were inactive in vivo at the drug levels tested. Activity was found only when an amino or a substituted-amino group was introduced at R^2 . Noteworthy activity was found when the hydroxyethylamino group was introduced at \mathbb{R}^2 . Substitution of a methyl group for hydrogen on the hydroxyl carbon atom enhanced the activity. The activity was increased further by the introduction of the bis(2-hydroxyalkyl)amino group at \mathbb{R}^2 . Thus, the most active compound prepared in this series was the 4-bis(2-hydroxypropyl)amino-1methyl analog 39 which showed an ED_{50} of about 2 mg/kg.

Other significantly active compounds in this series were 10, 12, 14, 27, 28, 30, 32, 35, 36, 40, 42, 43, 45, 47, 51, 52, and 58. The following compounds in Table I, when subjected to toxicopathological evaluation in two dogs for a period of 30 days at a peroral

(5) F. F. Ebetino, W. F. Carey, and B. F. Stevenson, J. Med. Chem., 6, 633 (1963).

dosage level of approximately 40 mg/kg daily, elicited no signs of toxicosis: 7, 19, 22, 33, 35, 36, 39, and 43.

Experimental Section

All melting points were taken on a hot stage (Mel-Temp) melting point apparatus and are corrected.

2-Methoxyethylhydrazine.—A solution of 1070 g (21.4 moles) of 100% N₂H₄·H₂O was heated to 100° and the heat source was turned off. 2-Methoxyethyl chloride⁶ (421 g, 4.46 moles) was added dropwise with stirring during 2.5 hr at 98–102°. The resulting solution was heated for 10 hr at 105° and allowed to cool overnight. The product was isolated by continuous Et₂O extraction of the reaction mixture during 5 days. Evaporation of the Et₂O left an oil which was distilled through a 45.7-cm Vigreux column. The fraction boiling at 83–90° (56 nm) was collected; yield 317 g (79\%). An analytical sample boiled at 84° (50 nm), $n^{26.5}$ D 1.4411.

Anal. Caled for $C_8H_{10}N_2O$: C, 39.98; H, 11.18; N, 34.08. Found: C, 39.85; H, 11.25; N, 31.07.

5-Amino-4-cyano-1-(2-methoxyethyl)pyrazole (1a).—A solution of 152 g (1.24 moles) of ethoxymethylenemalononitrile (Kay-Fries) and 112 g (1.24 moles) of 2-methoxyethylhydrazine in 1 l. of absolute EtOH was refluxed for 24 hr. After removal of the solvents *in vacuo*, the residue was taken up in a minimum of boiling $C_{6}H_{6}$, treated with charcoal, and filtered. Dilution of the cooled filtrate with two volumes of petroleum ether (bp 30-60°) followed by thorough chilling precipitated the product as colorless platelets melting at 110–112°, yield 132 g (64%). Recrystallization from $C_{6}H_{6}$ -petroleum ether raised the melting point to 114–115°.

Anat. Caled for $C_{7}H_{10}N_{4}O$: C, 50.59; H, 6.07; N, 33.72. Found: C, 50.53; H, 6.14; N, 33.92.

5-Amino-4-cyano-1-methylpyrazole (1b) was prepared from MeNHNH₂ (Mathieson Chemical Corp.) according to the procedure of Cheng and Robins.⁷

5-Amino-4-cyano-1-ethylpyrazole (1c).—To 122 g (1.0 mole) of ethoxymethylenemalononitrile in 1 l. of MeOH was added in portions through the condenser 60 g (1.0 mole) of $EtNHNH_{2}$.*

(8) A. N. Kost and R. S. Sagitullin, Zh. Obshch. Khim., 33, 867 (1963); Chem. Abstr., 59, 8724e (1963).

⁽⁶⁾ G. M. Bennett and F. Heathcoat, J. Chem. Soc., 270 (1929).

⁽⁷⁾ C. C. Cheng and R. K. Robins, J. Org. Chem., 21, 1240 (1956).

