ORGANOMETALLICS

cyclo-Stannasiloxanes Containing both Oxygen Atoms and Methylene Moieties within the Ring and Formation of Related Organotin Oxo Clusters

Samer Baba Haj, Christina Dietz, Michael Lutter, and Klaus Jurkschat*

Lehrstuhl für Anorganische Chemie II, Technische Universität Dortmund, 44221 Dortmund, Germany

Supporting Information

ABSTRACT: The syntheses of the 8-membered stannasiloxanes *cyclo*-[RR'SnOSi(Me₂)CH₂]₂ (**5**, R = R' = Ph; **6**, R = R' = t-Bu; 7, R = Me₂N(CH₂)₃, R' = Ph) is reported. These react with organoelement oxides, providing the novel metallasiloxanes *cyclo*-[Me₂SiCH₂(RR')SnOMO] (**8**, R = R' = Ph, M = t-Bu₂Sn; **9**, R = R' = t-Bu, M = t-Bu₂Sn; **10**, R = Me₂N(CH₂)₃, R' = Ph, M = t-Bu₂Sn; **11**, R = Me₂N(CH₂)₃, R' = Ph, M = Ph₂Ge). Among these, compound **11** is the first example of such species being composed of

four different group 14 elements in the 6-membered-ring skeleton. On contact with moist air compound 8 surprisingly undergoes Sn-Ph bond cleavage, giving the diorganotinoxo cluster [PhSn(CH₂Me₂SiO)Sn(μ_3 -O)(μ -OH)t-Bu₂]₂ (12), which shows a ladder-type structure. The latter reacts with 2 molar equiv of t-Bu₂SnO, affording the Sn₆-diorganotin oxo cluster [t-Bu₂(μ -OH)Sn(μ_3 -O)SnPh(CH₂Me₂SiO)Sn-t-Bu₂(μ_3 -O)]₂ (13). The compounds have been characterized by NMR spectroscopy, electrospray mass spectrometry, and in the case of compounds 5–7, 12, and 13 also by single-crystal X-ray diffraction analysis.

INTRODUCTION

Polysiloxanes are the most important inorganic polymers. They show a variety of molecular structures and demonstrate an intimate relationship between structure and properties not easily achievable by other classes of polymers. Consequently, a wide diversity of applications is known. The ring-opening polymerization (ROP) procedure of the cyclo-siloxanes has been applied to the production of high-molecular-weight polysiloxanes.¹ This initiated activities regarding the synthesis, characterization, and reactivity of cyclo-metallasiloxanes.² Such compounds hold potential as single-source precursors for new inorganic polymers.^{2a,3} A rich structural diversity of cyclometallasiloxanes incorporating various heteroatoms, such as B, Al, Ge, Sn, Pb, P, Sb, Bi, Ti, Zr, Hf, Cr, Mo, and W, exists among the *cyclo*-metallasiloxanes.^{2b,3a,4} The first tin-containing cyclo-metallasiloxane, cyclo-t-Bu₂Si(OMe₂SnO)₂Si-t-Bu₂, was prepared in 1986 by Klingebiel et al.^{4c} In 1997, we reported the syntheses and molecular structures of the cyclo-stannasiloxanes $cyclo-t-Bu_2Sn[O(t-Bu_2)Si]_2O$ and $cyclo-t-Bu_2Si[O(t-Bu_2) SnO_2Si-t-Bu_2$, obtained by the reaction of $(t-Bu_2SnO)_3$ with t-Bu₂SiCl₂.⁵ These were followed by the syntheses and reactivity studies of a series of cyclo-stannasiloxanes of different ring sizes and variable substituents at both the silicon and tin atoms.²⁴

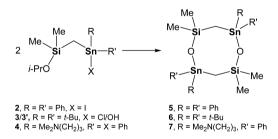
The studies showed that the reactivity of the *cyclo*stannasiloxanes differs drastically from that of the parent *cyclo*-siloxanes as a result of the higher kinetic lability of the Sn–O bond in comparison to the Si–O bond. Consequently, reactions involving Sn–O bonds usually proceed rapidly at room temperature on the laboratory time scale.^{2a} While the ROP of *cyclo*-(Ph₂SiO)₃ occurs at temperatures between 150 and 190 °C in the presence of initiators, the *cyclo*stannasiloxane *cyclo*-R₂Sn(OPh₂Si)₂O (R = t-Bu, *i*-Pr) undergoes ROP upon crystallization, in absence of any initiator, giving the first well-defined polymetallasiloxanes $(R_2SnOPh_2SiOPh_2SiO)_n$.^{2a,6} However, the polymers are not stable and they depolymerize upon dissolving in solvent.⁶ The release of the ring strain is foreseen to be the thermodynamic driving force for the ROP process.

The ability of *cyclo*-stannasiloxanes to undergo ring-opening polymerization strongly depends on the identity of the exocyclic substituents at the tin and silicon atoms, as the ferrocenyl-substituted 6-membered stannasiloxane *cyclo*-Fc₂Sn-(OPh₂Si)₂O (Fc = CpFeC₅H₄) dimerizes under crystallization, affording the corresponding 12-membered stannasiloxane *cyclo*-[(Fc₂Sn(OPh₂SiOPh₂SiO)₂SnFc₂].^{2a} In contrast, the 6-membered stannasiloxane *cyclo*-[Me₂N(CH₂)₃]₂Sn(OPh₂Si)₂O containing a *built-in* ligand does not polymerize or dimerize upon crystallization.⁷ Furthermore, the connectivity of the atoms within the ring plays a major role. Thus, the 5-membered stannasiloxane *cyclo*-(Ph₂SiO)₂Sn-*t*-Bu₂ containing a Si–Si bond does not polymerize upon crystallization. It reversibly dimerizes, providing the 10-membered stannasiloxane *cyclo-t*-Bu₂Sn(OPh₂SiO)₂Sn-*t*-Bu₂.^{2a}

The reactions of *cyclo*-stannasiloxanes with organoelement oxides allowed the isolation of new interesting *cyclo*-metallasiloxanes of different ring sizes thanks to the kinetically labile Sn–OSi bond. Thus, the reaction of the 8-membered stannasiloxanes *cyclo*-R₂Sn(OPh₂SiO)₂SnR₂ (R = Me₂N-(CH₂)₃) with (*t*-Bu₂SnO)₃, *t*-Bu₂Ge(OH)₂. and PhB(OH)₂ gave the 6-membered metallasiloxanes *cyclo*-(R₂SnOPh₂SiOMO) (M = *t*-Bu₂Sn, *t*-Bu₂Ge, PhB),⁸ and the

Received: September 8, 2015

reaction of LPhSn(OPh₂SiO)₂SnLPh (L = C_6H_3 -2,6-(CH₂NMe₂)₂) with Ph₂Si(OH)₂ afforded the 6-membered stannasiloxane *cyclo*-LPhSn(OPh₂Si)₂O.^{2b}


Furthermore, the reactions of the 5-membered stannasiloxane cyclo-t-Bu₂Sn(OPh₂Si)₂ and the 6-membered stannasiloxane cyclo-t-Bu₂Sn(OPh₂Si)₂O with (t-Bu₂SnO)₃ result in ring enlargement, giving the corresponding 7- and 8-membered stannasiloxanes cyclo-O(t-Bu₂SnOPh₂Si)₂^{2a} and cyclo-O(t-Bu₂SnOPh₂Si)₂O, respectively.^{4r,6}

To the best of our knowledge, *cyclo*-stannasiloxanes in which the oxygen atoms are partially replaced by CH_2 moieties have been almost unexplored. As systematic studies showed that even very similar compounds can have drastically different chemical reactivities, this raises interest in synthesizing this type of *cyclo*-stannasiloxanes and study their behavior against organoelement oxides.

RESULTS AND DISCUSSION

Syntheses and Structures of the 8-Membered Stannasiloxanes *cyclo*-[RR'SnOSi(Me₂)CH₂]₂ (5, R = R' = Ph; 6, R = R' = t-Bu; 7, R = Me₂N(CH₂)₃, R' = Ph). The hydrolyses under basic conditions of the Me₂(*i*-PrO)SiCH₂-substituted triorganotin halides [Me₂(*i*-PrO)SiCH₂]RR'SnX (2, R = R' = Ph, X = I; 3/3', R = R' = t-Bu, X = Cl/OH) provided the corresponding 8-membered stannasiloxanes *cyclo*-[RR'SnOSi(Me₂)CH₂]₂ (5, R = R' = Ph; 6, R = R' = t-Bu). The subsequent reaction of the tetraorganotin derivative {Me₂(*i*-PrO)SiCH₂}{Me₂N(CH₂)₃}SnPh₂ (4) with (i) elemental iodine (I₂) and (ii) aqueous sodium hydroxide (NaOH) gave the *cyclo*-stannasiloxane 7 (Scheme 1). Compounds 5–7 were obtained as colorless solid materials in very good yields.

Scheme 1. Syntheses of the Eight-Membered Stannasiloxanes $5-7^a$

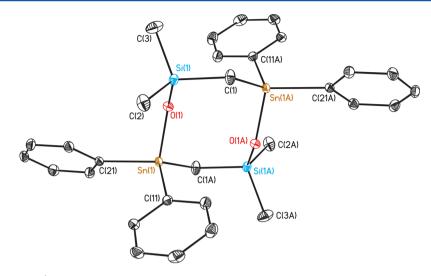
^{*a*}For reactions involving **2** and **3**/**3**': NaOH, H₂O, -NaX, -i-PrOH. For the reaction involving **4**: (i) I₂, -PhI; (ii) NaOH, H₂O, -NaI, -i-PrOH.

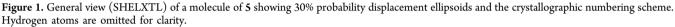
They show good solubility in common organic solvents such as CH₂Cl₂, CHCl₃, toluene, and THF.

Compounds 5–7 each crystallized in the triclinic space group $P\overline{1}$ with one molecule in the unit cell. The molecular structures are shown in Figures 1–3, respectively, and selected interatomic distances and bond angles are summarized in Table 1.

The 8-membered rings are centrosymmetric, with half of each molecule comprising the crystallographic asymmetric unit and the other half being generated by an inversion center. According to a classification scheme introduced by Puff, Kök, et al.,^{4r,9} the 8-membered rings in compounds **5** and **6** are of D type and that in 7 is of J type (Figure 4).

