Inorganic Chemistry

PbMn(IV)TeO₆: A New Noncentrosymmetric Layered Honeycomb Magnetic Oxide

Sun Woo Kim,[†] Zheng Deng,[†] Man-Rong Li,[†] Arnab Sen Gupta,[‡] Hirofumi Akamatsu,[‡] Venkatraman Gopalan,[‡] and Martha Greenblatt^{*,†}

[†]Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States

^{*}Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

S Supporting Information

ABSTRACT: PbMnTeO₆, a new noncentrosymmetric layered magnetic oxide was synthesized and characterized. The crystal structure is hexagonal, with space group $P\overline{6}2m$ (No. 189), and consists of edge-sharing $(Mn^{4+}/Te^{6+})O_6$ trigonal prisms that form honeycomb-like two-dimensional layers with Pb^{2+} ions between the layers. The structural difference between PbMnTeO₆, with disordered/trigonal prisms of Mn^{4+}/Te^{6+} , versus the similar chiral SrGeTeO₆ (space group P312), with long-range order of Ge⁴⁺ and Te⁶⁺ in octahedral coordination, is attributed to a difference in the electronic

effects of Ge⁴⁺ and Mn⁴⁺. Temperature-dependent second harmonic generation by PbMnTeO₆ confirmed the noncentrosymmetric character between 12 and 873 K. Magnetic measurements indicated antiferromagnetic order at $T_N \approx 20$ K and a frustration parameter ($|\theta|/T_N$) of ~2.16.

INTRODUCTION

Noncentrosymmetric (NCS) oxide materials have been studied for decades because of their interesting physical properties, including ferroelectricity, piezoelectricity, pyroelectricity, multi-ferroicity, magnetoelectricity, and second harmonic generation (SHG).^{1–5} Recently, much experimental research focused on finding new multiferroic and magnetoelectric transition metal oxides along with theoretical calculations to understand the origin of multiferroic/magnetoelectric behavior and to predict new structural chemical properties for the design of new materials with optimal characteristics.^{6–11}

The crystal structure of PbSb₂O₆-type materials (general formula ABB'O₆) basically exhibit a layered structure (centrosymmetric space group $P\overline{3}1m$, No. 162) consisting of edge-shared B/B'O₆ octahedra that form honeycomb-like layers separated by A cations (AO₆ octahedra).¹² PbSb₂O₆-type compounds containing 3d or 4d transition metals show interesting magnetic behavior. For example, divalent 3d transition metal arsenates AAs₂O₆ (A = Mn²⁺, Co²⁺, Ni²⁺) exhibit long-range antiferromagnetic ordering at around 30 K,^{13,14} and the 4d transition metal arsenate Pd(II)As₂O₆ shows a relatively high Néel temperature (T_N) of 140 K.^{15,16} More interestingly, SrRu₂O₆ (Ru⁵⁺, S = 3/2) shows an extraordinarily high antiferromagnetic transition temperature (T_N) of 565 K.^{17,18}

If the B and B' cations order crystallographically, the crystal structure adopts the lower-symmetry chiral space group P312 (No. 149).¹² To date, only one compound, SrGeTeO₆, has been reported with the chiral PbSb₂O₆-type structure.^{19,20} The

crystal structure of BaGeTeO₆ (P312) was also reported, but it is not isostructural with SrGeTeO₆.²⁰ If the substitution of magnetic cations (3d–5d transition metals) into the chiral PbSb₂O₆ structure is possible, such new phases should be good candidates for the design of new NCS magnetic oxides.

Interestingly, the crystal structure of SrMnTeO₆ was reported with a similar layered structure (NCS space group $P\bar{6}2m$, No. 189) as that of SrGeTeO₆, but it consists of edge-sharing disordered (Mn⁴⁺/Te⁶⁺)O₆ trigonal prisms, which also form honeycomb-like layers separated by Sr²⁺ cations (SrO₆ trigonal prisms).^{21,22} This result suggests that two similar layered structures may be observed in A(II)B(IV)Te(VI)O₆: the chiral space group P312 or the NCS space group $P\bar{6}2m$ depending on the B-site cation arrangement.

On the basis of these observations, the exploratory synthesis of $A(II)M(IV)TeO_6$ (A(II) = Sr, Ba, Pb; M(IV) = V, Mn, Ru, Re, Os, Ir) phases was undertaken to find new multifunctional materials. Here, we report the successful synthesis and characterization of the new NCS compound PbMnTeO₆.

