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Scheme 1. Polyphenols isolated from Anacardium occidentale L.
Cardol, 2-methyl cardol and cardanol (Scheme 1) are the main
phenolic components present in the cashew nut shell liquid
(CNSL), an oil obtained as a by-product of the cashew (Anacardium
occidentale L.) nut processing. As renewable raw materials, some of
these could be useful for applications in fine chemical industry.1–4

Chemically, cardols are 5-n-pentadecylresorcinols with satu-
rated, monoolefinic (8), diolefinic (8, 11) or triolefinic (8, 11, 14)
hydrocarbon long side chain.5 Due to their structure, similar to
those of tocopherols, cardols are also known as the most promi-
nent members of the resorcinolic lipids, so called because of their
high lipophilic nature.6 Resorcinolic lipids are of great interest
from many points of view: (a) biotechnological, for the preparation
of biodegradable polyethoxylate surfactants7 or to synthesize soft
materials based on self-assembling aryl glycolipids and used as
nanomaterials (lipid nanotubes, nanofibers, liquid crystals or hy-
dro/organogels as new drug delivery vehicles);8 (b) biopharmaceu-
tical and biomedical, as antimicrobial9–11 and antitumor agents,12

molluscicides13 and prostaglandin synthetase inhibitors.14

More recently, some naturally occurring compounds such as
coumarins15–17 and cardol18 itself, have gained attention as inter-
esting inhibitors of tyrosinase (EC 1.14.18.1), a multifunctional
All rights reserved.

51; fax: +39 070 675 8553.
copper-containing enzyme involved in melanin biosynthesis.
Tyrosinase catalyzes, as a polyphenol oxidase, the orto-hydroxyl-
ation of tyrosine to DOPA and the oxidation of L-DOPA to dopaqui-
none, which further polymerizes spontaneously into melanin.
Melanogenesis inhibitors are useful as skin-whitening agents in
the treatment of pigmentation disorders associated with overpro-
duction of melanin, including melasma, solar and senile lentigines,
ocular retinitis pigmentosa19 and Addison’s disease.20

Despite the significant in vitro activity of cardols, especially
those with unsaturated side chain, they, like hydroquinone or
other active compounds,16 can not be used for clinical application,
since they suffer from citoxicity. Furthermore, they could cause
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Scheme 3. Synthesis of PEG-cardol coumarins 6–8.

OH

CH3O

11

CH3O

O

O

CH3
CH3O

O

O

CF3

10

12

OH

CH3HO

orcinol

9

Scheme 4. Synthesis of PEG-orcinol coumarins 11 and 12.

Table 1
Tyrosinase inhibitory activity of PEG-cardol coumarins28

Compounds Inhibition% (0.8 mM) IC50(mM)

[DOPA 0.25 mM] [DOPA 0.5 mM] [DOPA 0.5 mM]

6 21.5 12.3 1.68
11 36.19 33 1.73
7 20 0 –
12 28.5 15.3 3.81
8 0 0 –
Kojic acid * * 9.5 � 10�3

4-Hexylresorcinol * * 0.98 � 10�3

Resorcinol * * 1.44

* Not tested.
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severe contact dermatitis21 and skin irritation.22 To avoid some of
these problems, some b-glycosides of hydroquinone, such as arbu-
tin and deoxyarbutin,16 have been synthesized.

In an attempt to develop an effective and safer tyrosinase inhib-
itor, we have supported the more available cardol 1 on a non-toxic
and versatile polymer such as the poly (ethylene glycol) (PEG),
evaluating, as preliminary results, the activity of the PEG poly-
mer-bound cardol on mushroom tyrosinase.

The selected support was the mono methyl ether of poly (ethyl-
ene glycol) with Mw = 5000 Da, which demonstrated to be easily
soluble in a wide range of solvents, non-toxic, inexpensive, com-
mercially available, easy to functionalize and also resistant to dras-
tic operative conditions.23 Due to these features, PEG chemistry has
shown broad-based application, which may be in large part as-
cribed to the use of PEG-conjugates to deliver drugs, oligonucleo-
tides or enzymes.24

The synthetic procedure for the preparation of PEG polymer-
bound cardol25,26 started by anchoring the mono allylated cardol
1 to PEG-mesylate 3 giving the intermediate 4, which was rapidly
deprotected to obtain the final product 5 (Scheme 2).27

Tyrosinase enzyme activity was estimated by measuring the
rate of oxidation of L-DOPA to dopaquinone in a modification28 of
a previously described method.18 The compound 5 was examined
for its inhibitory activity on mushroom tyrosinase at a concentra-
tion of 0.8 mM, using L-DOPA 0.5 mM as substrate. In these exper-
imental conditions, the PEG-cardol 5 showed an inhibition of
25.37% and an IC50 of 1.52 mM.

