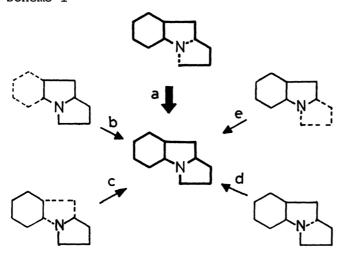
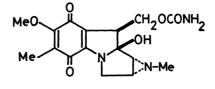
SYNTHETIC APPROACH TOWARD MITOMYCINS. EFFICIENT SYNTHESIS OF MITOSANE PRECURSORS FROM (2,4-PENTADIENYL)-p-QUINONES¹⁾

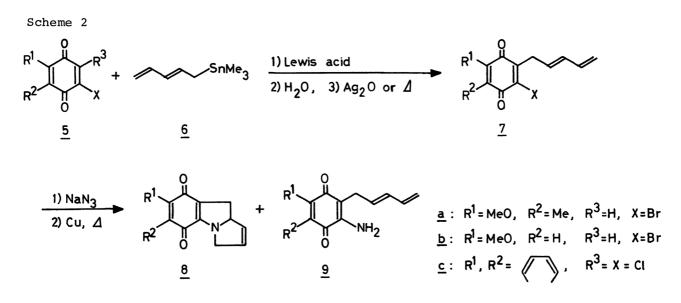
Yoshihiro ARITA, Naoshi NAGAI, Hidemitsu UNO, Yoshinori NARUTA, and Kazuhiro MARUYAMA


Department of Chemistry, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606

Introduction of 2,4-pentadienyl side chain to halogenated p-quinones is performed with (2,4-pentadienyl)trimethylstannane to afford 2-halo-3-(2,4-pentadienyl)-1,4-quinones. Pyrolytic decomposition of the corresponding azidoquinones derived from the obtained haloquinones affords 3H-pyrrolo[1,2-a] indol-5,8-dione derivatives in good yields.


Since the first success on the isolation of mitomycin A (1), $^{2)}$ B (2), $^{2)}$ C (3), $^{3)}$ and porfiromycin (4)⁴⁾ at the late 1950's, these unique quinones with complex functionality have attracted much attention of chemists.⁵⁾ Especially mitomycin C was shown to have the strongest and broadest activity against tumors and has been used in practice in cancer chemotherapy.⁶⁾ Total synthesis of mitomycins was achived by Kishi and co-workers.⁷⁾ Development of a rapid entry to the general ring system is still urgent subject allowing for structural modification for the mitomycin skelton.⁸⁾

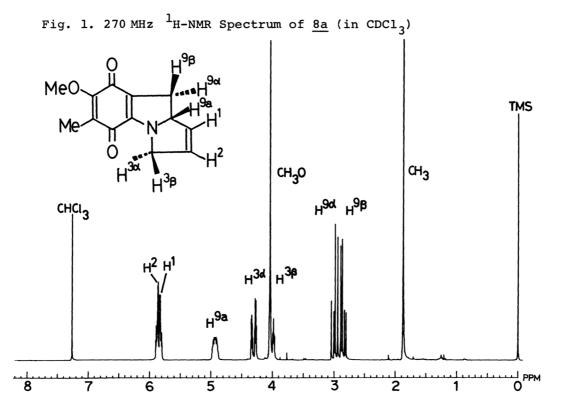
Reported strategies toward synthesis of pyrrolo[1, 2-a]indole are devided into four patterns (Scheme 1, paths b-e), each of which involves the stepwise construction of the required ring system. We recently developed a new and efficient route (path a), which contains simultaneous double ring cyclization and leads to a shortening of reaction processes.


Scheme 1^{5c)}

1: mitomycin A X=OMe, Y=H 3: mitomycin C $X=NH_2$, Y=H4: porfiromycin X=NH2, Y=Me

2: mitomycin B

We described herein our successful results in pyrrolo[1,2-a]indol-5,8-dione synthesis.


Our synthetic scheme is based on 2-halo-3-(2,4-pentadienyl)-1,4-quinones (7), which were easily obtained by Lewis acid mediated 2,4-pentadienylation of p-quinones with (2,4-pentadienyl)trimethylstannane (6) and followed by mild oxidation.⁹⁾ Synthesis of 7a was shown as a typical example. To a CH_2Cl_2 solution (10 ml) of a quinone $\frac{5a^{10}}{11}$ (1.0 mmol) 2M AlCl₃ (3.0 mmol, as etherate) was added at -78°C under N₂ atmosphere followed by the dropwise addition of the stannyl reagent <u>6</u> (1.2 mmol). After 0.5 h the reaction mixture was quenched with water, aqueous layer was extracted several times with CH_2Cl_2 . Organic extracts were dried over MgSO₄ and then concentrated *in vacuo*. After the residue was treated with Ag₂O in ether, chromatographic separation afforded the quinone $\frac{7a^{10}}{10}$ in 63% yield.