EXPERIMENTAL SECTION

Reagents. PbO (Alfa Aesar, 99.99%), MnO_2 (Strem Chemical, 99.995%), and H_2TeO_4 ·2 H_2O (Alfa Aesar, 99+%) were used without any further purification.

Synthesis. Polycrystalline PbMnTeO₆ was prepared by a conventional solid-state reaction. Stoichiometric amounts of PbO (0.3348 g,

Received: November 22, 2015

1.5 mmol), MnO₂ (0.1304 g, 1.5 mmol), and TeO₃ (0.2634 g, 1.5 mmol; amorphous TeO₃ was prepared by heating H₂TeO₄·2H₂O at 400 °C for 12 h in air²³) were thoroughly ground and pressed into a pellet. The pellet wrapped in Pt foil was placed in a quartz tube that was evacuated and flame-sealed. The sealed ampule was heated to 700 °C for 12 h and then cooled to room temperature (the heating and cooling rates were 200 °C/h). After that, the resulting product was washed with dilute HNO₃ solution several times to remove Pb₂MnTeO₆ impurities²⁴ (see Figure S1). The final product obtained was dark-brown-black polycrystalline PbMnTeO₆. Energy-dispersive X-ray spectroscopy (EDX) analysis of the final product PbMnTeO₆ indicated a chemical composition of Pb_{0.99(8)}Mn_{1.04(7)}Te_{0.98(1)}O_x; thus, the compound is stoichiometric within the standard deviation range of error (see Figure S2).

Powder X-ray Diffraction. The final product was characterized by powder X-ray diffraction (PXRD) (Bruker AXS D8 Advance diffractometer, Cu K α radiation (λ = 1.5406 Å), 40 kV, 30 mA, step scan 10–120°/0.02°/10.5s) for purity and phase identification. Diffraction data analysis and Rietveld refinement were performed with the TOPAS²⁵ and GSAS-EXPGUI²⁶ software packages.

Second Harmonic Generation. The temperature dependence of the optical SHG by PbMnTeO₆ was measured for a pellet between 12 and 873 K in normal-incidence reflection geometry using an 800 \pm 20 nm fundamental input generated by a Ti:sapphire laser (Coherent Libra, 2 mW, 80 fs, 2 kHz). The SHG signal was detected with a photomultiplier tube (Hamamatsu H7926). The sample was cooled and heated at a rate of 6.0 °C/min between 12 and 320 K in a cryostat and 7.0 °C/min between 300 and 873 K on a heating stage.

Magnetic Measurements. The magnetic measurements for PbMnTeO₆ were performed with a commercial Quantum Design SQUID magnetometer. The dc magnetic susceptibility data were collected at 2 K \leq *T* \leq 300 K under applied magnetic fields of 1000 and 10 000 Oe. Isothermal magnetization curves were obtained for magnetic fields –5 T \leq *H* \leq 5 T at *T* = 2 and 300 K.

RESULTS AND DISCUSSION

Synthesis. Previously, Woodward et al.²⁰ reported the synthesis and crystal structures of AGeTeO₆ (A = Sr²⁺, Ba²⁺), which were prepared at ~900 °C in air. Because the ionic radii of Mn⁴⁺ and Ge⁴⁺ in a sixfold coordination environment are identical (0.53 Å),²⁷ the AMn(IV)TeO₆ (A = Sr²⁺, Ba²⁺) phase should also form. Interestingly, Wulff and Müller-Buschbaum²² reported the crystal structure of SrMnTeO₆ from a single-crystal sample obtained from the reaction of Sr(OH)₂·8H₂O, MnCO₃·xH₂O, and TeO₂ at 800 °C for 8 days in air, which also produced crystals of Sr₂MnTeO₆ as a byproduct.²² However, our attempts to prepare phase-pure AMnTeO₆ (A = Sr²⁺, Ba²⁺) with synthetic methods similar to those used for PbMnTeO₆ have not been successful to date (see Figures S3 and S4).