When the exothermic reaction had ceased, the solution was refluxed for 1 hr, and solvents were evaporated *in vacuo* on a steam bath. The residue was crystallized from EtOAc-MeOH (5:2) (charcoal) to give the product as colorless needles melting at 159–160°, yield 49.5 g. The filtrate was chromatographed over Al₂O₃ to give 66 g of product after evaporation of the solvent. The total yield was 115.5 g (85%). Recrystallization from EtOAc raised the melting point to 163–163.5°.

Anal. Caled for $C_{6}H_{8}N_{4}$: C, 52.92; H, 5.92; N, 41.15. Found: C, 52.88; H, 5.96; N, 41.33.

5-Amino-4-cyano-1-propylpyrazole (1d) was prepared from $PrNHNH_2^{s}$ in 36% yield by the method described for 1c. The chromatographed material was recrystallized from *i*-PrOH (charcoa!) to give the product as colorless needles melting at 159–160°.

Anal. Caled for $C_7H_{10}N_4;\ C,\ 55.98;\ H,\ 6.71;\ N,\ 37.31.$ Found: C, 56.03; H, 6.60; N, 37.15.

5-Amino-4-cyano-3-ethyl-1-methylpyrazole (1e).—To 110 g (0.74 mole) of ethylethoxymethylenemalononitrile⁹ in 750 ml of absolute EtOH was added slowly through the condenser 34.5 g (0.75 mole) of MeNHNH₂. When the exothermic reaction had ceased, the solution was refluxed for 3 hr, then stripped of solvents *in vacuo* on a steam bath. The crystalline residue was boiled for 15 min with charcoal in a minimum of C_6H_6 , filtered, and cooled, and the filtrate was diluted with two volumes of petroleum ether to give the product as colorless needles melting at 84.5–86°, yield 103 g (94%).

Anal. Caled for $C_7H_{10}N_4$: C, 55.98; H, 6.71; N, 37.31. Found: C, 55.98; H, 6.44; N, 37.36.

4-Amino-1-ethyl-6-(2-furyl)-1H-pyrazolo[3,4-d] pyrimidine (2a).—A solution of 66 g (0.7 mole) of 2-furonitrile, 96 g (0.7 mole) of 1c, and 70 g (1.3 moles) of NaOMe in 1.5 l. of *i*-PrOH was refluxed for 48 hr. The solvents were removed *in vacuo* on a steam bath and the residue was slurried with 1 kg of ice-H₂O. The crude product was filtered, washed thoroughly with H₂O, and dried at 65°. Recrystallization from *i*-PrOH (charcoal) gave the product as colorless platelets. Other derivatives of 2 were prepared from the appropriate 5-amino-4-cyanopyrazole.

4-Amino-1-ethyl-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d]pyrimidine (7).—Compound 2a (25 g) was pulverized and added in portions with stirring to 250 ml of concentrated H_2SO_4 below 10°. The temperature was lowered to -5° by means of an icesalt bath and kept below 10°, while 50 ml of concentrated HNO₃ in 50 ml of concentrated H_2SO_4 was added dropwise during 15 min. Stirring was then continued in the cold for 1 hr. The mixture was poured over 1 kg of ice, neutralized with 20% NaOH, and diluted with H_2O to a final volume of 5 l. The crude product was filtered, washed thoroughly with H_2O to remove traces of Na₂SO₄, and air dried on the funnel. Recrystallization from DMF (charcoal) gave the product as yellow needles. Compounds 8 and 9 were prepared from the appropriate 2.

N-(4-Cyano-1-methyl-5-pyrazolyl)-2-furamide (3a).—To a solution of 91 g (0.74 mole) of 1b in 300 ml of pyridine was added cautiously with stirring, 101 g (0.74 mole) of 2-furoyl chloride. After the solution was heated on a steam bath for 1 hr, it was poured into 1 l. of ice-H₂O and allowed to stand overnight. The crude product was filtered, washed with cold H₂O, and dried at 65°. This material was used without further purification. Recrystallization of a sample from aqueous MeOH (charcoal) gave the product as large, colorless needles. Compounds 3b-e were prepared from the appropriate 5-amino-4-cyanopyrazole.

