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ABSTRACT: The asymmetric hydrogenation of vinylsilanes
catalyzed by a new C1-symmetric phosphine−pyridine−
oxazoline cobalt complex is described. The method provides
an efficient approach to chiral tertiary silanes with
enantioselectivities up to 99% ee. Furthermore, the o-methyl-
substituted benzylic silane products undergo ruthenium-
catalyzed dehydrogenative silylation to produce chiral
benzosilolanes in high yields without racemization of the
stereogenic center α to the quaternary Si atom.

Asymmetric hydrogenation of alkenes offers a powerful
approach to optically active compounds due to atom

economy and operational simplicity and has been widely used
in the pharmaceutical, agrochemical, and fine-chemical
industries.1 While this area has been dominated by precious-
metal catalysts,2−4 the demand for low-cost and sustainable
catalysts has recently inspired many efforts on the development
of base-metal catalysts.5 Perhaps more importantly, the distinct
electronic structures and redox properties of base-metals may
provide new opportunities for catalyst development with novel
reactivity and selectivity.6 Over the past decades, remarkable
progress has been achieved in the asymmetric hydrogenation
of alkenes using cobalt catalysts (Figure 1).7 The pioneering
work of Ohgo showed that the asymmetric hydrogenation of

α , β - u n s a t u r a t e d c a r b o n y l d e r i v a t i v e s w i t h
(dimethylglyoximato)cobalt(II) catalysts led to moderate
enantioselectivity.7a By utilizing chiral semicorrin cobalt
catalysts, Pfaltz reported the enantioselective hydrogenation
of α,β-unsaturated esters with ee values up to 97%.7b More
recently, Chirik disclosed that Co(II) complexes of chiral
bidentate phosphines effected highly enantioselective hydro-
genation of amino acid and enamide derivatives.7e Beyond
chelating alkenes, unfunctionalized alkenes could also be
hydrogenated under cobalt catalysis.7c,d Chirik developed C1-
symmetric bis(imino)pyridine (PDI) cobalt complexes for
asymmetric hydrogenation of α-substituted styrene deriva-
tives7f and benzo-fused cyclic alkenes.7g Lu demonstrated that
iminopyridine−oxazoline (IPO) cobalt complexes enabled
highly enantioselective asymmetric hydrogenation of 1,1-
diarylethenes.7h

Despite the achievements in cobalt-catalyzed asymmetric
hydrogenation of chelating olefins and unfunctionalized
olefins, the asymmetric hydrogenation of vinylsilanes still
remains rare.4e In 2017, Lu and co-workers developed a highly
regio- and enantioselective (IPO)Co-catalyzed sequential
Markovnikov hydrosilylation/hydrogenation of terminal aryl
alkynes, where highly enantioselective asymmetric hydro-
genation of 1,1-arylsilyl substituted alkenes was involved.7i
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However, the scope in this work was restricted to substrates
without ortho substituents in the aryl groups. From a synthetic
point of view, the introduction of o-methyl substituents is
desired because the dehydrogenative silylation between the o-
methyl C−H bond and a Si−H bond can potentially produce
novel chiral silolanes.
Chiral organosilanes are valuable building blocks in organic

synthesis and materials science as well as medicinal chemistry.
In addition, a carbon to silicon switch (sila substitution) is a
potentially useful tool for the development of silicon-based
drugs,8 luminescent materials,9 and odorant compounds.10 The
fundamental difference between C and Si atoms (e.g., covalent
radius and electronegativity) could impart, ideally, enhanced
physicochemical and biological properties to the sila
congeners.11 Given the prevalence of chiral carbon-based
cyclic units in bioactive molecules, it is significant to develop
an efficient way to synthesize the silacycles with high
enantiopurity.
On the basis of our continuous interest in development of

chiral tridentate ligands for transition-metal catalysis,12 we
report herein the synthesis of a new chiral phosphine−
pyridine−oxazoline (PPO) ligand and their application in Co-
catalyzed asymmetric hydrogenation of vinylsilanes to afford
optically active organosilanes. High activity and enantioselec-
tivity can be achieved for a broad range of substrates with
various substitution patterns on the aryl groups. Importantly,
when sterically hindered 1-(o-tolyl)vinylsilanes were used, the
hydrogenation products could be further transformed to chiral
silolanes with excellent enantiopurity by Ru-catalyzed intra-
molecular C(sp3)−H bond dehydrogenative silylation
(Scheme 1).13