Structure. Initially, the structural refinements were performed on PXRD data based on the two possible structural models (space group P312, No. 149, for SrGeTeO₆ and space group $P\overline{6}2m$, No. 189, for SrMnTeO₆). The two models gave comparable results by the Le Bail fit ($R_p = 5.07\%$, $R_{wp} = 6.84\%$, and $\chi^2 = 1.43$ for SrGeTeO₆ and $R_p = 5.09\%$, $R_{wp} = 6.86\%$, and $\chi^2 = 1.43$ for SrMnTeO₆). From Rietveld refinement with the SrGeTeO₆ structure model (space group P312), when the Mn⁴⁺ and Te⁶⁺ ions were fixed as ordered, the thermal parameters of both atoms were negative, and thus, the refinement was unreliable. When the Mn4+ and Te6+ ions were randomly distributed, the refinement was stable with R_p = 5.39%, $R_{\rm wp}$ = 7.15%, and χ^2 = 1.56, but because of the symmetry constraints, this structure had to adopt the highersymmetry centrosymmetric space group $P\overline{3}1m$ rather than the chiral space group P312.¹² Moreover, the SHG measurements clearly established the NCS character of PbMnTeO₆ (vide

infra). Finally, Rietveld refinement of PbMnTeO₆ with the SrMnTeO₆ structural model (space group $P\overline{6}2m$) yielded $R_p = 5.18\%$, $R_{wp} = 6.92\%$, and $\chi^2 = 1.46$ with lattice parameters of a = b = 5.10143(5) Å, c = 5.39643(6) Å, V = 121.62(4) Å³, and Z = 1. The Pb atoms are located at the 1*a* (0, 0, 0) positions, Mn/ Te atoms at the 2*d* $\binom{2}{3}$, $\binom{1}{3}$, $\binom{1}{2}$ positions, and O atoms at the 6*i* (*x*, 0, *z*) positions in space group $P\overline{6}2m$. The Rietveld refinement plot of the PXRD data is shown in Figure 1; atomic coordinates and atomic displacement parameters are summarized in Table 1.

Figure 1. Rietveld refinement plot of the PXRD data for PbMnTeO₆.

PbMnTeO₆ exhibits a two-dimensional crystal structure consisting of edge-sharing $Mn(1)/Te(1)O_6$ trigonal prisms that form honeycomb-like layers in the *ab* plane with Pb²⁺ cations (PbO₆ trigonal prisms) located between the layers (see Figure 2). The crystal structures of SrGeTeO₆ (chiral space group *P*312) and PbMnTeO₆ (as well as SrMnTeO₆, NCS space group *P*62*m*) are similar (see Figure 3), but two major differences come from the order/disorder character of the cations and the arrangement of oxygens: ordered/octahedra in SrGeTeO₆ versus disordered/trigonal prisms in PbMnTeO₆ (and SrMnTeO₆). The origin of these differences is likely due to electronic differences between Mn⁴⁺ and Ge⁴⁺. Interestingly, these differences affect the long-range ordering of M⁴⁺ cations (M = Mn, Ge) in the layer (Ge⁴⁺-O-Te⁶⁺-O-Ge⁴⁺ vs (Mn⁴⁺/Te⁶⁺)-O-(Mn⁴⁺/Te⁶⁺)).²⁰

The Mn(1)/Te(1)–O(1) bond distances in PbMnTeO₆ range between 1.9091(2) and 1.9095(1) Å, and the Mn(1)/Te(1)–O(1)–Mn(1)/Te(1) bond angle is 100.94(4)°. It is noteworthy that the Pb(1)–O(1) bonds in the PbO₆ trigonal prisms are equivalent with lengths of 2.5572(1) Å, which indicates that the 6s² lone pair on the Pb²⁺ cation is non-stereoactive, as also observed in other Pb²⁺ containing layered oxides.^{12,28} Selected bond distances and bond angle for PbMnTeO₆ are summarized in Table 2. The local coordination environments are shown in Figure S5. Bond valence sum (BVS) calculations^{29,30} resulted in values of 1.80, 3.93, and 6.13 for Pb²⁺, Mn⁴⁺, and Te⁶⁺, respectively (see Table 2).

Second Harmonic Generation. The SHG intensity for PbMnTeO₆ as a function of temperature is shown in Figure 4. Finite SHG signals were observed over the whole temperature measurement range, confirming that PbMnTeO₆ is NCS. Overall, the SHG intensity gradually decreases in the temperature range up to 873 K. A noncentrosymmetric-to-

Tabl	e 1	. Atomic	Coordinates	and Atomic	Displacement	Parameters	for	PbMnTeC) ₆ "
------	-----	----------	-------------	------------	--------------	------------	-----	---------	------------------

-	DVDD D. 11 (77 (27 100)				
	O(1)	6 <i>i</i>	0.6139(1)	0	0.3022(1)	0.0260(2)	1
	Mn(1)/Te(1)	2 <i>d</i>	² / ₃	¹ / ₃	¹ / ₂	0.0064(8)	0.5/0.5
	Pb(1)	1 <i>a</i>	0	0	0	0.0063(6)	1
	atom	Wyckoff position	x	у	z	$U_{ m eq}~({ m \AA}^2)^b$	SOF

^{*a*}From PXRD Rietveld refinement using space group $P\overline{6}2m$ (No. 189): $R_p = 5.18\%$, $R_{wp} = 6.92\%$, and $\chi^2 = 1.46$. Unit cell parameters: a = b = 5.10143(5) Å, c = 5.39643(6) Å, V = 121.6240(30) Å³, Z = 1. ^{*b*} U_{eq} is defined as one-third of the trace of the orthogonal U_{ij} tensor.