6-(2-Furyl)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (4a).--To a warm (35-45°) solution of 62 g of NaOH in 2700 ml of H₂O was added cautiously with stirring, 230 ml of 30% H₂O₂. This was followed by the addition of 245 g (1.13 moles) of **3a** in small portions during about 1 hr. A few milliliters of EtOAc was added periodically to control frothing. The solution was then heated on a steam bath under reflux for 20 hr, chilled, and neutralized cautiously with AcOH. Frothing was controlled again by the addition of EtOAc. The solids were filtered, washed with cold H_2O , and dried at 65° to give 167 g of crude product. The pulverized, crude product was stirred for 15 min in 500 ml of MeCN and filtered, and the residue was dried at 65°. This separation process was repeated until an infrared spectrum of the residual solids showed an absence of nitrile absorption at 2350 cm⁻¹. Evaporation of the MeCN washings gave 29 g of recovered 3a. The 4a thus obtained was used without further purification. Recrystallization of a sample from MeNO₂ (charcoal) gave the product as colorless needles. Compounds 4b-e were prepared from the appropriate 3

1-Methyl-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d] pyrimidin-4(5H)-one (5a).—To 300 ml of concentrated H_2SO_4 kept below 20° was added 101 g (0.47 mole) of 4a in small portions with stirring. A solution of 50 ml of concentrated HNO₃ in 50 ml of concentrated H_2SO_4 was added dropwise at 25–30°. The mixture was stirred at 25–30° for 1 hr following the addition and poured over 2 kg of ice. The excess acid was neutralized by the careful addition of 20% NaOH with cooling. The crude product was filtered, washed thoroughly with H_2O , and dried at 56°. Recrystallization from aqueous DMF (charcoal) gave 5a as yellow needles. Compounds 5b-e were prepared from the appropriate 4.

4-Chloro-1-methyl-6-(5-nitro-2-furyl)-1H-pyrazolo[3,4-d]pyrimidine (6a).—To a suspension of 52 g (0.25 mole) of PCl₅ in 300 ml of POCl₃ was added 65 g (0.25 mole) of 5a. The resulting suspension was refluxed with stirring for 3 hr, after which time solution was complete. The cooled solution was diluted with 500 ml of petroleum ether and filtered. After washing with petroleum ether and air drying on the funnel, the crude product was used without further purification. Recrystallization of a sample from aqueous DMF (charcoal) gave 6a as light yellow needles. Compounds 6b-e were prepared from the appropriate 5.

1-Methyl-4-methylamino-6-(5-nitro-2-furyl)-1H-pyrazolo-[3,4-d]pyrimidine (10).—To a mixture of 42 g (0.15 mole) of 6a in 350 ml of DMF was added 25 g (0.32 mole) of 40% aqueous MeNH₂. The mixture was stirred for 15 min, heated on a steam bath for 15 min, cooled, and diluted with 400 ml of H₂O. The crude solid was filtered and recrystallized from aqueous DMF (charcoal) from which the product separated as yellow needles. The remaining compounds in Table I were prepared from the appropriate 6 and amine. Other recrystallization solvents used included alcohols and MeCN.

Acetylated Derivatives.—Compounds 43, 44, and 22 were refluxed in Ac_2O for a few hours to give, after quenching on ice and recrystallization from MeOH, compounds 47, 48, and 57, respectively. A monoacetylated derivative of 22 (56) was prepared by refluxing 22 in excess AcCl-AcOH solution. The position of the acetyl group was assigned arbitrarily.

Acknowledgments.—The author is indebted to Mr. W. O. Smith and Mr. B. F. Stevenson and associates for assistance in the preparation of these compounds, to Dr. G. S. Denning, Jr., for synthesizing 2-methoxyethylhydrazine, to Mr. G. Gustin and Mr. M. Tefft for the elemental analyses, to Mr. H. E. Russell and Mr. R. Freedman for the microbiological testing data, and to Dr. G. S. Murti and associates for performing the toxicopathological studies.

⁽⁹⁾ L. Nicholl, P. J. Tarsio, and H. Blohm, U. S. Patent 2,824,121; Chem. Abstr., 52, 11909i (1958).