In compounds 5 and 6, the Sn(1) atoms show a distortedtetrahedral geometry with angles ranging between 100.41(6)


(O(1)-Sn(1)-C(11) in 6) and $118.33(9)^{\circ} (C(1A)-Sn(1)-C(11)) = 0$ C(21) in 5). The Sn(1)–O(1)–Si(1) angle in 5 $(137.52(8)^{\circ})$ is much smaller than the corresponding angles in 6 $(152.29(9)^{\circ})$ and Ph₃SiOSnPh₃ $(144.2(6)^{\circ})$,¹⁰ while the Sn(1)-C(1A)-Si(1A) angle $(113.86(11)^{\circ})$ is close to that in 6 (117.89(9)°). As result of an intramolecular $N \rightarrow Sn$ interaction, the Sn(1) atom in compound 7 is pentacoordinated and shows a distorted-trigonal-bipyramidal environment (geometrical goodness¹¹ $\Delta \Sigma(\theta) = 59.1^{\circ}$ with C(1A), C(11), and C(21) occupying the equatorial positions and O(1) and N(14)occupying the axial positions. The distortion from ideal geometry is expressed by the O(1)-Sn(1)-N(14) angle of $166.94(17)^{\circ}$ being smaller than the ideal value of 180° . The Sn(1)-N(14) interatomic distance of 2.766(6) Å is rather long and indicates only weak interaction between these atoms. Nevertheless, as a consequence of this interaction, the Sn(1)-O(1) distance of 2.020(4) Å is greater than the corresponding distances in compounds 5 (1.9815(14) Å) and 6 (1.9687(13) Å), which in turn are close to those reported for 2,2,6,6-tetratert-butyl-4,8-dimethyl-1,5,9-trioxa-4,8-disila-2,6distannabicyclo[3.3.1]nonane.¹²


The ¹¹⁹Sn NMR spectra of solutions of compounds 5 and 6 in CDCl₃ showed singlet resonances at δ -31 and 34, respectively. The corresponding ²⁹Si NMR spectra showed singlet resonances with unresolved ^{117/119}Sn coupling satellites from two magnetically different tin atoms at δ 8.6 (5, ${}^{2}J({}^{29}\text{Si}-{}^{117/119}\text{Sn}) = 33 \text{ Hz}, {}^{2}J({}^{29}\text{Si}-{}^{117/119}\text{Sn}) = 54 \text{ Hz})$ and δ 1.8 (6, ${}^{2}J({}^{29}Si - {}^{117/119}Sn) = 46$ Hz, ${}^{2}J({}^{29}Si - {}^{117/119}Sn) = 56$ Hz), respectively. On the other hand, compound 7 adopts chirality at the tin atom. A ¹¹⁹Sn NMR spectrum of a solution of the bulk material in CDCl₃ showed two resonances at δ -53 (integral 45) and -55 (integral 55). Furthermore, a ²⁹Si NMR spectrum showed two resonances at δ 1.4 (²*J*(²⁹Si-^{117/119}Sn) = 38 Hz, ²*J*(²⁹Si-^{117/119}Sn) = 47 Hz) and at δ 1.0 (²*J*(²⁹Si-^{117/119}Sn) = 42 Hz, ${}^{2}J({}^{29}Si - {}^{117/119}Sn) = 49$ Hz) (Table 2). A ${}^{119}Sn$ NMR spectrum of a solution of single crystals of 7 in C_7D_8 at ambient temperature displayed two resonances of almost equal intensity at δ -62.8 and -62.6, respectively. At T = 333 K, these signals shifted to δ -54.4 and -54.2, respectively. The data indicate the presence of two diastereomers in solution, with the phenyl groups being either cis or trans. Apparently, epimerization takes place in solution. It is fast on the laboratory time scale but slow on the ¹¹⁹Sn NMR time scale. The mechanism of this epimerization was not investigated in more detail.

ESI MS spectra of compounds 5–7 in the positive mode showed major mass clusters centered at m/z 723.1 ([5 + H]⁺), 643.2 ([6 + H]⁺), and 741.2 ([7 + H]⁺), respectively. In addition, mass clusters for the species [Me₂(OH)SiCH₂RR'Sn + n H₂O + m MeCN]⁺, (n, m = natural numbers between 0 and 4) were also observed.

Syntheses of the 6-Membered Metallasiloxanes *cyclo*-[Me₂SiCH₂(RR')SnOMO] (8, R = R' = Ph, M = t-Bu₂Sn; 9, R = R' = t-Bu, M = t-Bu₂Sn; 10, R = Me₂N(CH₂)₃, R' = Ph, M = t-Bu₂Sn; 11, R = Me₂N(CH₂)₃, R' = Ph, M = Ph₂Ge). The reactions of the 8-membered stannasiloxanes *cyclo*-[RR'SnOSi-(Me₂)CH₂]₂ (5, R = R' = Ph; 6, R = R' = t-Bu; 7, R = Me₂N(CH₂)₃, R' = Ph) with 2 molar equiv of di-*tert*-butyltin oxide (*t*-Bu₂SnO) or diphenylgermanium oxide (Ph₂GeO) in CH₂Cl₂ at room temperature or in CHCl₃ at reflux gave the corresponding 6-membered metallasiloxanes *cyclo*-[Me₂SiCH₂(RR')SnOMO] (8, R = R' = Ph, M = t-Bu₂Sn; 9, R = R' = t-Bu, M = t-Bu₂Sn; 10, R = Me₂N(CH₂)₃, R' = Ph, M

Article

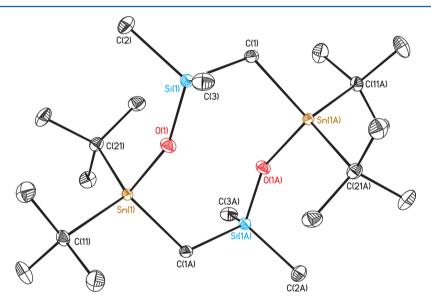
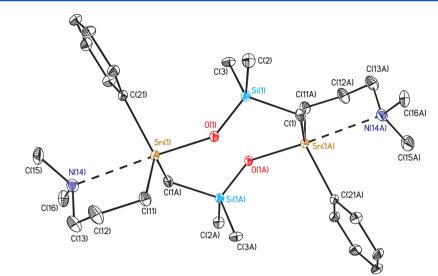


Figure 2. General view (SHELXTL) of a molecule of 6 showing 30% probability displacement ellipsoids and the crystallographic numbering scheme. Hydrogen atoms are omitted for clarity.

= t-Bu₂Sn; 11, R = Me₂N(CH₂)₃, R' = Ph, M = Ph₂Ge) in excellent yields (Scheme 2).

Compounds 8–11 show good solubility in common organic solvents such as CH₂Cl₂, CHCl₃, and toluene.


Compounds 8–10 contain two differently substituted tin atoms linked to one silicon atom by oxygen or carbon bridges. The first *cyclo*-stannasiloxane with two differently substituted tin atoms, *cyclo*-[Ph₂SiO(R₂)SnO(*t*-Bu₂)SnO] (R = Me₂N-(CH₂)₃), was obtained by the reaction of *cyclo*-(Ph₂SiOR₂SnO)₂ with di-*tert*-butyltin oxide.⁸ On the other hand, the compound *cyclo*-[Me₂SiCH₂(*t*-Bu₂)SnOPh₂GeO] (11) is the first 6-membered *cyclo*-metallasiloxane to be composed of four different group 14 elements in the ring skeleton.

The two chemically and magnetically different tin atoms in compounds **8–10** result in two ¹¹⁹Sn NMR singlet resonances, each with ^{117/119}Sn coupling satellites. The ¹¹⁹Sn NMR spectrum of compound **8** in CDCl₃ showed two resonances at δ –13 assigned to OPh₂SnCH₂ and at δ –93 that corresponds to O-*t*-Bu₂SnO with a ²J(¹¹⁹Sn–^{117/119}Sn) coupling

constant of 317/335 Hz for each resonance (Figure S36 in the Supporting Information). Similarly, the ¹¹⁹Sn NMR spectra of solutions of compounds **9** and **10** in CDCl₃ (Figures S40 and S44 in the Supporting Information) showed two resonances (**9**, δ 49 [O(*t*-Bu₂)S*n*CH₂], -98 [O(*t*-Bu₂)S*n*O], ²*J*(¹¹⁹Sn-^{117/119}Sn) = 351/367 Hz; **10**, δ -23 [O{Me₂N-(CH₂)₃Ph}S*n*CH₂], -89 (O(*t*-Bu₂)S*n*O), ²*J*(¹¹⁹Sn-^{117/119}Sn) = 293 Hz). A ¹¹⁹Sn NMR spectrum of a solution of compound **11** in CDCl₃ (Figure S47 in the Supporting Information) showed one resonance at δ -59 (Table 3).

The ²⁹Si NMR spectra of compounds **8–11** each showed a single resonance at δ 5.9, 5.2, 6.5, and 10.7, respectively, with ²*J*(²⁹Si–^{117/119}Sn) coupling satellites ranging between 40 and 49 Hz (Table 3).

The ESI MS spectra of compounds **10** and **11** in the positive mode showed major mass clusters that are assigned to the protonated compounds centered at m/z 620.1 ([**10** + H]⁺) and 614.1 ([**11** + H]⁺). The ESI MS spectrum of compound **8** showed a mass cluster of 12% relative abundance centered at

Article

Figure 3. General view (SHELXTL) of a molecule of 7 showing 30% probability displacement ellipsoids and the crystallographic numbering scheme. Hydrogen atoms are omitted for clarity.

Table 1. Selected Interatomic Distances (Å) and Bond
Angles (deg) in the Stannasiloxanes cyclo-
$[RR'SnOSi(Me_2)CH_2]_2$ (5, R = R' = Ph; 6, R = R' = t-Bu; 7,
$\mathbf{R} = \mathbf{M}\mathbf{e}_2 \mathbf{N}(\mathbf{C}\mathbf{H}_2)_3, \ \mathbf{R}' = \mathbf{P}\mathbf{h})$

	5	6	7
Sn(1) - O(1)	1.9815(14)	1.9687(13)	2.020(4)
Sn(1)-C(1A)	2.125(2)	2.1361(17)	2.135(6)
Si(1) - O(1)	1.6264(15)	1.6072(13)	1.610(4)
Sn(1)-C(11)	2.137(2)	2.1739(18)	2.141(6)
Sn(1)-C(21)	2.137(2)	2.1746(19)	2.136(6)
Sn(1)-N(14)			2.766(6)
O(1) - Sn(1) - C(1A)	103.71(8)	105.84(7)	101.8(2)
O(1)-Sn(1)-C(11)	106.62(7)	100.41(6)	93.2(2)
O(1)-Sn(1)-C(21)	102.84(7)	108.76(7)	99.8(2)
C(1A)-Sn(1)-C(11)	118.33(9)	110.10(7)	119.0(3)
C(1A) - Sn(1) - C(21)	113.91(8)	113.53(7)	116.8(2)
C(11)-Sn(1)-C(21)	109.76(8)	116.81(7)	118.1(3)
Sn(1) - O(1) - Si(1)	137.52(8)	152.29(9)	140.7(2)
Sn(1)-C(1A)-Si(1A)	113.86(11)	117.89(9)	116.1(3)
N(14)-Sn(1)-O(1)			166.94(17)
N(14)-Sn(1)-C(1A)			88.7(2)
N(14)-Sn(1)-C(11)			74.7(2)
N(14)-Sn(1)-C(21)			82.1(2)

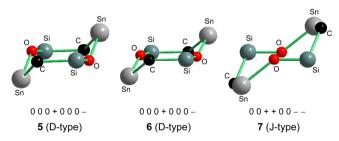
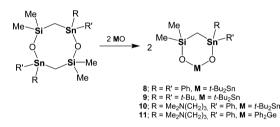


Figure 4. Reduced ball-and-stick molecular structures of compounds 5–7. All exocyclic substituents are omitted for clarity.


m/z 611.1 for $[8 + H]^+$. An ESI MS spectrum of compound 9 in the negative mode showed a major mass cluster centered at m/z 587.1 which fits exactly with $[9 + OH]^-$.

