LETTERS

Organocatalyzed Multicomponent Synthesis of Isoxazolidin-5-ones

Christophe Berini,[†] Muriel Sebban,^{†,§} Hassan Oulyadi,^{†,§} Morgane Sanselme,[‡] Vincent Levacher,[†] and Jean-François Brière^{*,†}

[†]Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France

*Normandie Univ, Laboratoire SMS- EA3233, Univ Rouen, F-76821, Mont Saint Aignan, France

(5) Supporting Information

ABSTRACT: An unprecedented multicomponent organocatalyzed Knoevenagel-aza-Michael-cyclocondensation reaction between Meldrum's acid, hydroxylamines, and aldehydes afforded a straightforward entry to a large array of racemic and *syn*-diastereoenriched isoxazolidinones as synthetically useful scaffolds. This process revealed a markedly facile aza-Michaelcyclocondensation sequence as a key domino reaction between

RCO₂NHOH and transient alkylidene Meldrum's acid upon Brønsted base catalysis.

T he construction of chiral heterocyclic architectures making use of organocatalytic multicomponent reactions (MCRs) not only shortened the synthetic efforts toward chemical diversity but paved the way for sustainable chemistry.¹ Nonetheless, the achievement of these modern domino processes ought to challenge (1) an orchestration of orthogonal organocatalytic modes of activation, (2) functional-group compatibility, and (3) a successful stereoselective outcome.² Isoxazolidin-5-ones 1 (Scheme 1, X = O) are valuable motifs

encountered in bioactive compounds,³ and they have emerged as useful building blocks for the elaboration of β -amino acids,^{3c,f} nucleoside mimics,^{3e} and amino sugar derivatives,^{3a} to name a few.^{3b} The construction of chiral scaffolds 1 elicited recent developments of catalytic syntheses both racemic⁴ and asymmetric.^{4d-f,5,6} In particular, Sibi achieved the enantioselective 1,4-addition of BnNHOH to activated acrylamides upon the catalytic influence of magnesium complexes.⁵ Córdova performed a chiral iminium promoted conjugated addition of BocNHOH to enals giving 5-hydroxyisoxazolidines, some of them being subsequently oxidized into isoxazolidin-5-ones 1.⁶ Nevertheless, the direct catalytic construction of isoxazolidinone derivatives 1 using a MCR process remains elusive. Relevant to this context, the multicomponent synthesis of isoxazolidine compounds developed by Bode allowed,⁷ in few subsequent steps, the formation of enantiopure *N*-Boc isoxazolidin-5-one derivatives 1.

We recently discovered an enantioselective formation of bicyclic pyrazolidinone derivatives 2 (X = NR^3) based on a multicomponent Knoevenagel-aza-Michael-cyclocondensation (KaMC) reaction making use of the reactivity of Meldrum's acid 3 (Scheme 1).⁸ This process highlighted an unprecedented asymmetric and chemoselective aza-Michael reaction to NHR¹ of pyrazolidinones 6 ($R^1 = EWG$) to highly reactive transient alkylidene Meldrum's acids 7,^{9,10} unusually catalyzed at room temperature by a dedicated tertiary Brønsted base, namely (DHQ)₂PHAL.⁸ This MCR complements racemic domino hetero-Michael-cyclocondensation reactions involving alkylidene Meldrum's acid 7, which usually leads to six-membered rings and, in many cases, requires harsh conditions.^{11–13} Nonetheless, we were not able to extrapolate this sequence to noncyclic hydrazine showing a specific reactivity in action. We are pleased to report herein a novel development of the organocatalytic multicomponent KaMC reaction between hydroxylamines 5 and Meldrum's acid 3, achieving a straightforward construction of isoxazolidin-5-one derivatives 1. Furthermore, this MCR process is performed under mild conditions and tolerates various chiral aldehydes 4, allowing a new entry to diastereo- and enantioenriched scaffolds 1 as useful building blocks.

A model reaction was carried out with a stoichiometric mixture of Meldrum's acid 3, dihydrocinnamaldehyde 4a, and N-benzylhydroxylamine 5a in the presence of Hünig base (20)

Received: September 23, 2015

mol %) in toluene (Table 1, entries 1 and 2). A sluggish process was observed, and the corresponding N-Bn isoxazolidinone

^{*a*}Reaction performed at 0.1 M on 0.25 mmol scale with 1 equiv of each components. ^{*b*}NMR yield determined by an internal standard. ^{*c*}Formation of 3% of nitrone **8a**.