Our initial efforts were focused on the development of a
cobalt catalyst for asymmetric hydrogenation of α-vinylsilanes.
During this endeavor, a new type of phosphine-containing
tridentate chiral ligand, phosphine−pyridine−oxazoline
(PPO), was designed. In comparison with the iminopyr-
idine−oxazoline (IPO) ligands initially developed by our
group12a and Lu’s14 group independently for cobalt-catalyzed
asymmetric alkene hydroboration, the C1-symmetric PPO
ligand retains the pyridine−oxazoline part for enantiocontrol
but substitutes the π-accepting imino subunit with a more
electron donating di-tert-butylphosphine group.
The synthesis of the enantiopure (PPO)CoCl2 is outlined in

Scheme 2. Treatment of 6-methylpicolinonitrile with L-tert-
leucinol in the presence of Zn(OTf)2 gave the pyridine−
oxazoline complex 1. Deprotonation of the methyl group at the
6-pyridyl position in 1 with LDA, followed by addition of
electrophilic tBu2PCl reagent, generated phosphine−pyridine−
oxazoline ligand 2 in moderate yield. The Co(II) dichloride
complex 3 was formed in high yield by reaction of complex 2
with anhydrous CoCl2. The Co(II) complex 3 shows
broadened and paramagnetically shifted resonances in the 1H
NMR spectra. Single-crystal X-ray diffraction analysis of

complex 3 reveals a distorted-square-pyramidal geometry
around the Co center.15

We commenced our study by examining a series of Co
catalysts with chiral tridentate ligands for the asymmetric
hydrogenation of diphenyl(1-phenylvinyl)silane 6a (Table 1).
The IPO cobalt complexes 4a−d, upon activation with
NaBHEt3, effected the hydrogenation of 6a with quantitative
conversion under 50 bar of H2 in toluene (entries 1−4). The
outcomes from the runs using different IPO Co catalysts reveal
that the enantioselectivity generally improves as the size of

Scheme 1. Synthesis of Chiral Benzosilolanes

Scheme 2. Synthesis and Molecular Structure of
(PPO)CoCl2 3

Table 1. Optimization for Asymmetric Hydrogenation of α-
Vinylsilanesa

aReaction conditions: 6a (0.2 mmol), H2, Cat. (5 mol %), and
additive (10 mol %) in solvent (2 mL) at room temperature for 5 h.
The yield of isolated product is given unless otherwise noted. ee
values were determined by chiral HPLC analysis. The absolute
configurations were assigned by comparison with reported optical
rotations after oxidation to the related alcohols. bWith 2.5 mol % of 3.
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substituents on the N-aryl group and the oxazoline increases,
and the complex 4d containing (Ph)2CH− at the 2,6-positions
of the N-aryl group and tBu on the oxazoline ring gave the
hydrogenation product 7a in 98% isolated yield with −50% ee
(entry 4). The use of the enantiopure (PDI)Co complex 5,
which was successfully developed by Chirik in the asymmetric
hydrogenation of α-substituted styrenes, resulted in a low
enantioselectivity (entry 5). To our delight, the newly
developed cobalt complex 3 of the PPO ligand afforded the
best enantioselectivity (62% ee) (entry 6). Reducing the
pressure of H2 to 10 bar led to a substantial increase in
enantioselectivity (80% ee) without a detrimental effect on
yield (entry 7). Performing the reactions at 4 and 2 bar of H2
gave 83% ee (entries 8 and 9).
The catalyst activator is not limited to NaBHEt3; the

reactions with MeLi and TMSCH2Li (2 equiv relative to Co)
gave 7a with similar yield and enantioselectivity (Table 1,
entries 10 and 11). However, no reaction happened with zinc
as the catalyst activator.7j n-Pentane proved to be the optimal
medium among the solvents investigated, furnishing 7a in 91%
isolated yield with 87% ee (entries 12−14).
With (PPO)CoCl2 (3) as the precatalyst, we examined a