Similar procedure was applied to a quinone <u>5b</u> to afford $\underline{7b}^{10}$ in 58% yield. Synthesis of <u>7c</u> was performed by modified method. After reaction of <u>5c</u> with <u>6</u>,¹²⁾ the crude product obtained was refluxed in chlorobenzene for 1 h to give $\underline{7c}^{10}$ in 40% overall yield.

The 2-halo-3-(2,4-pentadienyl)quinones $(\underline{7})$ were easily converted to the corresponding azides¹⁰ in almost quantitative yields by treatment with sodium azide.¹³⁾ Pyrolytic decomposition of the azidoquinone was performed under reflux of a benzene solution for 4 h in the presence of copper powder¹⁴⁾ to afford two products after chromatographic separation. Surprisingly, the main fraction was 7-methoxy-6-methyl-3*H*-pyrrolo[1,2-*a*]indol-5,8-dione ($\underline{8a}$)¹⁵⁾ (53%), dark purple crystals, mp 119-121°C. The detailed structure was confirmed by 270 MHz ¹H-NMR (Fig. 1 and Table 1) and other spectroscopic methods. The minor product was assigned to be the corresponding aminoquinone $\underline{9a}^{10}$ (35%). The other azidoquinones afforded the corresponding indolquinones $\underline{8b}^{15}$ (45%) and $\underline{8c}^{15}$ (43%), respectively. Photochemical (λ >360 nm) and pyrolytic decomposition with metal salts (AgBF₄, RhCl₃, Rh(OAc)₃ etc.) were not effective to the formation of $\underline{8}$. Although the present reaction has not been mechanistically clarified, it could presumably proceed *via* trapping an intermediary nitrene by a diene.¹⁶

This route including new cyclization reaction is clearly one of the most promising route to mitosane. The total synthesis of mitomycins is now under way.

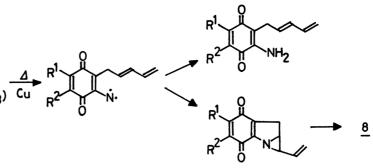
1860

Table	1.	Chemical	Shifts	and	Coupling	Constants	of	<u>8a</u>	(in	CDC1 ₃)	
-------	----	----------	--------	-----	----------	-----------	----	-----------	-----	---------------------	--

Proton	Chemical shift (δ , ppm)	Coupling constant (Hz)
CH3	1.87 (s)	
сн ₃ 0	4.04 (s)	
Hl	5.82 (m)	$J_{1,2}=6.2, J_{1,3\alpha}=1.9, J_{1,3\beta}=2.6$
н ²	5.87 (m)	$J_{2,3\alpha} = 1.6, J_{2,3\beta} = 1.3$
H ^{3α}	4.30 (dq)	$J_{3\alpha,3\beta} = 16.1, J_{3\alpha,9a} = 3.6$
н ^{3β}	4.01 (dq)	$J_{3\beta,9a}^{=4.2}$
H ^{9α}	2.85 (dd)	$J_{9\alpha,9\beta} = 16.8, J_{9\alpha,9a} = 6.9$
н ⁹⁶	2.99 (dd)	^J 9a,9β=11.5
н ^{9а}	4.93 (m)	

Acknowledgment. This work was supported by funds from Kurata Foundation and Japan Society for Promotion of Science. The authors express their appreciation for the measurement of 270 MHz ¹H-NMR spectra to Mr. K.Eguchi, Japan Electron Optics Laboratory Co., Ltd.

References


- Synthesis of Naturally Occurring Quinones Part 12. Part 11: Y.Naruta, H.Uno, and K.Maruyama, Chem. Lett., <u>1982</u>, 609.
- 2) T.Hata, Y.Sano, R.Sugihara, A.Matsumoto, K.Kanamori, Y.Shima, and T.Hoshi, J. Antibiotics, <u>9</u>, 141, 146 (1956).
- 3) S.Wakaki, K.Marumo, G.Tomioka, E.Shimizu, H.Kato, H.Kamata, S.Kudo, and Y.Fujimoto,

Antibiotics and Chemotherapy, 8, 228 (1958).