Figure 2. Ball-and-stick diagram of the PbMnTeO₆ structure in the (a) bc and (b) ab planes.

centrosymmetric phase transition was observed to be above 873 K, likely ~900 K. The sample was not heated above 873 K in the SHG experiment because a thermogravimetric analysis (TGA) measurement for PbMnTeO₆ at 1023 K in air indicated the decomposition of the compound (see Figures S6 and S7).

Table 2. Selected Bond Distances, Bond Angle, and BVS for PbMnTeO $_6$

cation	anion	bond length (Å)	BVS	
Pb(1)	O(1)	$2.5572(1) \times 6$	1.80	
Mn(1)/Te(1)	O(1)	$1.9091(1) \times 2$	3.93/6.13	
	O(1)	$1.9092(5) \times 2$		
	O(1)	$1.9095(1) \times 2$		
	bond a	bond angle (deg)		
Mn(1)/Te(1)-0	D(1) - Mn(1) /	Te(1) 10	0.94(4)	

A pseudosymmetry analysis was performed in order to gain insight into the origin of the noncentrosymmetry in PbMnTeO₆. The optical SHG intensity gradually decreases with increasing temperature, although it does not reach zero up to 873 K, indicating a second-order phase transition from a noncentrosymmetric phase to a centrosymmetric phase. Assuming that the phase transition is second order, the centrosymmetric phase should belong to supergroups of the noncentrosymmetric $P\overline{6}2m$ (No. 189) structure shown in Figure 5a. The possible supergroup structures were searched within atomic displacements of 2 Å using the PSEUDO program.³¹ We found one possible structure with P6/mmm symmetry. Figure 5b shows the P6/mmm (No. 191) structure along with arrows representing a distortion that leads to the $P\overline{6}2m$ structure. The distortion corresponds to rotations of oxygen prisms enclosing the Mn/Te sites, which break the

Figure 3. Comparison of ball-and-stick diagrams for the three similar crystal structures: (a) $PbSb_2O_6$ in the *bc* plane,¹² (b) SrGeTeO₆ in the *ab* plane,²⁰ and (c) $PbMnTeO_6$ in the *ab* plane (this work).

Figure 4. Temperature dependence of the optical SHG intensity for a PbMnTeO₆ pellet between 12 and 873 K. The inset shows the schematic of the SHG experiment, where the sample pellet is irradiated with an 800 nm laser and the 400 nm SHG is scattered off the sample.

Figure 5. (a) Noncentrosymmetric $P\overline{6}2m$ (No. 189) structure of PbMnTeO₆ and (b) possible parent centrosymmetric structure with space group P6/mmm (No. 191). The black arrows in (b) represent a distortion that leads to the $P\overline{6}2m$ structure.

inversion symmetry. This is likely the origin of the noncentrosymmetry in $PbMnTeO_6$.

Magnetic Behavior. The dc magnetic susceptibility of PbMnTeO₆ was measured at 1000 and 10 000 Oe over the temperature range 2–300 K, and the results are shown as plots of χ and $1/\chi$ versus T in Figures 6 and 7, respectively. PbMnTeO₆ exhibits antiferromagnetic behavior with a broad

Figure 6. Temperature dependence of the magnetic susceptibility of PbMnTeO₆ measured at 1000 and 10 000 Oe. The inset shows a close-up of the low-temperature region revealing the Néel temperature of \sim 20 K.

Figure 7. Inverse magnetic susceptibility of PbMnTeO₆ with a Curie–Weiss fit (solid line).