wide range of vinylsilanes for enantioselective hydrogenations
(Scheme 3). All substrates were prepared by Markovnikov
hydrosilylation of terminal alkynes with Ph2SiH2 using the Co
catalyst supported by a PyBox ligand, a procedure developed

by our group.16 All hydrogenation reactions proceeded
smoothly at room temperature under 2 bar of H2 with 5 mol
% catalyst loading, providing the corresponding tertiary silanes
in high yields with moderate to high enantioselectivities.
Substrates bearing either electron-donating or -withdrawing
groups were effectively hydrogenated to afford the desired
products. A variety of functional groups, such as methoxy
(7d,e), dimethylamino (7f), trifluoromethyl (7h), fluorine
(7i−k), naphthyl (7n,o), dioxolyl (7aa), and morpholino
(7ab), were all well tolerated, giving benzylsilanes in high
isolated yields with moderate to high enantioselectivities.
However, the current catalytic system could not tolerate some
functional groups, such as ester, aryl chloride, and aryl
bromide, which resulted in low conversion. It is noteworthy
that the position of the substituents on the aryl ring has a
significant effect on enantioselectivity. Normally, higher
enantioselectivities were obtained from substrates bearing
ortho-substituted aryl rings. For example, o-ethyl and o-fluoro
groups on the phenyl rings yielded the hydrogenation products
in 98% ee (7c) and 93% ee (7k), respectively. In contrast,
substrates with p-ethyl and p-fluoro groups gave the desired
products in 87% ee (7b,i). However, such an ortho effect was
not observed for the methoxy substituent. While the substrate
with a p-MeO group gave the hydrogenation product in 87%
ee (7d), the o-methoxy-substituted substrate yielded the
product 7e with a relatively low enantioselectivity (80% ee).

Scheme 3. Asymmetric Hydrogenation of Vinylsilanesa

aReaction conditions: 6 (1.0 equiv), H2 (2 bar), 3 (5 mol %), and NaBHEt3 (10 mol %) in n-pentane (0.1 M) at room temperature for 5 h. The
yield of isolated product is given unless otherwise noted. ee values were determined by chiral HPLC analysis. The absolute configurations were
assigned by comparison with reported optical rotations after oxidation to the related alcohols. bUnder 4 bar of H2.
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Furthermore, sterically hindered substrates with an o-methyl
group on the aryl ring (7p−z and 7aa−ac) underwent
asymmetric hydrogenation smoothly, resulting in excellent
enantioselectivities (>94%) and high isolated yields (>88%).
Significantly, these substrates with o-Me substituents are of
particular interest because the hydrogenation products could
be potentially applied in subsequent dehydrogenative silylation
reactions.
By using a pincer-type ruthenium complex 9 developed by

our group for alkane dehydrogenation17a and C−H silyla-
tion,13,17b here we also realized the intramolecular dehydrosi-
lylation reaction of o-methyl-substituted chiral benzyl silanes,
providing an efficient access to five-membered silolanes with
high enantiopurity (Scheme 4). Diverse silolanes were

obtained with high yields (up to 97%) and excellent
enantioselectivities (up to 99%), tolerating functional groups
such as fluorine (8c,g,h), methoxy (8j), dimethylamino (8k),
morpholino (8l), and trifluoromethyl (8m). Considering that
the methods for preparing optically active Si-containing
heterocycles are extremely limited,18 the Co-catalyzed
asymmetric hydrogenation of α-vinylsilanes coupled with the
Ru-catalyzed dehydrosilylation process represents a promising
approach for the enantioselective synthesis of silacycles.
In summary, a highly efficient and enantioselective hydro-

genation of 1,1-disubstituted vinylsilanes was achieved by the
newly developed (PPO)Co catalyst system with broad
substrate scope. This novel cobalt catalyst system represents

a complement to base-metal-catalyzed asymmetric hydro-
genation of minimally functionalized alkenes. In addition, the
o-methyl-substituted chiral benzylsilanes obtained in the
asymmetric hydrogenation can further undergo ruthenium-
catalyzed intramolecular dehydrogenative silylation reactions
to construct an optically active silolane class without
racemization of the stereogenic center α to the quaternary Si
atom.
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