Formation of the Ladderlike Diorganotinoxo Clusters [PhSn(CH₂Me₂SiO)Sn(μ_3 -O)(μ -OH)t-Bu₂]₂ (12) and [t-

Table 2. Selected NMR Data of the Stannasiloxanes cyclo-[RR'SnOSi(Me₂)CH₂]₂ (5, R = R' = Ph; 6, R = R' = t-Bu; 7, R = Me₂N(CH₂)₃, R' = Ph)

	$\delta(^{29}\text{Si})$ (ppm)	$\delta(^{119}\text{Sn})$ (ppm)	$^{2}J(^{29}\text{Si}-^{117/119}\text{Sn})$ (Hz)
5	8.6	-31	33, 54
6	1.8	34	46, 56
7	1.0; 1.4	-53; -55	42, 49; 38, 47

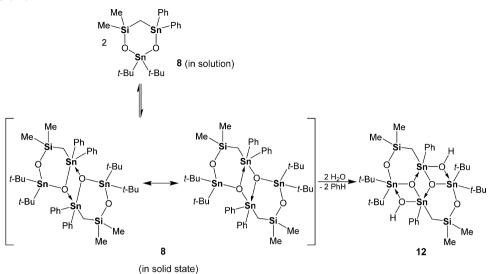

Scheme 2. Syntheses of the 6-Membered Metallasiloxanes 8-11

Table 3	. Selected	NMR	Data	of	Com	pounds	8-11
---------	------------	-----	------	----	-----	--------	------

^{//119} Sn)
35
57
2

Bu₂(μ -OH)**Sn**(μ_3 -O)**SnPh**(CH₂Me₂SiO)**Sn**-*t*-Bu₂(μ_3 -O)]₂ (13). Recrystallization of the stannasiloxane *cyclo*-[Me₂SiCH₂Ph₂SnO(*t*-Bu₂)SnO] (8) by slow evaporation of a solution of the compound in CH₂Cl₂/hexane in aerobic conditions gave, as the mixture was dried, a few single crystals suitable for X-ray diffraction analysis of the ladder-type dimeric tetraorganodistannoxane [PhSn(CH₂Me₂SiO)Sn(μ_3 -O)(μ -OH)*t*-Bu₂]₂ (12). This is a result of Sn-C_{Ph} bond cleavage in the presence of moist air (Scheme 3). Chandrasekhar et al. reported before on Sn-C_{Ph} bond cleavage, as the reaction of the diorganotin dichloride Ph₂SnCl₂ with cycPO₂H (1,1,2,3,3pentamethyltrimethylenephosphinic acid) gave the monoorgaScheme 3. Hydrolysis of Compound 8 in Moist Air Giving the Ladder-Type Diorganotinoxo Cluster [PhSn(CH₂Me₂SiO)Sn(μ_3 -O)(μ -OH)*t*-Bu₂]₂ (12)

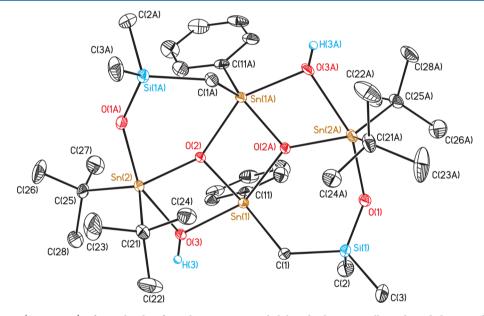


Figure 5. General view (SHELXTL) of a molecule of 12 showing 30% probability displacement ellipsoids and the crystallographic numbering scheme. Carbon-bound hydrogen atoms are omitted for clarity.

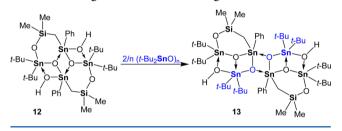
notin oxo cluster $[(PhSn)_3(\mu_3-O)(\mu-cycPO_2)_3(\mu-OH)_3]$ -[cycPO₂].¹³

Compound 12 is a high-melting solid material that shows good solubility in CH_2Cl_2 and $CHCl_3$.

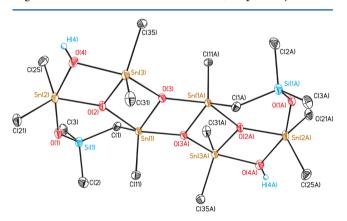
In an attempt to synthesize compound **12**, a solution of **8** in CH₂Cl₂ to which a few droplets of water had been added was stirred for a few days at room temperature. Surprisingly, no reaction took place. After the solution was evaporated to dryness and the residue kept for a few weeks in moist air, ²⁹Si and ¹¹⁹Sn NMR spectra of the residue in CDCl₃ solution were recorded. A ²⁹Si NMR spectrum showed two signals, at δ 8.6 for the 8-membered *cyclo*-stannasiloxane **5** and at δ –2.4 with ²*J*(²⁹Si–^{117/119}Sn) coupling constants of 40 and 69 Hz assigned to **12** (Figure S51 in the Supporting Information). The corresponding ¹¹⁹Sn NMR spectrum showed major equally intense resonances at δ –219 and –260 that are characteristic for pentacoordinated tin atoms found in ladder-type

diorganotinoxo clusters.¹⁴ The signal at $\delta -219$ (²J(¹¹⁹Sn_{endo}-²⁹Si) = 41 Hz, ²J(¹¹⁹Sn_{endo}-^{117/119}Sn_{exo}) = 228/ 242 Hz, ²J(¹¹⁹Sn_{endo}-¹¹⁷Sn_{endo}) = 82 Hz) is assigned to the endocyclic tin atom (Sn1, Figure 5) in compound 12, while the signal at $\delta -260$ (²J(¹¹⁹Sn_{exo}-²⁹Si) = 71 Hz, ²J(¹¹⁹Sn_{exo}-^{117/119}Sn_{endo}) = 228/242 Hz, ⁴J(¹¹⁹Sn_{exo}-¹¹⁷Sn_{exo}) = 84 Hz) belongs to the exocyclic tin (Sn2, Figure 5) (Figure S50 in the Supporting Information). In addition, resonances at δ -31 (compound 5, 25%), -38 (11%), and -54 (6%) were observed. The last two signals are likely related to the hydrolysis products that contain the *t*-Bu₂Sn moiety, as they do not have corresponding signals in the ²⁹Si NMR spectrum.

We suppose that the cleavage of the $Sn-C_{Ph}$ bond in 8 by water is facilitated by activation of this bond as a result of an O \rightarrow Sn donor-acceptor interaction in the solid state, realized by dimerization. The O \rightarrow Sn interaction vanishes upon dilution


Organometallics

(in solution), explaining why stirring a solution of compound 8 in presence of water does not afford compound 12.


The rearrangement of 6-membered cyclic stannasiloxanes upon recrystallization to give the corresponding 12-membered rings was also described for *cyclo*- $[R_2Sn(OPh_2Si)_2O]_n$ (R = $CpFeC_{c}H_4$).^{2a}

Interestingly, when CDCl₃ was allowed to evaporate slowly from a solution containing **8** (93%), **5** (4%), and *t*-Bu₂SnO (3%), in a not completely closed NMR tube, one single crystal of the ladderlike hydrolysis product $[t-Bu_2(\mu-OH)Sn(\mu_3-O)SnPh(CH_2Me_2SiO)S-nt-Bu_2(\mu_3-O)]_2$ (**13**) suitable for Xray diffraction analysis was isolated. Compound **13** is formed by insertion of two *t*-Bu₂SnO moieties into the Sn–OH bonds in **12** (Scheme 4).

Scheme 4. Reaction of Compound 12 with Di-*tert*-butyltin Oxide Providing the Hexanuclear Diorganotinoxo Cluster 13

Molecular Structures of the Ladderlike Diorganotinoxo Clusters 12 and 13. The compounds 12 and 13 crystallized in the monoclinic space groups P2/n and $P2_1/n$, respectively, with two molecules in the unit cell. The molecular structures of compounds 12 and 13 are shown in Figures 5 and 6, respectively, and selected interatomic distances and bond angles are summarized in Tables 4 and 5, respectively.

Figure 6. General view (SHELXTL) of a molecule of **13** showing 30% probability displacement ellipsoids and the crystallographic numbering scheme. The methyl carbon atoms of the *tert*-butyl substituents are omitted for clarity. Only the C_{ipso} carbon atoms (C11, C11A) of the phenyl substituents are shown. Carbon-bound hydrogen atoms are omitted for clarity.

Both 12 and 13 exist as ladder-type compounds that contain pentacoordinated tin atoms. They can be viewed as symmetric dimers, as one half of the molecules comprises the crystallographic asymmetric unit and the other half is generated by a C_2 proper axis (in compound 12) or inversion center (in compound 13). The endocyclic tin atoms have squarepyramidal environments with one carbon atom and three oxygen atoms in the equatorial positions (C(1), O(2), O(2A), and O(3) for Sn(1) in 12, C(1), O(2), O(3A), and O(3) for Sn(1) in 13, and C(35), O(2), O(3), and O(4) for Sn(3) in 13). The axial positions are occupied by one carbon atom (C(11) for Sn(1) in 12 and 13; and C(31) for Sn(3) in 13) (geometrical parameter¹⁵ τ = 0.32 for Sn(1) in 12; τ = 0.37 and 0.12 for Sn(1) and Sn(3), respectively, in 13). The exocyclic tin atoms Sn(2) exhibit distorted-trigonal-bipyramidal geometry with the equatorial positions being occupied by the C(21), C(25), and O(2) atoms and the axial positions by one silicon-bound oxygen atom (O(1A) in 12 and O(1) in 13) and one μ_2 oxygen atom (O(3) in 12 and O(4) in 13) (geometrical goodness¹¹ $\Delta \Sigma(\theta) = 72.4^{\circ}$ for 12 and 75.9° for 13).

The Sn–O interatomic distances range between 2.0253(18) and 2.301(2) Å for 12 and between 2.035(2) and 2.273(3) for 13. The Sn_{endo}- μ_2 -O–Sn_{exo} bridges are not symmetric (12, Sn(1)–O(3) 2.0936(18) Å, Sn(2)–O(3) 2.301(2) Å; 13, Sn(3)–O(4) 2.149(3) Å, Sn(2)–O(4) 2.273(3) Å). With respect to the central Sn₂O₂ ring being almost (12) or perfectly (13) planar, the phenyl substituents are cis for 12 but trans for 13.

On the basis of the different Sn–O interatomic distances, compound 12 can formally and with caution be viewed as a 12membered ring showing intramolecular $O(2) \rightarrow Sn(1A)$ (2.1266(16) Å) and $O(3) \rightarrow Sn(2)$ (2.301(2) Å) interactions. The alternative view of two head-to-tail linked 6-membered rings giving a centrosymmetric dimer is less favored, as the Sn(1)-O(2) distance of 2.0344(17) Å) is much shorter. Regardless of this, the formal replacement of a tin-bound phenyl substituent in 8 by a hydroxyl group in 12 enhances the Lewis acidity at the tin atom in the latter, affording a stronger $O \rightarrow Sn$ interaction. Consequently, a ladderlike structure results. The latter consists of three 4-membered and two 6-membered rings (Figure 7).

Compound 13, on the other hand, comprises the structural motif $[Me_2SiCH_2(Ph)Sn(\mu_3-O)O(t-Bu_2)Sn(\mu-OH)Sn(t-Bu_2)]$ that resembles $[cyclo-R_2Si(OSnt-Bu_2)_2O\cdot t-Bu_2Sn(OH)_2]$ (R = Ph,¹⁶ Me¹⁷) and related compounds,¹⁸ by replacing one oxygen atom with a methylene moiety and one oxygen-bound proton and one *tert*-butyl substituent with a tin and oxygen atom, respectively, belonging to the second half of 13 (Chart 1).