Néel transition temperature (T_N) at ~20 K, consistent with low-dimensional magnetic behavior.^{32,33} No significant divergence between the zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves was observed. From the plot of $1/\gamma$ versus T shown in Figure 7, the susceptibility data were fit to the Curie–Weiss (CW) law, $\chi = C/(T - \theta)$ for T > 150 K, where C is the Curie constant and θ is the Weiss constant; the values C = 1.81 emu K mol⁻¹ and $\theta = -43.22$ K were extracted from the CW fit of the data. On the basis of the CW fit, the effective magnetic moment, $\mu_{\text{eff}} = 3.81 \mu_{\text{B}}$ per Mn, is in good agreement with the theoretical spin-only value of $3.87\mu_{\rm B}$ for Mn^{4+} (S = $3/_2$). The negative Weiss constant indicates antiferromagnetic interactions, which could arise from superexchange interactions of nearest-neighbor Mn4+-O2--Mn^{4+,34-36} It is noteworthy that the frustration parameter $(|\theta|/T_{\rm N})^{37}$ of ~2.16 in PbMnTeO₆ indicates that some degree of magnetic frustration is present in this quasi-two-dimensional honeycomb lattice. The origin of magnetic frustration in PbMnTeO₆ is likely due to the competition between nearestneighbor and next-nearest-neighbor antiferromagnetic interactions, but the degree of magnetic frustration is relatively lower because magnetic interactions are diluted by nonmagnetic Te⁶⁺ cations compared with an only Mn⁴⁺-containing honeycomb lattice antiferromagnet, Bi₃Mn₄O₁₂(NO₃).^{33,38}

As shown in Figure 8, the isothermal magnetization of PbMnTeO₆ measured at 2 and 300 K as a function of the applied field H is linear, which indicates that no ferromagnetic interactions are involved. The magnetic interactions of Mn^{4+} and Mn^{4+} between layers are negligible because the layers are well-separated by the Pb²⁺ ions with distances longer than 5.0 Å.

CONCLUSION

A new noncentrosymmetric layered honeycomb magnetic oxide, PbMnTeO₆, was successfully synthesized by a conventional solid-state reaction. The crystal structure of PbMnTeO₆ exhibits a two-dimensional structure (space group $P\overline{6}2m$) consisting of edge-sharing (disordered Mn⁴⁺/Te⁶⁺)O₆ trigonal prisms, which form honeycomb-like layers. In contrast, the similar layered SrGeTeO₆ presents long-rage order of Ge⁴⁺ and Te⁶⁺ ions in octahedral coordination, forming a chiral PbSb₂O₆-type structure (space group P312). The origin of these differences is likely due to electronic differences between

Article

Figure 8. Isothermal magnetization of PbMnTeO₆ measured at 2 and 300 K as a function of applied field H.

Mn⁴⁺ and Ge⁴⁺. Second harmonic generation for PbMnTeO₆ confirmed the noncentrosymmetric character. PbMnTeO₆ exhibits low-dimensional antiferromagnetic behavior with $T_{\rm N} \approx 20$ K, and some degree of magnetic frustration ($|\theta|/T_{\rm N} \approx 2.16$) is observed, which is attributable to competition between nearest-neighbor and next-nearest-neighbor antiferromagnetic interactions in this quasi-two-dimensional honeycomb lattice; no interlayer interaction is observed, because of the large separation of the Mn⁴⁺ ions by the Pb²⁺ ions. Further synthetic studies of single-phase AMnTeO₆ (A = Sr²⁺, Ba²⁺) are underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.5b02677.

Experimental PXRD patterns, EDX analysis data, ORTEP diagrams, and TGA data (PDF) Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: martha@chem.rutgers.edu.

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.W.K., Z.D., M.R.L., and M.G. gratefully acknowledge support from the ARO-434603 grant (DOD-VV911NF-12-1-0172). A.S.G., H.A., and V.G. gratefully acknowledge support from the National Science Foundation MRSEC Center for Nanoscale Science at Penn State through Grant DMR-1420620. S.W.K. thanks Prof. Mark Croft for fruitful discussions and Graeme Gardner for EDX measurements.

