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ABSTRACT: Despite significant advances in catalytic asym-
metric reactions with decent stereocontrol, those using
acetonitrile as a pronucleophile are often disregarded due to
their low reactivity and insufficient enantioselectivity. Herein
we report the resurgence of this reaction in the chemical
toolbox with high enantioselectivity (avg. > 95% ee). The
combined use of a Ni(II) complex ligated with a chiral
biscarbene and ‘BuOK engages acetonitrile in the catalytic
generation of an a-cyanocarbanion and subsequent highly
enantioselective addition to aldimines.

yano functionality plays a pivotal role as masked amines

and carboxyhc acid derivatives in synthetic organic
chemistry." Hydrogen cyanide and its derivatives are
established as readily available and viable C1 pronucleophiles
capable of introducing a cyano group into a wide variety of
electroph11es in a highly enantioselective manner (Scheme
la).” Given the acute toxicity of cyanide, the application of

Scheme 1. Disparity of Hydrogen Cyanide and Acetonitrile
in Catalytic Asymmetric C—C Bond-Forming Reactions
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readily available acetonitrile as an alternative pronucleophile
has long been desired as a safer option for gaining access to
cyano-containing chiral building blocks (Scheme 1b).> The
significant difference in the pK, between hydrogen cyanide
(12.9 in DMSO) and acetonitrile (31.3 in DMSO), however,
hampers the catalytic generation of a nucleophilically active a-
cyanocarbanion from acetonitrile.* Hence, anion- taming a-
substituents are generally harnessed to facilitate deprotonative
activation and decorated nitrile-pronucleophiles have been
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successfully utilized in C—C bond-forming asymmetric
catalysis.”~~ On the other hand, the significantly less reactive
parent acetonitrile has been largely neglected as a potential
pronucleophile and generally regarded as a chemically inert
solvent.'

In this context, the proazaphosphatrane organosuperbase
found its particular utility in catalytic deprotonation of
acetonitrile and subsequent addition to carbonyl compounds,'’
eliminating the necessity for using stoichiometric amounts of
strong bases. Strategic use of soft Lewis acids to activate the
inherently soft Lewis basic cyano functionality allowed for
direct catalytic addition of acetonitrile under milder basic
conditions.'” The Ni(II) complex of a PCP-type pincer ligand
displayed the highest catalytic turnover to date, although the
enantioselective entry was not reported.”” In contrast to steady
advances in the catalytic generation of the a-cyanocarbanion
from acetonitrile, there remains considerable room for
stereochemical control in the addition to electrophiles. A
survey of precedent enantioselective examples in this reaction
manifold revealed surprisingly insufficient enantioselectivity
(avg. < 62% ee)'*~'°—significantly lower than that observed
for the analogous nucleophilic addition of a-substituted nitriles
or enolates. This prominent anomaly of acetonitrile is
presumably due to the linear topology of the corresponding
a-cyanocarbanion, which fails to pose an adequate steric bias
to manifest a practical level of enantioselection. Herein we
report the highly enantioselective direct catalytic addition of
acetonitrile to aldimines promoted by a chiral Ni(Il)/
biscarbene complex. Divergent conversion of the cyano
group of the product into a carboxylic acid and an amino
group highlights the synthetic utility of the present catalysis as
a viable C2 homologation reaction complementary to the C1
counterpart via the cyanide addition.
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Through our previous attempts to exploit acetonitrile as a
pronucleophile, we found that Rh(I) and Ir (I) complexes
ligated with electron-rich chiral carbenes promote the direct
addition of acetonitrile to C=0 and C=N electrophiles in
the presence of a mild Bronsted base.'** Despite systematic
structural modifications of the monocarbene ligands, however,
the enantioselectivity remained low to moderate. We reasoned
that the insufficient stereoselection originated from the size-
mismatch of the small a-cyanocarbanion and a “single-wing”
monocarbene ligand L1 (Table 1, entries 8, 9)."”

Table 1. Optimization of Reaction Conditions”

cat. 2 mol%
metal complex: Ni/L2
base: BuOK
. H
N b HsON (1:1 ratio) ~y-Fe
H HH CH3CN, 0°C, 24 h - CN
?
1a PG = -PPh, 2a
entry change from standard conditions yield (%) ee (%)
0 o >99 97
1 cat. S mol% >99 97
2 cat. Smol%, rt, 1 h 99 93
3 cat. S mol%, complex Ni/L3, rt, 1 h* 99 45
4 cat. S mol%, complex Ni/L4, rt, 2 h* >99 51
S cat. S mol%, complex Ni/LS, rt, 1 h* >99 58
6 cat. $ mol%, PG =Boc, rt,2 h 99 85
7 cat. S mol%, PG =Ts, rt 78 86
8 cat. 5 mol%, complex Rh/L1, rt 0 _
9 cat. 5 mol%, complex Ir/L1, rt 65 20
'single-wing' 'double-wing'
0/\.‘\“ X Rﬁ/\o Ni/L2: R = Ph
M ! .
N i+ N Ni/L3:R=Pr
Mes\N)\N\‘ K« >_N'_< W) X
N= b N~N N-N Ni/L4: R =Bu
BF,~ _K,d e Ni/LS:R=Bn
3
Rh/L1: M =Rh(I) (X=NCCH,)
Ir/L1: M =Ir(I)
side view . top view

crystal structure of Ni/L2 (X = Cl)

“la: 0.1 mmol, 0.1 M. PNi-acetonitrile complex was prepared from
the corresponding Ni—Cl complex (X = Cl) with AgPF, and directly
used.