A search in the Cambridge Structural Data Base (CCSD) revealed 12 entries for hexanuclear tin oxo clusters that are ladderlike, as for compound 13, but show different connectivities. Eight of them represent open-drum structures,¹⁹ two contain both di- and triorganotin moieties,²⁰ and two show the presence of Sn–O as well as Sn–N bonds.²¹

In conclusion, a series of novel metallasiloxanes cyclo- $[RR'SnOSi(Me_2)CH_2]_2$ (5, R = R' = Ph; 6, R = R' = t-Bu; 7, $R = Me_2N(CH_2)_3$, R' = Ph) and cyclo-[Me_2SiCH_2(RR')-SnOMO] (8, R = R' = Ph, $M = t-Bu_2Sn$; 9, R = R' = t-Bu, M =*t*-Bu₂Sn; 10, R = Me₂N(CH₂)₃, R' = Ph, M = *t*-Bu₂Sn; 11, R = $Me_2N(CH_2)_3$, R' = Ph, M = Ph_2Ge) were synthesized and characterized. On contact with air moisture, compound 8 surprisingly undergoes Sn-C_{Ph} bond cleavage to give the ladderlike diorganotin oxo cluster [PhSn(CH₂Me₂SiO)(μ_3 -O)Sn(μ -OH)t-Bu₂]₂ (12). The latter reacts with 2 molar equiv of t-Bu₂SnO, affording the hexanuclear diorganotinoxo cluster $[(t-Bu_2)(\mu-OH)Sn(\mu_3-O)Sn(Ph)(CH_2Me_2SiO)Sn(t Bu_2(\mu_3-O)]_2$ (13). The cyclic metallasiloxanes 5–11 hold potential as single-source precursors for new inorganic polymers and structurally modified polysiloxanes by the socalled ring-opening polymerization.^{2a}

Organometallics

Table 4. Selected Interatomic Distances (Å) and Bond Angles (deg) in 12

Sn(1) - O(2)	2.0344(17)	Sn(2) - O(2)	2.0329(16)
Sn(1)–O(2A)	2.1266(16)	Sn(2)-O(3)	2.301(2)
Sn(1)-O(3)	2.0936(18)	Sn(2)-O(1A)	2.0253(18)
Sn(1)-C(1)	2.119(3)	Sn(2) - C(21)	2.167(3)
Sn(1)-C(11)	2.123(3)	Sn(2) - C(25)	2.165(3)
Si(1) - O(1)	1.5993(19)		
O(3) - Sn(1) - O(2A)	146.87(7)	O(3) - Sn(2) - O(1A)	155.92(7)
O(3) - Sn(1) - O(2)	73.54(7)	O(3) - Sn(2) - O(2)	69.22(7)
O(3)-Sn(1)-C(1)	99.68(9)	O(3)-Sn(2)-C(21)	94.60(10)
O(3)-Sn(1)-C(11)	99.25(10)	O(3)-Sn(2)-C(25)	90.60(10)
O(2A) - Sn(1) - O(2)	74.30(7)	O(1A) - Sn(2) - O(2)	87.32(7)
O(2A) - Sn(1) - C(1)	93.59(8)	O(1A) - Sn(2) - C(21)	99.80(10)
O(2A) - Sn(1) - C(11)	98.78(9)	O(1A) - Sn(2) - C(25)	98.04(9)
O(2)-Sn(1)-C(1)	127.54(9)	O(2)-Sn(2)-C(21)	113.29(9)
O(2)-Sn(1)-C(11)	109.68(9)	O(2)-Sn(2)-C(25)	122.73(10)
C(1)-Sn(1)-C(11)	122.67(11)	C(21)-Sn(2)-C(25)	121.58(11)
Sn(1)-C(1)-Si(1)	114.29(13)	Sn(2A)-O(1)-Si(1)	143.13(11)

Table 5. Selected Interatomic Distances (Å) and Bond Angles (deg) in 13

Sn(1)-O(2)	2.128(2)	Sn(2)-C(21)	2.191(4)
Sn(1)-O(3A)	2.141(2)	Sn(2)-C(25)	2.200(5)
Sn(1)–O(3)	2.040(3)	Sn(3)–O(4)	2.149(3)
Sn(1)-C(1)	2.119(4)	Sn(3)–O(3)	2.161(2)
Sn(1)-C(11)	2.121(5)	Sn(3)–O(2)	2.049(3)
Sn(2) - O(1)	2.060(3)	Sn(3)-C(31)	2.195(5)
Sn(2) - O(4)	2.273(3)	Sn(3)-C(35)	2.186(5)
Sn(2) - O(2)	2.035(2)	Si(1)-O(1)	1.612(3)
O(2) - Sn(1) - O(3A)	151.44(10)	O(3A) - Sn(1) - C(1)	97.64(12)
O(2)-Sn(1)-O(3)	74.62(10)	O(3A) - Sn(1) - C(11)	98.63(13)
O(2)-Sn(1)-C(1)	93.09(13)	O(3)-Sn(1)-C(1)	129.00(15)
O(2)-Sn(1)-C(11)	98.53(13)	O(3)-Sn(1)-C(11)	110.36(13)
O(3A) - Sn(1) - O(3)	78.07(11)	C(1)-Sn(1)-C(11)	120.45(16)
O(1)-Sn(2)-O(4)	156.15(10)	O(4) - Sn(2) - C(21)	93.28(15)
O(1)-Sn(2)-O(2)	86.92(10)	O(4) - Sn(2) - C(25)	94.14(16)
O(1)-Sn(2)-C(21)	97.42(15)	O(2)-Sn(2)-C(21)	118.06(14)
O(1)-Sn(2)-C(25)	98.14(15)	O(2) - Sn(2) - C(25)	118.41(14)
O(4) - Sn(2) - O(2)	69.24(11)	C(21)-Sn(2)-C(25)	121.88(17)
O(4) - Sn(3) - O(3)	141.87(11)	O(3) - Sn(3) - C(31)	105.52(14)
O(4) - Sn(3) - O(2)	71.54(11)	O(3) - Sn(3) - C(35)	99.52(13)
O(4) - Sn(3) - C(31)	100.78(14)	O(2) - Sn(3) - C(31)	110.09(15)
O(4) - Sn(3) - C(35)	93.83(14)	O(2) - Sn(3) - C(35)	134.66(15)
O(3) - Sn(3) - O(2)	73.74(9)	C(31)-Sn(3)-C(35)	114.81(19)
Sn(1) - O(2) - Sn(2)	137.16(13)	Sn(1)-O(2)-Sn(3)	105.66(10)
Sn(1) - O(3) - Sn(3)	104.75(10)	Sn(1)-O(3)-Sn(1A)	101.93(11)
Sn(2) - O(4) - Sn(3)	103.10(13)	Sn(2) - O(2) - Sn(3)	116.05(13)
Sn(3)-O(3)-Sn(1A)	153.32(14)	Si(1) - O(1) - Sn(2)	138.74(17)
Si(1)-C(1)-Sn(1)	113.8(2)		

EXPERIMENTAL SECTION

General Considerations. The solvents used for the Grignard-type reactions were purified by distillation under argon from the appropriate drying agents. $Me_2(i-PrO)SiCH_2Cl_r^{22} Me_2N(CH_2)_3Cl_r^{23}$ and $(t-Bu_2SnO)_3^{24}$ were synthesized according to literature methods. Ph₂GeO was synthesized by a procedure modified from that described in the literature.²⁵ Triphenyltin chloride and diphenylgermanium dichloride were commercially available, and they were used without further purification. Bruker DPX-300, DRX-400, and AVIII-600 spectrometers were used to obtain ¹H, ¹³C, ²⁹Si, and ¹¹⁹Sn NMR spectra at ambient temperature. Solution ¹H, ¹³C, ²⁹Si-INEPT, and ¹¹⁹Sn NMR chemical shifts are given in ppm and were referenced to Me_4Si (¹H, ¹³C, ²⁹Si), and Me_4Sn (¹¹⁹Sn). Elemental analyses were performed on a LECO-CHNS-932 analyzer. No elemental analyses

were performed for compounds that are oils. The electrospray mass spectra were recorded with a Thermoquest-Finnigan instrument, using $\rm CH_3CN$ or $\rm CH_2Cl_2$ as the mobile phase.

Crystallography. Intensity data for all crystals were collected on a XcaliburS CCD diffractometer (Oxford Diffraction) using Mo K α radiation at 173 K. The structures were solved with direct methods using SHELXS-2014/7,²⁶ and refinements were carried out against F^2 by using SHELXL-2014/7.²⁶ The C–H hydrogen atoms were positioned with idealized geometry and refined using a riding model. All non-hydrogen atoms were refined using anisotropic displacement parameters. The studied crystal of compound 7 was a nonmerohedral twin. Refinement of the fractional contributions of the two twin components yielded a ratio of 0.55969:0.44031. The twin operation is a 180° rotation about the *c* axis. Both of the compounds exist in the

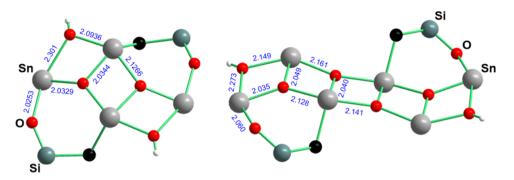
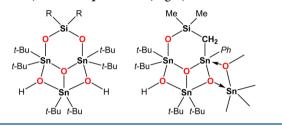



Figure 7. Reduced ball and stick molecular structures of compounds 12 (left) and 13 (right). The organic substituents are omitted for clarity. For simplification, the Sn–O interatomic distances (Å) are given without standard deviations.

Chart 1. Schematic Presentation of the Structural Similarity between $[cyclo-R_2Si(OSnt-Bu_2)_2O\cdot t-Bu_2Sn(OH)_2]$ (Left; R = Ph,¹⁶ Me¹⁷) and Compound 13 (Right)

trans conformation. In compound 13 one *tert*-butyl group is affected by disorder and was refined by a split model over two positions. Their occupancies were allowed to refine freely until a constant number (0.74627/0.25373) was obtained.

CCDC-1409967 (5), CCDC-1409968 (6), CCDC-1409969 (7), CCDC-1409970 (12), and CCDC-1409971 (13) contain supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

For decimal rounding of numerical parameters and su values the IUCr rules have been employed. $^{\rm 27}$

Synthesis of Diphenylgermanium Oxide, Ph₂GeO. A solution of sodium hydroxide (300 mg, 7.5 mmol) in a mixture of water (15 mL) and ethanol (10 mL) was added to a solution of Ph₂GeCl₂ (280 mg, 0.94 mmol) in CH₂Cl₂ (15 mL). The reaction mixture was stirred for 3 days at room temperature before CH₂Cl₂ and ethanol were evaporated. The residue was extracted with CH₂Cl₂. The organic phase was separated, and CH₂Cl₂ was evaporated to give Ph₂GeO (0.21 g, 92%) as a white solid with mp 148 °C.

¹H NMR (400.13 MHz, C₆D₆): δ 7.30–7.63 (m, 10H, Ar H). ¹³C{¹H} NMR (75.48 MHz, C₆D₆): δ 128.2 (C_m), 130.3 (C_p), 133.6 (C_o), 135.9 (C_i). Electrospray MS: m/z (%), positive mode, calcd for [(Ph₂GeO)₃ + H]⁺ (C₃₆H₃₁Ge₃O₃⁺) 728.9946, found 729.0. Anal. Calcd for C₁₂H₁₀OGe (242.85 g/mol): C, 59.35; H, 4.15. Found: C, 59.5, H, 4.2.