product 1aa was obtained up to 50% NMR yield even at 40 °C (entries 1 and 2). In line with our previous observations, the presence of nitrone 8a at rt showed that a slow and concurrent (3 + 2)-cycloaddition between 8a and Meldrum's acid 3 might occur (entry 1).^{4d} We turned our attention to the electron-poor N-Boc hydroxylamine 5b in order to prevent the in situ formation of dipole species.¹⁴ Furthermore, this approach is meant to furnish directly N-carbamate isoxazolidin-5-ones 1ab, useful precursors for β -peptides elaboration or total synthesis.^{6a,7,3b} To our delight, the rapid formation of the N-Boc isoxazolidinone 1ab took place at 20 °C in 75% NMR yield upon Hünig base catalysis (entries 3 and 4). This MCR process was promoted by various tertiary (entries 5 and 6) and secondary amines (entries 7 and 8) to give **1ab** with yields ranging from 28 to 82%. Among them, DABCO achieved the highest 96% yield within only 1 h (entry 9; see the SI for further details). This unprecedented multicomponent construction of isoxazolidinones 1 not only opens a straightforward access to these useful architectures but also highlights an extremely facile domino KaMC process involving the unique Meldrum's acid reactivity.⁹

A survey of conditions revealed the acceleration of the multicomponent KaMC reaction in more polar and greener AcOEt solvent (see the SI), which allowed us to probe a large array of aldehydes 4 in the presence of 10 mol % of DABCO catalyst (Scheme 2). After 2 h at room temperature, the MCR occurred with linear 4a-c, α -branched 4d-f, and an alkenederived aliphatic aldehyde 4g to give the corresponding N-Bocisoxazolidinones **1ab-gb** with isolated yields ranging from 63 to 84%. This reaction also tolerated aliphatic aldehydes flanked by NHBoc (4h), ether (4i), thioether (4j), and ester (4k) functional groups furnishing products 1hb-kb with 55-82% yields. This approach was also carried out from CbzNHOH 5c to afford N-Cbz isoxazolidinones 1ac and 1hc in 68-70% yields displaying orthogonal protective groups. Moreover, aromatic- and benzothiophenone-derived aldehydes 41-p were easily transformed into N-Boc-5-arylisoxazolidinones 1lb-pb in 65-73% yield. Aldehyde 4q having an aryl pendant with two electron-

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-Me \xrightarrow{(10 \text{ mol }\%)}_{\text{Me}} AcOEt \xrightarrow{R^1}_{R^2 \to 0}$ $3-5 (1 \text{ equiv}) 1ab-ub$
• R ¹ = Boc, R ² = Alph (2 h, rt)	
1ab , R ² = Ph(CH ₂) ₂ , 75%	1gb , R ² = CH ₂ =CH(CH ₂) ₂ , 63%
1bb , $R^2 = Me(CH_2)_4 66\%$	1hb , $R^2 = BocNH(CH_2)_{2}$, 73%
1cb , R ² = <i>i</i> Pr(CH ₂), 84%	1ib , R ² = BnO(CH ₂), 59%
1db , R ² = <i>i</i> Pr, 77%	1jb, R ² = MeS(CH ₂) _{2,} 82%
1eb , R ² = Cy, 84%	1kb , R ² = EtO ₂ C, 55%
1fb , R ² = Cyclopropyl, 77%	
• R ¹ = Cbz, R ² = Alph (2 h, rt)	
1ac , R ² = Ph(CH ₂) ₂ , 70%	1hc, R ² = BocNH(CH ₂) _{2,} 68%
• R ¹ = Boc, R ² = Ar (2 h, rt	• (2-14 h, 40 °C)
1lb , R ² = Ph, 73%	1qb , R^2 = 6-Br-2,3-MeOC ₆ H ₂ , 86%
1mb , R ² = 4-MeOC ₆ H ₄ , 66%	1rb, R ² = 4-HO-3-MeOC ₆ H ₃ , 59%
1nb, R ² = 4-ClC ₆ H _{4,} 67%	1sb , R ² = 3-pyridyl, 81%
1ob , R ² = 4-NO ₂ C ₆ H ₄ , 71%	1tb , R ² = 3- <i>N</i> Boc-indol, 81%
1pb , R ² = 2-benzothiophene, 65%	1ub , R ² = <i>trans</i> -PhCHCH, 42%
1qb , R ² = 6-Br-2,3-MeOC ₆ H _{2,} 13%	1ub, from alkylidene MA 7u, 76%

donating methoxy functional groups was reluctant to react under these conditions (13% after 2 h at rt). However, heating at 40 °C during 14 h restored the efficiency of the MCR process to give products **1qb**—**rb** with electron-rich aryl moieties in 86 and 59% yield, respectively. In these conditions, isoxazolidinones flanked by a heterocyclic ring such as 3-pyridyl **1sb** and *N*-Boc-indole **1tb** were easily obtained with 81% yield. We found that cinnamaldehyde **4u** underwent a slow transformation into the novel allylic isoxazolidinone **1ub** (42% yield). Nevertheless, improved 76% isolated yield was obtained by starting from the Meldrum's acid (MA) aza-Michael acceptor **7u**.⁹