REFERENCES

- (1) Auciello, O.; Scott, J. F.; Ramesh, R. Phys. Today 1998, 51, 22–27.
- (2) Damjanovic, D. Rep. Prog. Phys. 1998, 61, 1267-1324.
- (3) Halasyamani, P. S.; Poeppelmeier, K. R. Chem. Mater. 1998, 10, 2753–2769.
- (4) Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. *Nature* **2004**, *432*, 84–87.
- (5) Eerenstein, W.; Mathur, N. D.; Scott, J. F. Nature 2006, 442, 759-765.
- (6) Hill, N. A. J. Phys. Chem. B 2000, 104, 6694-6709.
- (7) Ederer, C.; Spaldin, N. A. Curr. Opin. Solid State Mater. Sci. 2005, 9, 128–139.
- (8) Khomskii, D. I. J. Magn. Magn. Mater. 2006, 306, 1-8.
- (9) Cheong, S.-W.; Mostovoy, M. Nat. Mater. 2007, 6, 13-20.
- (10) Wang, P. S.; Xiang, H. J.; Ren, W.; Bellaiche, L. Phys. Rev. Lett. **2015**, *114*, 147204.
- (11) Young, J.; Stroppa, A.; Picozzi, S.; Rondinelli, J. M. Dalton Trans 2015, 44, 10644–10653.
- (12) Hill, R. J. J. Solid State Chem. 1987, 71, 12-18.
- (13) Nakua, A. M.; Greedan, J. E. J. Solid State Chem. 1995, 118, 402-411.
- (14) Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2014, 53, 3812-3817.
- (15) Orosel, D.; Jansen, M. Z. Anorg. Allg. Chem. 2006, 632, 1131–1133.

(16) Reehuis, M.; Saha-Dasgupta, T.; Orosel, D.; Nuss, J.; Rahaman, B.; Keimer, B.; Andersen, O. K.; Jansen, M. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2012**, *85*, 115118.

(17) Hiley, C. I.; Lees, M. R.; Fisher, J. M.; Thompsett, D.; Agrestini, S.; Smith, R. I.; Walton, R. I. Angew. Chem., Int. Ed. **2014**, 53, 4423–4427.

- (18) Singh, D. J. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 214420.
- (19) Robert, M.; Tarte, P. C. R. Hebd. Seances Acad. Sci., Ser. C 1976, 283, 195-198.
- (20) Woodward, P. M.; Sleight, A. W.; Du, L.-S.; Grey, C. P. J. Solid State Chem. **1999**, 147, 99–116.
- (21) Wulff, L.; Müller-Buschbaum, H. Z. Naturforsch., B: Chem. Sci. 1998, 53, 149–152.
- (22) Wulff, L.; Müller-Buschbaum, H. Z. Naturforsch., B: Chem. Sci. 1998, 53, 283–286.
- (23) Ivanov, S. A.; Mathieu, R.; Nordblad, P.; Tellgren, R.; Ritter, C.; Politova, E.; Kaleva, G.; Mosunov, A.; Stefanovich, S.; Weil, M. *Chem. Mater.* **2013**, *25*, 935–945.
- (24) Wulff, L.; Wedel, B.; Müller-Buschbaum, H. Z. Naturforsch., B: Chem. Sci. 1998, 53, 49-52.
- (25) Coelho, A. A. J. Appl. Crystallogr. 2003, 36, 86-95.
- (26) Toby, B. H. J. Appl. Crystallogr. 2001, 34, 210-213.
- (27) Shannon, R. D. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. **1976**, 32, 751–767.
- (28) Yeon, J.; Kim, S.-H.; Hayward, M. A.; Halasyamani, P. S. Inorg. Chem. 2011, 50, 8663–8670.
- (29) Brown, I. D.; Altermatt, D. Acta Crystallogr., Sect. B: Struct. Sci. 1985, 41, 244–247.
- (30) Brown, I. D. Chem. Rev. 2009, 109, 6858-6919.
- (31) Capillas, C.; Tasci, E. S.; de la Flor, G.; Orobengoa, D.; Perez-Mato, J. M.; Aroyo, M. I. Z. *Kristallogr. - Cryst. Mater.* **2011**, 226, 186– 196.
- (32) Khan, O. Molecular Magnetism; Wiley-VCH: New York, 1993.
- (33) Smirnova, O.; Azuma, M.; Kumada, N.; Kusano, Y.; Matsuda,

M.; Shimakawa, Y.; Takei, T.; Yonesaki, Y.; Kinomura, N. J. Am. Chem. Soc. 2009, 131, 8313-8317.

- (34) Goodenough, J. B. Phys. Rev. 1955, 100, 564-573.
- (35) Anderson, P. W. Phys. Rev. 1959, 115, 2-13.
- (36) Goodenough, J. B. Magnetism and the Chemical Bond; Interscience: New York, 1963.
- (37) Ramirez, A. P. Annu. Rev. Mater. Sci. 1994, 24, 453-480.
- (38) Onishi, N.; Oka, K.; Azuma, M.; Shimakawa, Y.; Motome, Y.; Taniguchi, T.; Hiraishi, M.; Miyazaki, M.; Masuda, T.; Koda, A.;

Kojima, K. M.; Kadono, R. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 184412.