Synthesis of $Me_2(i$ -PrO)SiCH₂SnPh₃ (1). A solution of triphenyltin chloride (104.08 g, 270 mmol) in THF (350 mL) was added dropwise to a Grignard reagent prepared from $Me_2(i$ -PrO)SiCH₂Cl (50.02 g, 300 mmol) and magnesium turnings (8.02 g, 330 mmol) in THF (230 mL). The reaction mixture was stirred overnight at room temperature and then heated at reflux for 1 h. Then it was cooled to room temperature and the solvent was evaporated in vacuo. The viscous oil obtained was extracted in a Soxhlet extractor using hexane as a solvent. After the solvent was evaporated, compound 1 (121.30 g, 93%) was obtained as a colorless liquid.

¹H NMR (300.13 MHz, C_6D_6): δ 0.16 (s, 6H, Me_2Si), 0.55 (s, 2H, ${}^2J({}^{1}H-{}^{117/119}Sn) = 75.1/77.2$ Hz, SiCH₂Sn), 1.08 (d, 6H, ${}^3J({}^{1}H-{}^{1}H) = 5.8$ Hz, Me_2CH), 3.87 (m, 1H, CHO), 7.27–7.77 (m, 1SH, Ar H). ${}^{13}C{}^{1}H$ NMR (75.48 MHz, C_6D_6): δ –3.7 (${}^{1}J({}^{13}C-{}^{29}Si) = 60$ Hz, ${}^{1}J({}^{13}C-{}^{127/119}Sn) = 258/270$ Hz, SiCH₂Sn), 1.9 (${}^{1}J({}^{13}C-{}^{29}Si) = 58$

Hz, ${}^{3}J({}^{13}C-{}^{117/119}Sn) = 12$ Hz, $Me_{2}Si$), 26.3 ($Me_{2}CH$), 65.51 (CHO), 129.0 (C_{m}), 129.4 (C_{p}), 137.8 (${}^{2}J({}^{13}C-{}^{117/119}Sn) = 38$ Hz, C_{o}), 140.5 (${}^{1}J({}^{13}C-{}^{117/119}Sn) = 488/512$ Hz, C_{i}). ${}^{29}Si\{{}^{1}H\}$ NMR (59.63 MHz, $C_{6}D_{6}$): δ 14.2 (${}^{2}J({}^{29}Si-{}^{117/119}Sn) = 25$ Hz, ${}^{2}J({}^{29}Si-{}^{13}C) = 57$ Hz). ¹¹⁹Sn{ ${}^{1}H\}$ NMR (111.92 MHz, $C_{6}D_{6}$): δ -89 (${}^{1}J({}^{119}Sn-{}^{13}C_{CH_{2}}) =$ 271 Hz, ${}^{1}J({}^{119}Sn-{}^{13}C_{Ph}) = 513$ Hz). Electrospray MS: m/z (%), positive mode, calcd for $[1 - Ph]^{+}$ ($C_{18}H_{25}OSiSn^{+}$) 405.0699, found 405.1.

Synthesis of $\{Me_2(i-PrO)SiCH_2\}SnPh_2I$ (2). Elemental iodine (2.64 g, 10.4 mmol) was added in small portions at 0 °C to a solution of 1 (5.00 g, 10.4 mmol) in CH₂Cl₂ (50 mL), and the mixture was warmed to reach room temperature and stirred overnight. Removal of the solvent and iodobenzene in vacuo gave 5.07 g (92%) of compound 2 as a colorless oil.

¹H NMR (400.13 MHz, CDCl₃): δ 0.25 (s, 6H, *Me*₂Si), 1.06 (d, 6H, ³*J*(¹H-¹H) = 6.0 Hz, *Me*₂CH), 1.15 (s, 2H, ²*J*(¹H-^{117/119}Sn) = 87.4/ 91.4 Hz, SiCH₂Sn), 4.01 (m, 1H, ³*J*(¹H-¹H) = 6.1 Hz, CHO), 7.43– 7.88 (m, 10H, Ar H). ¹³C{¹H} NMR (100.63 MHz, CDCl₃): δ 1.2 (¹*J*(¹³C-²⁹Si) = 58 Hz, ³*J*(¹³C-^{117/119}Sn) = 15 Hz, *Me*₂Si), 4.6 (¹*J*(¹³C-^{117/119}Sn) = 251/262 Hz, ¹*J*(¹³C-²⁹Si) = 57 Hz, SiCH₂Sn), 25.5 (*Me*₂CH), 65.5 (CHO), 128.5 (³*J*(¹³C-^{117/119}Sn) = 61 Hz, *C_m*), 129.6 (⁴*J*(¹³C-^{117/119}Sn) = 14 Hz, *C_p*), 136.0 (²*J*(¹³C-^{117/119}Sn) = 50 Hz, *C_o*), 138.4 (¹*J*(¹³C-^{117/119}Sn) = 536/562 Hz, *C_i*). ²⁹Si{¹H} NMR (59.63 MHz, CDCl₃): δ 15.1 (²*J*(²⁹Si-^{117/119}Sn) = 30 Hz). ¹¹⁹Sn{¹H} NMR (111.91, CDCl₃): δ -67 (92%, ¹*J*(¹¹⁹Sn-¹³C_{CH₂}) = 263 Hz, ¹*J*(¹¹⁹Sn-¹³C_{Ph}) = 561 Hz), -7 (1%), -60 (3%), -114 (2%, Ph₃SnI), -217 (2%, *Me*₂(*i*-PrO)SiCH₂PhSnI₂). Electrospray MS: *m/z* (%), positive mode, calcd for [O(Me₂SiCH₂SnPh₂)₂ + OH]⁺ (C₃₀H₄₇O₂Si₂Sn₂⁺) 723.0380, found 723.1.

Synthesis of a Mixture Consisting of $\{Me_2(i-PrO)SiCH_2\}t-Bu_2SnX (3, X = Cl; 3', X = OH)$. A Grignard reagent prepared from $Me_2(i-PrO)SiCH_2Cl$ (2.19 g, 13.16 mmol) and magnesium turnings (0.35 g, 14.48 mmol) in THF (30 mL) was added dropwise at $-50 \,^{\circ}C$ over a period of 1 h to a solution of t-Bu_2SnCl₂ (4.00 g, 13.16 mmol) in THF (15 mL), and the mixture was warmed to room temperature and stirred overnight. The solvent was evaporated, hexane (100 mL) was added, and the mixture was stirred for 15 min before it was filtered under inert conditions. Hexane was evaporated, and the residue was distilled at 133–138 °C in vacuo (9 mbar), giving 3.95 g of a mixture of two compounds with a ratio (4:1) according to the ¹¹⁹Sn NMR spectrum that could be related to compounds 3 and 3' (resulting from hydrolysis of compound 3). No attempts were made to separate the two compounds, and the mixture was used for the synthesis of compound 7 (see below).

Compound 3. ¹H NMR (400.13 MHz, CDCl₃): δ 0.21 (s, 6H, Me₂Si), 0.29 (s, 2H, ²J(¹H-^{117/119}Sn) = 64.2/66.8 Hz, SiCH₂Sn), 1.15 (d, 6H, ³J(¹H-¹H) = 6.3 Hz, Me₂CH), 1.32 (s, 18H, ³J(¹H-^{117/119}Sn) = 80.8/84.8 Hz, t-Bu₂Sn), 4.01 (m, 1H, ³J(¹H-¹H) = 6.0 Hz, CHO). ¹³C{¹H} NMR (100.63 MHz, CDCl₃): δ -0.1 (¹J(¹³C-^{117/119}Sn) = 111/115 Hz, ¹J(¹³C-²⁹Si) = 58 Hz, SiCH₂Sn), 1.1 (¹J(¹³C-²⁹Si) = 58 Hz, ³J(¹³C-^{117/119}Sn) = 9 Hz, Me₂Si), 25.8 (Me₂CH), 29.9 (Me₃C), 34.9 (¹J(¹³C-^{117/119}Sn) = 371/389 Hz, Me₃CSn), 65.1 (CHO). ²⁹Si{¹H</sup> NMR (59.63 MHz, CDCl₃): δ 14.66 (²J(²⁹Si-^{117/119}Sn) = 16

Organometallics

Hz, ${}^{1}J({}^{29}Si-{}^{13}C) = 58$ Hz). ${}^{119}Sn{}^{1}H{}$ NMR (111.92 MHz, CDCl₃): δ 122 (80%).

Compound 3'. ¹H NMR (400.13 MHz, CDCl₃): δ 0.21 (s, 6H, Me₂Si), 0.35 (s, 2H, ²J(¹H-^{117/119}Sn) = 62.8/65.0 Hz, SiCH₂Sn), 1.15 (d, 6H, ³J(¹H-¹¹H) = 6.3 Hz, Me₂CH), 1.33 (s, 18H, ³J(¹H-^{117/119}Sn) = 81.8/85.3 Hz, t-Bu₂Sn), 4.01 (m, 1H, ³J(¹H-¹H) = 6.0 Hz, CHO). ¹³C{¹H} NMR (100.63 MHz, CDCl₃): δ 0.0 (¹J(¹³C-^{117/119}Sn) = 103/107 Hz, ¹J(¹³C-²⁹Si) = 58 Hz, SiCH₂Sn), 1.2 (¹J(¹³C-²⁹Si) = 58 Hz, ³J(¹³C-^{117/119}Sn) = 9 Hz, Me₂Si), 25.8 (Me₂CH), 30.0 (Me₃C), 34.6 (¹J(¹³C-^{117/119}Sn) = 361/378 Hz, Me₃CSn), 65.1 (CHO). ²⁹Si{¹H} NMR (59.63 MHz, CDCl₃): δ 14.71 (¹J(²⁹Si-¹³C) = 58 Hz). ¹¹⁹Sn{¹H} NMR (111.92 MHz, CDCl₃): δ 128 (20%). Electrospray MS: m/z (%), positive mode, calcd for [Me₂(*i*-PrO)SiCH₂(*t*-Bu₂)Sn]⁺ (C₁₄H₃₃OSiSn⁺) 365.1324, found 365.1.

Synthesis of $\{Me_2(i-PrO)SiCH_2\}\{Me_2N(CH_2)_3\}SnPh_2$ (4). A Grignard reagent prepared from $Me_2N(CH_2)_3CI$ (610 mg, 5.00 mmol) and magnesium turnings (134 mg, 5.50 mmol) in THF (10 mL) was added at room temperature to a solution of 2 (2.12 g, 4.00 mmol) in THF (15 mL), and the mixture was stirred overnight. The solvent was evaporated, and hexane (50 mL) was added. The mixture obtained was filtered under inert conditions. The solvent of the filtrate was evaporated in vacuo to give compound 4 (1.63 g, 83%) as a colorless oil that was not purified further.