A comparison on the activity of compound 5 over cardol 1 was
not possible because of the limited solubility of the last compound.
In fact, in contrast to previous reports,18 cardol 1 started to exhibit
its insolubility at a concentration of 0.2 mM.

Encouraged by these preliminary results and on the basis of our
previous experiences in PEG-supported synthesis,25 we decided to
utilize compound 5 as starting material for the liquid-phase syn-
thesis of some new PEG-cardol coumarins 6–825,26,29 (Scheme 3).

To evaluate the possible influence of the side alkyl chain on
mushroom tyrosinase, similar compounds have been synthe-
sized25,26,30 starting from 5-methylresorcinol 9 (orcinol) instead
of cardol 1 (Scheme 4).

All PEG-coumarins were examined for their tyrosinase inhibi-
tory activity, in the same experimental conditions reported
above.28

The results reported in Table 1 suggest that R groups in the C4
and C5 position of the coumarin skeleton could have a role on the
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Scheme 2. Synthesis of PEG-cardol 5. Reagents and conditions25: (a) allyl bromide,
K2CO3, KI, acetone, reflux, 4 h. (b) Cs2CO3, DMF, 60 �C, overnight. (c) Pd(OAC)2, PPh3,
EtOH, reflux, overnight.
inhibition of the tyrosinase. In fact, 4-methyl-5-pentadecyl-7-O-
PEG-coumarin 6 showed a weaker inhibitory effect than 4,5-di-
methyl-7-O-PEG- coumarin 11. Similarly, 5-pentadecyl-4-trifluo-
romethyl-7-O-PEG-coumarin 7 revealed a decrease in inhibitory
activity when compared with 5-methyl-4-trifluoromethyl-7-O-
PEG-coumarin 12.

Furthermore, the presence of a strong electron withdrawing
group in compounds 7 and 12, as well as in 4-chloromethyl-5-
methyl-7-O-PEG-coumarin 8, could be responsible of their reduced
inhibitory activity.

It is remarkable that all the synthesized compounds are com-
pletely soluble in water, suggesting the possibility of performing
the inhibition test without organic solvents. To this intention, the
most active compound 11 was examined in the absence of DMSO,
showing a decrease of about 20% in inhibition, measured in the
usual experimental conditions (DOPA 0.25 mM and 0.5 mM).
Moreover, the effect of PEG on enzymatic activity was excluded. In-
deed, the same experiment performed using PEG as inhibitor, did
not show any decrease of tyrosinase activity. Noteworthy, PEG
proved to be an important synthetic helper, playing a significant
role in the reaction regiochemistry. In fact, compounds 5 and 10
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Scheme 5. Gas-chromatogram and mass spectra of 4,7-dimethyl-5-hydroxycoumarin 13 and 4,5-dimethyl-7-hydroxy coumarin 14.
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underwent regioselective cyclization with all the employed b-keto-
esters, just leading to 4,5-dialkyl-7-O-PEG-coumarin derivatives,
independently of the length of the alkyl chain. Conversely, when
we carried out the reaction in solution, under the classical von
Pechmann conditions, it was observed, by means of GC–MS analy-
sis, the formation of the both possible isomers 13 and 14,31 and not
of only one, as previously reported.32–34 (Scheme 5).

We can conclude that PEG-conjugates could be valid candidates
as innovative tyrosinase-active compounds, since they are photo-
stable,35 widely soluble in water and in many other solvents and,
last but not least, PEG did not show to affect the activity of an-
chored molecules.

In addition, due to PEG features,23 we think that PEG-cardol and
PEG-cardol coumarins, could lack skin irritation and some other
undesirable side effects.

Finally, PEG confirmed again to be a fundamental tool for the
synthesis of small organic molecules.
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