This assumption led us to investigate “double-wing” type
pincer biscarbene ligands L2—S5, which furnished rigid cationic
metal complexes with the metal cation located at the bottom of
the deep vault.''” In an attempted reaction of N-diphenyl-
phosphinoyl(N-Dpp)imine 1a and acetonitrile,” the com-
bined use of biscarbene pincer complex Ni(II)/L2 and ‘BuOK
emerged as a competent catalyst (2 mol%) to complete the
reaction at 0 °C in 24 h (entry 0). Notably, this reaction was
highly enantioselective, outperforming precedents of direct
addition reactions of acetonitrile. Comparable enantioselectiv-
ity was observed by running the reaction at room temperature

(entry 2), and reactions with ligands bearing different
substituents under otherwise identical conditions demonstra-
ted the superiority of the chiral environment of L2 (entries 3—
S). Attachments on the imine nitrogen partly dictated the
enantioselectivity, and crystalline N-Dpp imine 1a was optimal
with respect to reactivity and enantioselectivity (entries 6, 7).

High enantioselectivity was generally observed in the
reactions with a range of N-Dpp imines 1 (Figure 1). The
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Figure 1. Substrate generality (0.1 mmol, 0.1 M). “ Mixed solvent
CH;CN/THE = 9/1 was used for homogeneity.

steric bias of the o-Me substituent, as well as the a- and f-
naphthyl units, was well accommodated to achieve high yield
and enantioselectivity (2b—d). Studies of the electronic effects
of the reaction using imines bearing electron-donating p-OMe
and electron-withdrawing p-halogen/p-CF;/p-CN underscored
the tolerance of the present reaction toward electronic effects
(2e—i). The Ni(II) pincer complex was redox inactive under
the optimized conditions, and the Ar—Br bond remained intact
(2g). Heteroaromatic imines barely interfered with the
catalysis to provide the desired cyanomethylated products
(2jk), albeit with a marginal decrease in the yield and
enantioselectivity for 2-furyl imine (2j). An imine bearing an
(E)-cinnamyl unit proved to be a suitable substrate to expand
the generality (2I). This operationally simple reaction was
readily scaled up, and the attempted gram-scale reaction
exhibited no detrimental effects (2a). The inspection of the
initial rate of separate reactions in CH;CN/THF and CD;CN/
THEF revealed the positive kinetic isotope effect of ky/kp =
3.0.”" This result is consistent with the finding that the reaction
rate was generally not related to the sterics and electronics of
the imines, and suggests that the catalyst turnover step
(deprotonation of acetonitrile) is rate-determining. As such,
less reactive propionitrile failed to induce the reaction under
the optimized conditions.

Nitrile functionality can be regarded as a masked amine and
carboxylic acid derivative (Scheme 2). The Dpp group was
readily removed by treating 2a with 2 N HCl/MeOH at room
temperature to give free amine 3 with the nitrile moiety intact.
Basic hydrolysis of 2a in refluxing 2 N NaOH agq. afforded N-
protected carboxylic acid 4. Sequential hydride reduction
unmasked the cyano group to furnish primary amine S.

DOI: 10.1021/acs.orglett.9b02821
Org. Lett. XXXX, XXX, XXX—XXX


http://dx.doi.org/10.1021/acs.orglett.9b02821

Organic Letters

Scheme 2. Transformation of the Product”
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“Reagents and conditions: (a) 2 N HCl/MeOH, rt, 4 h, 92%. (b) 2 N
NaOH agq., EtOH, reflux, 16 h, 96%. (c) DIBAL, THE, —78 °C, 2 h;
NaBH,, —78 °C to rt, 16 h, 72%.

Direct catalytic asymmetric addition of acetonitrile has long
been burdened by insufficient enantioselectivity, which was
addressed herein via strategic use of a unique asymmetric
environment provided by a deep-vaulted biscarbene ligand.
The corresponding a-cyanocarbanion was catalytically gen-
erated by the Ni(II)/biscarbene ligand/‘BuOK catalytic
system, and subsequent addition to N-Dpp imines proceeded
with decent stereocontrol. Extrapolation of the present
catalysis to carbonyl-type electrophiles will significantly expand
the utility of alkylnitriles as versatile pronucleophiles, and is
currently ongoing in our laboratory.
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