¹H NMR (300.13 MHz, CDCl₃): δ 0.06 (s, 6H, *Me*₂Si), 0.32 (s, 2H, ${}^{2}J({}^{1}H-{}^{117/119}Sn) = 73.6 Hz$, SiCH₂Sn), 1.11 (d, 6H, ${}^{3}J({}^{1}H-{}^{1}H) = 5.8 Hz$, *Me*₂CH), 1.31 (t, 2H, CH₂CH₂Sn), 1.81 (m, 2H, CH₂CH₂CH₂), 2.17 (s, 6H, *Me*₂N), 2.28 (t, 2H, CH₂N), 3.98 (m, 1H, CHO), 7.34–7.63 (m, 10H, Ar H). ${}^{29}Si{}^{1}H$ NMR (59.63 MHz, CDCl₃): δ 15.1 (${}^{2}J({}^{29}Si-{}^{117/119}Sn) = 18 Hz$). ${}^{119}Sn{}^{1}H$ NMR (111.92 MHz, CDCl₃): δ -62.

Synthesis of cyclo-[Ph₂SnOSi(Me₂)CH₂]₂ (5). A solution of sodium hydroxide (0.90 g, 22.6 mmol) in water (50 mL) and ethanol (10 mL) was added to a solution of 2 (1.50 g, 2.82 mmol) in CH₂Cl₂ (25 mL), and the mixture was stirred for 3 days at room temperature before CH₂Cl₂ and ethanol were evaporated in vacuo. The residue was extracted with CH₂Cl₂. The organic phase was separated, and the solvent was evaporated. The residue was recrystallized from a solution in CH₂Cl₂/hexane to give 0.98 g (96%) of 5 as colorless crystals with mp 167–169 °C suitable for X-ray diffraction analysis.

¹H NMR (300.13 MHz, CDCl₃): δ 0.15 (s, 12H, *Me*₂Si), 0.58 (s, 4H, ²*J*(¹H-^{117/119}Sn) = 73.6/76.5 Hz, SiCH₂Sn), 7.37-7.78 (m, 20H, Ar H). ¹³C{¹H} NMR (75.48 MHz, CDCl₃): δ 3.3 (¹*J*(¹³C-²⁹Si) = 84 Hz, ¹*J*(¹³C-^{117/119}Sn) = 326/341 Hz, SiCH₂Sn), 4.5 (¹*J*(¹³C-²⁹Si) = 59 Hz, ³*J*(¹³C-^{117/119}Sn) = 18 Hz, *Me*₂Si), 128.4 (³*J*(¹³C-^{117/119}Sn) = 58 Hz, *C*_m), 129.4 (⁴*J*(¹³C-^{117/119}Sn) = 12 Hz, *C*_p), 135.9 (²*J*(¹³C-^{117/119}Sn) = 46 Hz, *C*_o), 142.1 (¹*J*(¹³C-^{117/119}Sn) = 572/599 Hz, *C*_i). ²⁹Si{¹H} NMR (59.63 MHz, CDCl₃): δ 8.6 (²*J*(²⁹Si-^{117/119}Sn) = 33 Hz, ²*J*(²⁹Si-^{117/119}Sn) = 54 Hz, ¹*J*(²⁹Si-¹³C) = 87 Hz). ¹¹⁹Sn{¹H} NMR (111.92 MHz, CDCl₃): δ -31 (¹*J*(¹¹⁹Sn-¹³CH₂) = 341 Hz, ¹*J*(¹¹⁹Sn-¹³Ci) = 598 Hz). Electrospray MS: *m/z* (%), positive mode, calcd for [5 + H]⁺ (C₃₀H₃₇O₂Si₂Sn₂⁺) 723.0380, found 723.1. Anal. Calcd for C₃₀H₃₆O₂Si₂Sn₂ (722.20 g/mol): C, 49.89; H, 5.0.

Synthesis of cyclo-[t-Bu₂SnOSi(Me₂)CH₂]₂ (6). A solution of sodium hydroxide (0.32 g, 8.0 mmol) in water (15 mL) and ethanol (10 mL) was added to a solution of the 3/3' mixture (0.396 g, 1.0 mmol based on $[Me_2(i-PrO)SiCH_2Sn(t-Bu)_2]^+)$ in CH₂Cl₂ (15 mL) and the mixture was stirred for 3 days at room temperature before CH₂Cl₂ and ethanol were evaporated. The residue was extracted with CH₂Cl₂. The organic phase was separated, and the solvent was evaporated before the residue was recrystallized from a solution in CH₂Cl₂/hexane to give 0.29 g (90%) of 6 as colorless crystals with mp 100.5–102.5 °C suitable for X-ray diffraction analysis.

¹H NMR (400.13 MHz, CDCl₃): δ –0.10 (s, 4H, ²*J*(¹H–^{117/119}Sn) = 55.0 Hz, SiCH₂Sn), 0.12 (s, 12H, Me₂Si), 1.2 (s, 36H, ³*J*(¹H–^{117/119}Sn) = 71.8/75.3 Hz, Me₃CSn). ¹³C{¹H} NMR (100.63 MHz, CDCl₃): δ –0.8 (¹*J*(¹³C–^{117/119}Sn) = 190/198 Hz, ¹*J*(¹³C–²⁹Si) = 54 Hz, SiCH₂Sn), 5.4 (¹*J*(¹³C–²⁹Si) = 59 Hz, ³*J*(¹³C–^{117/119}Sn) = 15 Hz, Me₂Si), 30.0 (Me₃C), 31.5 (¹*J*(¹³C–^{117/119}Sn) = 409/428 Hz,

Synthesis of cyclo-[{Me₂N(CH₂)₃}PhSnOSi(Me₂)CH₂]₂ (7). Elemental iodine (0.76 g, 3.00 mmol) was added in portions at 0 °C to a solution of compound 4 (1.47 g, 3.00 mmol) in CH₂Cl₂ (50 mL). After the addition was complete, the mixture was warmed to room temperature and stirred overnight, before the solvent and iodobenzene were removed in vacuo to give [Me₂(*i*-PrO)SiCH₂]-PhRSnI (R = Me₂N(CH₂)₃, 1.40 g, 86%) as a yellowish viscous oil that was not purified further. Its ²⁹Si{¹H} NMR spectrum (59.63 MHz, CDCl₃) showed a major resonance at δ 9.4 (²J(²⁹Si-^{117/119}Sn) = 20 Hz) and a minor resonance at δ 19.4. A ¹¹⁹Sn{¹H} NMR spectrum (111.92 MHz, CDCl₃) of the same solution revealed two signals of different integral ratios at δ 3 (87%) and -4 (13%), respectively.

A solution of sodium hydroxide (0.55 g, 13.75 mmol) in water (40 mL) and ethanol (10 mL) was added to a solution of $[Me_2(i-PrO)SiCH_2]PhRSnI (1.40 g, 2.60 mmol) in CH_2Cl_2 (25 mL), and the mixture was stirred for 3 days at room temperature before CH_2Cl_2 and ethanol were evaporated in vacuo. The residue was extracted with CH_2Cl_2. The organic phase was separated, and the solvent was evaporated to give compound 7 (0.89 g, 92%) as a light yellowish solid. Recrystallization from CHCl_3 afforded colorless single crystals with mp 142.5–144.5 °C suitable for X-ray diffraction analysis.$

¹H NMR (400.25 MHz, C₆D₆): δ 0.14 (complex pattern, 4H), 0.29 (s, 3H, SiCH₃), 0.32 (s, 3H, SiCH₃), 0.47 (s, 3H, SiCH₃), 0.51 (s, 3H, SiCH₃), 1.44 (s, 12H, NCH₃) 1.22-2.00 (complex patterns, 12H, SnCH₂CH₂CH₂CH₂N), 7.21-7.32 (complex pattern, 6H, Ph-H_{mvp}), 7.66 (complex pattern, 1H, Ph-H_o), 7.68 (complex pattern, 1H, Ph-H_o), 7.75 (complex pattern, 1H, Ph-H_o), 7.77 (complex pattern, 1H, Ph-H_o), $^{13}C\{^{1}H\}$ NMR (150.94 MHz, C_7D_8): δ 3.68 ($^{1}J(^{13}C-^{117/119}Sn) =$ 361/379 Hz, SiCH₂Sn), 3.89 ($^{1}J(^{13}C-^{117/119}Sn) =$ 365/382 Hz, SiCH₂Sn), 5.40 (MeSi), 5.70 (MeSi), 5.75 (MeSi), 6.08 (MeSi), 14.83 $({}^{1}J({}^{13}C - {}^{117/119}Sn) = 528/554$ Hz, $CH_2CH_2Sn)$, 14.97 $(1)(^{13}C^{-117/119}Sn) = 531/567 \text{ Hz}, CH_2CH_2Sn), 22.65 (CH_2CH_2CH_2),$ 22.76 (CH₂CH₂CH₂), 46.02 (Me₂N), 46.05 (Me₂N), 61.49 (CH₂N), 61.55 (CH₂N), 128.05 (C_m), 128.20 (C_p), 128.21 (C_p), 135.82 (C_o), 135.94 (C_o), 147.58 (¹J(¹³C-^{117/119}Sn) = 592/619 Hz, C_i), 146.7 (¹J(¹³C-^{117/119}Sn) = 586/614 Hz, C_i). ²⁹Si{¹H} NMR (79.52, CDCl₃): δ 1.4 (²J(²⁹Si-^{117/119}Sn) = 39/47 Hz), 1.0 (²J(²⁹Si-^{117/119}Sn) = 40/48 Hz), 4.7. ²⁹Si{¹H} NMR (79.52 MHz, C_7D_8): $\delta - 0.4$, -0.9. ¹¹⁹Sn{¹H} NMR (149.26 MHz, C_7D_8): T = 298 K, $\delta - 62.6$ (45%, ${}^2J({}^{119}Sn - {}^{29}Si)$ = 46 Hz), -62.8 (52%, ${}^{2}J({}^{119}Sn-{}^{29}Si) = 46$ Hz), 70.4 (3%); T = 333 K, δ -54.2 (45%), -54.4 (52%), -64.0 (3%). ¹¹⁹Sn{¹H} NMR (111.92 MHz, CDCl₃): δ -55 (50%, ²J(¹¹⁹Sn-²⁹Si) = 48 Hz), -53 $(43\%, {}^{2}J({}^{119}Sn - {}^{29}Si) = 48 \text{ Hz}), -66 (4\%), 4 (3\%).$ Electrospray MS: m/z (%), positive mode, calcd for $[7 + H]^+$ (C₂₈H₅₁N₂O₂Si₂Sn₂⁺) 741.1536, found 741.2; calcd for [{Me₂(OH)SiCH₂}{Me₂N(CH₂)₃}-PhSn + $4H_2O$]⁺ ($C_{14}H_{34}NO_5SiSn^+$) 444.1230, found 444.1. Anal. Calcd for C₂₈H₅₀N₂O₂Si₂Sn₂ (740.266 g/mol): C, 45.43; H, 6.81; N, 3.78. Found: C, 45.1; H, 7.2; N, 4.1.

Synthesis of cyclo-[Me2SiCH2(Ph)₂SnO-t-Bu₂SnO] (8). A mixture of di-*tert*-butyltin oxide (100 mg, 0.40 mmol) and 5 (145 mg, 0.20 mmol) in CH₂Cl₂ (3 mL) was stirred for 10 min at room temperature. Then the solvent was evaporated, giving a white solid with mp 145–149 °C.