- 4) R.R.Herr, M.E.Ebble, H.K.Jahnke, Antimicrobial Agents Ann., 17, 23 (1960).
- 5) For excellent reviews on mitomycins: (a) T.Kametani and K.Takahashi, Heterocycles, <u>9</u>, 293 (1978). (b) K.Takahashi and T.Kametani, ibid., <u>13</u>, 411(1979). (c) W.A. Remers, "The Chemistry of Antitumor Antibiotics", Vol.1, Wiley, New York (1979).
 (c) T.Ohnuma and Y.Ban, J. Syn. Org. Chem., Japan, 38, 1053 (1980).
- 6) K.Nakano, Heterocycles, 13, 373 (1979) and references cited therein.
- 7) Y.Kishi, Lloydia, <u>42</u>, 549 (1979).
- 8) Recent reports in mitomycin area: (a) T.Kametani, Y.Kigawa, H.Nemoto, M.Ihara, and K.Fukumoto, Heterocycles, <u>14</u>, 799 (1980). (b) Y.Kigawa, H.Nemoto, M.Ihara, and K.Fukumoto, J. Chem. Soc., Perkin Trans.1, 1607 (1980). (c) S.Danishefsky, J.Regan, and R.Doehner, J. Org. Chem., <u>46</u>, 5255 (1980). (d) S.Danishefsky and J.Regan, Tetrahedron Lett., <u>22</u>, 3919 (1980). (e) S.N.Falling and H.Rapoport, J. Org. Chem., <u>45</u>, 1260 (1980). (f) H.W.Moore, Y.-L.L.Sing, and R.S.Sidhu, J. Org. Chem., <u>45</u>, 5057 (1980).
- 9) Y.Naruta, N.Nagai, Y.Arita, H.Uno, and K.Maruyama, submitted for publication.
- 10) This substance gave satisfactory elemental analysis and/or ms spectra and IR and $^{\rm l}{\rm H-NMR}$ spectra consisted with the assigned structure.
- 11) We have recently developed a synthetic method of <u>5a</u> from 2,6-dimethoxytoluene by the following sequence of reactions, i.e., (1) Cl₂CHOCH₃/TiCl₄/CH₂Cl₂/0°C,(2) Br₂/ dioxane/r.t., (3) H₂O₂/0°C, (4) NaOCH₃/MeOH.
- 12) In this stage, 1,2 addition product to quinone carbonyl group was obtained. Subsequent allylic rearrangement was inhibited. Mechanistic studies concerning this field, see: Y.Naruta, J. Am. Chem. Soc., <u>102</u>, 3774 (1980).
- 13) H.W.Moore, H.R.Sheldon, D.W.Deters, and R.J.Wilkholm, J. Am. Chem. Soc., <u>92</u>, 1675 (1970).
- 14) Cu powder was heated at ~ 200 °C under H₂ stream prior to use.
- 15) Physical and spectroscopic data of typical compounds are shown below; <u>8a</u>: ¹³C-NMR (CDCl₃) δ 8.28(s), 30.88(t), 56.65(t), 61.23(q), 71.22(d), 119.22(s), 124.63(s), 128.35(d), 130.88(d), 154.09(s), 157.60(s), 179.78(s), 183.32(s); IR (KBr) 1650(s), 1630(s), 1580(s), 1400cm⁻¹(s); UV λ_{max} (log ε) 220(4.10), 324(3.80), 536nm(3.11); MS(20eV) m/e 231(M⁺). <u>8b</u>: purple crystals, mp 112°C, decomp.; 100 MHz ¹H-NMR (CDCl₃) δ 2.85(dd,1H,J=11.5,17Hz), 3.09(dd,1H,J=10.5,17Hz), 3.80(s,3H), 4.10(dd,1H,J=3.5, 16Hz), 4.37(dd,1H,J=4.5,16Hz), 4.97(m,1H,J=3.5,4.5,7.5,10.5Hz), 5.85(br,2H), 5.60(s,1H),; IR(KBr) 1655(vs), 1630cm⁻¹(vs); MS(70eV) m/e 217(M⁺). <u>8c</u>: red purple crystals, mp 135-136°C; 100 MHz ¹H-NMR(CDCl₃) δ 2.96(dd,1H,J=8,18Hz), 3.18(dd,1H,J=11, 18Hz), 4.06(dd,1H,J=3.5,16Hz), 4.42(dd,1H,J=4.5,16Hz), 4.92(m,1H,J=3.5,4.5,8,11Hz), 5.85(br,2H), 7.58(m,2H), 7.95

```
(m,2H); IR(KBr) 1665(vs), 1625
cm<sup>-1</sup>(vs); MS(20eV) m/e 237
(M<sup>+</sup>).
```

16) Formation of aminoquinone 9 7 4 as by-product is suggestive (X=N₃) Cu of nitrene mechanism. Intermediary vinylaziridine would rearrange to 8.

(Received August 19, 1982)