¹H NMR (400.13 MHz, CDCl₃): δ 0.18 (s, 6H, *Me*₂Si), 0.56 (s, 2H, ²J(¹H-^{117/119}Sn) = 71.3/73.8 Hz, SiCH₂Sn), 1.36 (s, 18H, ³J(¹H-^{117/119}Sn) = 91.4/95.9 Hz, *Me*₃CSn), 7.37-7.73 (m, 10H, Ar H). ¹³C{¹H} NMR (100.63 MHz, CDCl₃): δ 3.0 (¹J(¹³C-^{117/119}Sn) = 282/295 Hz, SiCH₂Sn), 4.4 (¹J(¹³C-²⁹Si) = 59 Hz, ³J(¹³C-^{117/119}Sn) = 17 Hz, *Me*₂Si), 29.8 (*Me*₃C), 38.4 (Me₃CSn), 128.4 (³J(¹³C-^{117/119}Sn) = 57 Hz, Cm), 129.3 (⁴J(¹³C-^{117/119}Sn) = 13 Hz, Cp), 135.7 (²J(¹³C-^{117/119}Sn) = 47 Hz, Co), 142.5 (¹J(¹³C-^{117/117}Sn) =

568 Hz, ${}^{1}J({}^{13}C-{}^{119}Sn) = 595$ Hz, *Ci*). ${}^{29}Si\{{}^{1}H\}$ NMR (59.63 MHz, CDCl₃): δ 5.9 (${}^{2}J({}^{29}Si-{}^{117/119}Snt-Bu) = 43$ Hz, ${}^{2}J({}^{29}Si-{}^{117/119}SnPh) = 49$ Hz), 8.5 (5). ${}^{119}Sn\{{}^{1}H\}$ NMR (111.91 MHz, CDCl₃): δ -13 (${}^{2}J({}^{119}Sn-{}^{117}Sn) = 317$ Hz, ${}^{2}J({}^{119}Sn-{}^{117}Sn) = 334$ Hz, ${}^{2}J({}^{119}Sn-{}^{29}Si) = 51$ Hz, CH₂Sn(Ph₂)O], -93 (${}^{2}J({}^{119}Sn-{}^{117}Sn) = 317$ Hz, ${}^{2}J({}^{119}Sn-{}^{119}Sn) = 337$ Hz, ${}^{2}J({}^{119}Sn-{}^{29}Si) = 44$ Hz, OSn(*t*-Bu₂)O], -31 (3%, 5), -84 (5%, (*t*-Bu2SnO)3). Electrospray MS: *m/z* (%), positive mode, calcd for [8 + H]⁺ (C₂₃H₃₇O₂SiSn₂⁺) 611.0609, found 611.1; calcd for [Me₂(OH)SiCH₂(Ph₂)Sn(OH)₂]⁻ (C₁₅H₂₁O₃SiSn⁻) 397.0284, found 397.0. Anal. Calcd for C₂₃H₃₆O₂SiSn₂ (610.04 g/ mol): C, 45.28; H, 5.95. Found: C, 45.3; H, 5.9.

Synthesis of cyclo-[Me2SiCH2(t-Bu)₂SnO-t-Bu₂SnO] (9). A mixture of di-*tert*-butyltin oxide (60 mg, 0.24 mmol) and 6 (77 mg, 0.12 mmol) in CHCl₃ (25 mL) was heated at reflux for 5 h. The mixture was cooled to room temperature, and the solvent was evaporated in vacuo to give a white solid.

¹H NMR (300.13 MHz, CDCl₃): δ –0.00 (s, 2H, ²/(¹H–^{117/119}Sn) = 57.0 Hz, SiCH₂Sn), 0.17 (s, 6H, *Me*₂Si), 1.27 (s, 18H, ³/(¹H–^{117/119}Sn) = 72.7/74.6 Hz, *Me*₃CSn), 1.33 (s, 18H, ³/(¹H–^{117/119}Sn) = 89.3/93.7 Hz, *Me*₃CSn), ¹³C{¹H} NMR (75.47 MHz, CDCl₃): δ –1.4 (SnCH₂Si), 5.0 (³/(¹³C–^{117/119}Sn) = 9 Hz, *Me*₂Si), 30.1 (*Me*₃C), 30.4 (*Me*₃C), 32.3 (*Me*₃CSn), 38.0 (*Me*₃CSn). ²⁹Si{¹H} NMR (59.63 MHz, CDCl₃): δ 5.2 (²/(²⁹Si–^{117/119}Sn) = 42 Hz), 1.8 (6). ¹¹⁹Sn{¹H} NMR (111.92 MHz, CDCl₃): δ –98 (²/(¹¹⁹Sn–^{117/119}Sn) = 351/367 Hz, ²/(¹¹⁹Sn–²⁹Si) = 44 Hz), 49 (²/(¹¹⁹Sn–^{117/119}Sn) = 351/367 Hz, ²/(¹¹⁹Sn–²⁹Si) = 41 Hz), -83 (5%, (t-Bu₂SnO)₃), 34 (5% of the major resonances, **6**). Electrospray MS: *m/z* (%), negative mode, calcd for [**9** + OH]⁻ (C₁₉H₄₅O₃SiSn₂⁻) 587.1183, found 587.1. Anal. Calcd for C₁₉H₄₄O₂SiSn₂ (570.06 g/ mol): C, 40.03; H, 7.78. Found: C, 39.7; H, 7.7.

Synthesis of *cyclo*-[Me2SiCH2{Me₂N(CH₂)₃}PhSnO-*t*-Bu₂SnO] (10). A mixture of di-*tert*-butyltin oxide (60 mg, 0.240 mmol) and 7 (100 mg, 0.135 mmol) in CHCl₃ (25 mL) was heated at reflux for 5 h. The mixture was cooled to room temperature, and the solvent was evaporated in vacuo, giving a white yellowish solid.

²⁹Si{¹H} NMR (59.63 MHz, CDCl₃): δ 6.5 (²*J*(²⁹Si-^{117/119}Sn) = 40 Hz), 4.5, 1.3, 1.3, 0.9, 3.3. ¹¹⁹Sn{¹H} NMR (111.92 MHz, CDCl₃): δ –23 (45%, ²*J*(¹¹⁹Sn-^{117/119}Sn) = 292 Hz), -89 (45%, ²*J*(¹¹⁹Sn-^{117/119}Sn) = 292 Hz), -55 (4%, 7), -54 (3%, 7), -66 (3%). Electrospray MS: *m/z* (%), positive mode, calcd for [**10** + H]⁺ (C₂₂H₄₄NO₂SiSn₂⁺) 620.1187, found 620.1. Anal. Calcd for C₂₂H₄₃NO₂SiSn₂ (619.00 g/mol): C, 42.68; H, 7.00; N, 2.26. Found: C, 42.0; H, 7.0; N, 2.2. As evidenced by ¹¹⁹Sn NMR spectroscopy (additional resonance at δ –66 (3%)), the compound measured contained a second species, the identity of which could not be established. This is the origin for the discrepancy between calculated and measured elemental analyses.

Synthesis of cyclo-[Me2SiCH2{ $Me_2N(CH_2)_3$ }PhSnOPh₂GeO] (11). A mixture of Ph₂GeO (56 mg, 0.230 mmol) and 7 (85 mg, 0.115 mmol) in CHCl₃ (20 mL) was heated at reflux for 5 h. The mixture was cooled to room temperature, and the solvent was evaporated in vacuo to give a yellowish oil.

²⁹Si{¹H} NMR (59.63 MHz, CDCl₃): δ 10.7 (²J(²⁹Si–^{117/19}Sn) = 41 Hz), 4.6, 1.4. ¹¹⁹Sn{¹H} NMR (111.92 MHz, CDCl₃): δ –59 (95%, ²J(¹¹⁹Sn–²⁹Si) = 43 Hz), -66 (5%). Electrospray MS: m/z (%), positive mode, calcd for [11 + H]⁺ (C₂₆H₃₆GeNO₂SiSn⁺) 614.0760, found 614.0. Anal. Calcd for C₂₆H₃₅GeNO₂SiSn (613.00 g/mol): C, 50.94; H, 5.76; N, 2.29. Found: C, 49.8; H, 5.7; N, 2.0. As evidenced by ¹¹⁹Sn NMR spectroscopy (additional resonance at δ –66 (3%)), the compound measured contained a second species, the identity of which could not be established. This is the origin for the discrepancy between calculated and measured elemental analyses.

Synthesis of $[PhSn(CH_2Me_2SiO)Sn(\mu_3-O)[\mu-OH]t-Bu_2]_2$ (12). Compound 8 was kept in moist air for a few weeks before ²⁹Si and ¹¹⁹Sn NMR spectra were recorded. A few colorless single crystals of compound 12 with mp 266–270 °C suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution of compound 8 in CH₂Cl₂/hexane under aerobic conditions. $^{29}{\rm Si}\{^{1}{\rm H}\}$ NMR (59.63 MHz, CDCl₃): δ 8.5 ($^{2}J(^{29}{\rm Si}-^{117/119}{\rm Sn})$ = 33/54 Hz, 5), –2.4 ($^{2}J(^{29}{\rm Si}-^{117/119}{\rm Sn})$ = 40/69 Hz). $^{119}{\rm Sn}\{^{1}{\rm H}\}$ NMR (111.92 MHz, CDCl₃): δ –219 [29%, $^{2}J(^{119}{\rm Sn}_{endo}-^{29}{\rm Si})$ = 41 Hz, $^{2}J(^{119}{\rm Sn}_{endo}-^{117/119}{\rm Sn}_{exo})$ = 228/242 Hz, $^{2}J(^{119}{\rm Sn}_{endo}-^{117}{\rm Sn}_{endo})$ = 82 Hz], –260 [29%, $^{2}J(^{119}{\rm Sn}_{exo}-^{29}{\rm Si})$ = 71 Hz, $^{2}J(^{119}{\rm Sn}_{exo}-^{117}{\rm Sn}_{endo})$ = 82 Hz], –260 [29%, $^{2}J(^{119}{\rm Sn}_{exo}-^{29}{\rm Si})$ = 71 Hz, $^{2}J(^{119}{\rm Sn}_{exo}-^{117}{\rm Sn}_{endo})$ = 228/242 Hz, $^{4}J(^{119}{\rm Sn}_{exo}-^{117}{\rm Sn}_{exo})$ = 84 Hz], –31 [25%, $^{2}J(^{119}{\rm Sn}-^{29}{\rm Si})$ = 34, 55 Hz, **5**], –38 (11%), –54 (6%). Electrospray MS: m/z (%), positive mode, calcd for [12 – OH]⁺ (C_{34}{\rm H}_{63}{\rm O}_{5}{\rm Si}_{2}{\rm Sn}_{4}^{+}) 1083.0314, found 1083.1. There was not a sufficient amount of these crystals to perform elemental analyses.

Formation of the Ladder-Type Cluster $[t-Bu_2(\mu-OH)Sn(\mu_3-O)SnPh(CH_2Me_2SiO)Sn-t-Bu_2(\mu_3-O)]_2$ (13). A solution containing the compounds 8 (93%), 6 (4%), and $(t-Bu_2SnO)_3$ (3%) in CDCl₃ in a not completely closed NMR tube was allowed to evaporate slowly, providing a single crystal of 13. The identity of 13 was established by single-crystal X-ray diffraction analysis. No further analytical methods were applied.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organo-met.5b00768.

NMR spectra and crystallographic data (PDF) Crystallographic data for 5–7, 12, and 13 (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail for K.J.: klaus.jurkschat@tu-dortmund.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.B.H. is grateful to Damascus University for a scholarship. Thomas Zöller is acknowledged for recording the X-ray diffraction data for compound 13.

REFERENCES

(1) (a) Chojnowski, J. J. Inorg. Organomet. Polym. 1991, 1, 299–323.
(b) Priegert, A. M.; Rawe, B. W.; Serin, S. C.; Gates, D. P. Chem. Soc. Rev. 2016, DOI: 10.1039/C5CS00725A.

(2) (a) Beckmann, J.; Jurkschat, K. Coord. Chem. Rev. 2001, 215, 267–300 and references cited therein. (b) Fridrichova, A.; Mairychova, B.; Padelkova, Z.; Lycka, A.; Jurkschat, K.; Jambor, R.; Dostal, L. Dalton Trans. 2013, 42, 16403–16411.

(3) (a) Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W. Chem. Rev. **1996**, 96, 2205–2236. (b) Gates, D. P.; Manners, I. J. Chem. Soc., Dalton Trans. **1997**, 2525–2532.

(4) (a) Graalmann, O.; Klingebiel, U.; Clegg, W.; Haase, M.; Sheldrick, G. M. Z. Anorg. Allg. Chem. 1984, 519, 87-95. (b) Puff, H.; Boeckmann, M. P.; Kök, T. R.; Schuh, W. J. Organomet. Chem. 1984, 268, 197-206. (c) Graalmann, O.; Meyer, M.; Klingebiel, U. Z. Anorg. Allg. Chem. 1986, 534, 109-114. (d) Haoudi-Mazzah, A.; Mazzah, A.; Schmidt, H. G.; Noltemeyer, M.; Roesky, H. W. Z. Naturforsch., B: J. Chem. Sci. 1991, 46, 587-592. (e) Mazzah, A.; Haoudi-Mazzah, A.; Noltemeyer, M.; Roesky, H. W. Z. Anorg. Allg. Chem. 1991, 604, 93-103. (f) Brisdon, B. J.; Mahon, M. F.; Molloy, K. C.; Schofield, P. J. J. Organomet. Chem. 1992, 436, 11-22. (g) Foucher, D. A.; Lough, A. J.; Manners, I. Inorg. Chem. 1992, 31, 3034-3043. (h) Liu, F. Q.; Schmidt, H. G.; Noltemeyer, M.; Freire-Erdbrügger, C.; Sheldrick, G. M.; Roesky, H. W. Z. Naturforsch., B: J. Chem. Sci. 1992, 47, 1085-1090. (i) Liu, F. Q.; Roesky, H. W.; Schmidt, H. G.; Noltemeyer, M. Organometallics 1992, 11, 2965-2967. (j) Gosink, H. J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H. G.; Freire-Erdbrügger, C.; Sheldrick, G. M. Chem. Ber. 1993, 126, 279-283. (k) Akkurt, M.; Kök, T. R.; Faleschini, P.; Randaccio, L.; Puff, H.; Schuh, W. J. Organomet. Chem. 1994, 470, 59-66. (1) Gosink, H. J.; Roesky, H. W.; Schmidt, H. G.; Noltemeyer, M.; Irmer, E.; Herbst-Irmer, R. Organometallics 1994, 13, 3420-3426. (m) Montero, M. L.; Uson, I.; Roesky, H. W. Angew. Chem. 1994, 106, 2198-2200. (n) Samuel, E.; Harrod, J. F.; McGlinchey, M. J.; Cabestaing, C.; Robert, F. Inorg. Chem. 1994, 33, 1292-1296. (o) Liu, F. Q.; Uson, I.; Roesky, H. W. J. Chem. Soc., Dalton Trans. 1995, 2453-2458. (p) Haoudi-Mazzah, A.; Mazzah, A.; Gnado, J.; Dhamelincourt, P. J. Raman Spectrosc. 1996, 27, 451-455. (q) Liu, F. Q.; Uson, I.; Roesky, H. W. Z. Anorg. Allg. Chem. 1996, 622, 819-822. (r) Beckmann, J.; Mahieu, B.; Nigge, W.; Schollmeyer, D.; Schürmann, M.; Jurkschat, K. Organometallics 1998, 17, 5697-5712. (s) Hoebbel, D.; Nacken, M.; Schmidt, H.; Huch, V.; Veith, M. J. Mater. Chem. 1998, 8, 171-178. (t) Vaugeois, Y.; De Jaeger, R.; Levalois-Mitjaville, J.; Mazzah, A.; Worle, M.; Grützmacher, H. New J. Chem. 1998, 22, 783-785. (u) Beckett, M. A.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M. A.; Owen, P.; Varma, K. S. J. Organomet. Chem. 2000, 595, 241-247. (v) Gun'ko, Y. K.; Reilly, R.; Kessler, V. G. New J. Chem. 2001, 25, 528-530. (w) Li, Y.; Wang, J.; Wu, Y.; Zhu, H.; Samuel, P. P.; Roesky, H. W. Dalton Trans. 2013, 42, 13715-13722. (x) Padělková, Z.; Švec, P.; Kampová, H.; Sýkora, J.; Semler, M.; Štěpnička, P.; Bakardjieva, S.; Willem, R.; Růžička, A. Organometallics 2013, 32, 2398-2405. (y) Carbó, J. J.; González-del Moral, O.; Martín, A.; Mena, M.; Poblet, J.-M.; Santamaría, C. Chem. -Eur. J. 2008, 14, 7930-7938. (z) Levitsky, M. M.; Zavin, B. G.; Bilyachenko, A. N. Russ. Chem. Rev. 2007, 76, 847-866. (aa) Postigo, L.; Vázquez, A. B.; Sánchez-Nieves, J.; Royo, P.; Herdtweck, E. Organometallics 2008, 27, 5588-5597. (ab) Kung, M. C.; Riofski, M. V.; Missaghi, M. N.; Kung, H. H. Chem. Commun. 2014, 50, 3262-3276. (ac) Nehete, U. N.; Chandrasekhar, V.; Jancik, V.; Roesky, H. W.; Herbst-Irmer, R. Organometallics 2004, 23, 5372-5374. (ad) Abbenhuis, H. C. L.; Vorstenbosch, M. L. W.; van Santen, R. A.; Smeets, W. J. J.; Spek, A. L. Inorg. Chem. 1997, 36, 6431-6433. (5) Beckmann, J.; Jurkschat, K.; Schollmeyer, D., On the Reaction of

 $(t-Bu_2SnO)_3$ with Organochlorosilanes. Simple Formation of $[(t-Bu_2SnO)_2(t-Bu_2SiO)]$. In Organosilicon Chemistry III; Wiley: New York, 1997; pp 403–406.

(6) Beckmann, J.; Jurkschat, K.; Schollmeyer, D.; Schürmann, M. J. Organomet. Chem. 1997, 543, 229–232.

(7) Beckmann, J.; Jurkschat, K.; Kaltenbrunner, U.; Pieper, N.; Schürmann, M. Organometallics **1999**, *18*, 1586–1595.

(8) Beckmann, J.; Jurkschat, K.; Pieper, N.; Schürmann, M. Chem. Commun. 1999, 1095–1096.

(9) Akkurt, M.; Kök, T. R.; Faleschini, P.; Randaccio, L.; Puff, H.; Schuh, H. J. Organomet. Chem. **1994**, 470, 59–66.

(10) Morosin, B.; Harrah, L. A. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981, 37, 579–586.

(11) (a) Dräger, M. J. Organomet. Chem. 1983, 251, 209-214.
(b) Kolb, U.; Beuter, M.; Dräger, M. Inorg. Chem. 1994, 33, 4522-4530.
(c) Dräger, M. Z. Anorg. Allg. Chem. 1976, 423, 53-66.
(d) Beuter, M.; Kolb, U.; Zickgraf, A.; Bräu, E.; Bletz, M.; Dräger, M. Polyhedron 1997, 16, 4005-4015.

(12) Jurkschat, K.; Rosche, F.; Schürmann, M. Phosphorus, Sulfur Silicon Relat. Elem. **1996**, 115, 161–167.

(13) Chandrasekhar, V.; Thirumoorthi, R. Inorg. Chem. 2009, 48, 10330-10337.

(14) Jurkschat, K., Tetraorganodistannoxanes: Simple Chemistry From a Personal Perspective. In *Tin Chemistry: Fundamentals, Frontiers, and Applications,* Davies, A. G., Gielen, M., Pannell, K. H., Tiekink, E. R. T., Eds.; Wiley: Hoboken, NJ, 2008, and references cited therein.

(15) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. **1984**, 0, 1349–1356.

(16) Beckmann, J.; Jurkschat, K. Main Group Met. Chem. 1998, 21, 113–122.

(17) Cervantes-Lee, F.; Sharma, H. K.; Haiduc, I.; Pannell, K. H. J. Chem. Soc., Dalton Trans. 1998, 1–2.

(18) (a) Beckmann, J.; Dakternieks, D.; Duthie, A.; Jurkschat, K.; Mehring, M.; Mitchell, C.; Schürmann, M. Eur. J. Inorg. Chem. 2003, 2003, 4356–4360. (b) Beckmann, J.; Jurkschat, K.; Schürmann, M.; Suter, D.; Willem, R. *Organometallics* **2002**, *21*, 3819–3822.

(19) (a) Holmes, R. R.; Schmid, C. G.; Chandrasekhar, V.; Day, R. O.; Holmes, J. M. J. Am. Chem. Soc. 1987, 109, 1408–1414.
(b) Chandrasekhar, V.; Schmid, C. G.; Burton, S. D.; Holmes, J. M.; Day, R. O.; Holmes, R. R. Inorg. Chem. 1987, 26, 1050–1056.
(c) Swamy, K. C. K.; Said, M. A.; Nagabrahmanandachari, S.; Poojary, D. M.; Clearfield, A. J. Chem. Soc., Dalton Trans. 1998, 1645–1652.
(d) Alcock, N. W.; Roe, S. M. J. Chem. Soc., Dalton Trans. 1989, 1589–1598. (e) Nagabrahmanandachari, S.; Hemavathi, C.; Swamy, K. C. K.; Damodara, D. M.; Clearfield, A. Main Group Met. Chem. 1998, 21, 789–802.

(20) (a) Li, Q.; Wang, F.; Zhang, R.; Cui, J.; Ma, C. Polyhedron 2015, 85, 361–368. (b) Mitzel, N.; Lustig, C.; Scharfe, S. Z. Naturforsch., B 2001, 56, 440–442.

(21) (a) Hill, M.; Mahon, M. F.; Molloy, K. C. Main Group Chem. 1996, 1, 309–315. (b) Veith, M.; Recktenwald, O. Z. Anorg. Allg. Chem. 1979, 459, 208–216.

(22) Andrianov, K. A.; Golubenko, A. J. Gen. Chem. USSR 1975, 45, 2614.

(23) Zickgraf, A.; Beuter, M.; Kolb, U.; Dräger, M.; Tozer, R.; Dakternieks, D.; Jurkschat, K. *Inorg. Chim. Acta* **1998**, 275–276, 203–214.

(24) Puff, H.; Schuh, W.; Sievers, R.; Wald, W.; Zimmer, R. J. Organomet. Chem. 1984, 260, 271–280.

(25) Ross, L.; Dräger, M. Z. Naturforsch. B 1984, 39, 868.

(26) (a) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122. (b) Sheldrick, G. M. Acta Crystallogr., Sect. C 2015, 71, 3–8.

(27) Clegg, W. Acta Crystallogr., Sect. E: Struct. Rep. Online 2003, 59, e2.