Despite previous occurrences of diastereoselective Michael reaction onto γ -chiral alkylidene Meldrum's,¹⁵ even upon organocatalytic MCR conditions,¹⁶ the stereoselective N–C bond formation has yet to be developed.¹⁷ To our delight, the stereoselective multicomponent KaMC reaction took place smoothly upon DABCO catalysis. Glyceraldehyde 4v and Ley's aldehyde $4\mathbf{w}^{18}$ led to γ -chiral *N*-Boc and *N*Cbz isoxazolidinones 1vb-wc with high dr >96:4 as testified by ¹H NMR of the crude mixture (Scheme 3). An erosion of the enantiopurity of products 1vb-vc was observed (88-91% ee) due to the configurational fragility of glyceraldehyde 4v. However, the use of pyrrolidine instead of DABCO minimized the racemization, likely via an iminium-catalyzed Knoevenagel condensation, 15b, 16b, 19 and furnished products 1vb and 1vc with ee of 99% and 96%, respectively, and a slight erosion of dr (80/20 and 90/10). The major syn-isomers 1vb-wc were easily obtained with 65-88% isolated yields and at least 98/2 dr after flash column chromatography. Importantly, the use of electron-rich BnNHOH 5a led to low dr and sluggish reaction rates and demonstrated the uniqueness of our conditions (see the SI for more details).¹⁷ Along this line, 10 mol % of pyrrolidine allowed the transformation of Garner's aldehyde 4x (85% and 59% for 1xb-xc), 2-pyrrolidine carboxaldehyde 4y (72% and 70% for 1yb-yc), and thiazolidine carboxaldehyde 4z (78% and 73% for 1zb-zc) into the corresponding syn-isoxazolidinones (dr >95/ 5-98/2 after purification) with ee's ranging from 95 to 99%.

Scheme 3. Diastereoselective Approach

^{*a*}Yields of the major *syn*-diastereomer (>98/2 dr except for **1xb**, **1zb**, and **1zc** > 95/5 dr) isolated after flash column chromatography. ^{*b*} dr (in parentheses) determined by ¹H NMR on the crude product. ^{*c*}Determined by single-crystal X-ray diffraction. ^{*d*}At 0 °C.

The labile Garner's aldehyde **4x** provided the corresponding *N*-Boc products **1xb** with somewhat lower 90% ee. Most notably, the determination of dr ratios of compounds **1xb**–**zc** was not trivial as these carbamate derivatives displayed rather stable rotamers. Nonetheless, a complete characterization by NMR, including variable-temperature NMR and chemical-exchange NMR experiments (EXSY), allowed the discrimination of rotamer/diastereoisomer NMR signals (see the SI). Accordingly, an estimation of the stereoselectivity on the crude mixtures revealed dr ranging from 77/23 to 88/12 for **1xb**–**zc** in favor of the *syn* stereoisomer in all cases. The remarkable general *syn* induction was unequivocally proven by a series of six single-crystal X-ray diffractions (Scheme 3) and chemical transformations (vide infra).

Chiral *N*-Bn isoxazolidinone derivatives flanked by a δ -C*-X bond (X = O, N) are known to be high value building blocks for the elaboration of bioactive compounds.^{3c,e,20} In order to highlight the usefulness of our readily available and orthogonal *N*-carbamate homologues, it was shown that *N*-Cbz isoxazolidinones **1vc,xc,yc** underwent clean hydrogenolysis reactions to give various β -amino acids **9a**-**c** (Scheme 4). The cyclization of **9c** upon acidic conditions allowed a concise access to aminopyrrolizidine **10** and complemented literature procedures.²¹ Eventually, inspired by Merino's work,^{20b} we showed that β -amino acid **9b** is a useful precursor to functionalized lactone **11** obtained in 38% yield over two steps but along a onepot sequence providing a single *anti*-diastereoisomer. During

Scheme 4. Useful Chemical Transformations

these sequences, the initial diastereoselective ratio were virtually preserved.

Since the early observations,²² recent mechanistic investigations¹⁷ have explained the facility with which electron-rich *N*alkyl hydroxylamines add to acrylates due to a noncatalyzed concerted (3 + 2) cycloaddition-like process. Furthermore, the high electrophilic character of alkylidene Meldrum's acid derivatives 7 (>10¹¹ than the corresponding benzylidene malonate)⁹ has been highlighted during model aza-Michael reactions, which were assumed to be accelerated by an intramolecular hydrogen bond between the R₂*N*−*H* nucleophile and the forming enolate moiety in the transition state (TS).²³ Based on this background knowledge, we propose that the N−C bond formation to alkylidene Meldrum's acid 7 occurs with the concomitant hydrogen transfer from OH of **5** to give **13** following a (3 + 2) cycloaddition process (TS **12**, Scheme 5).²⁴

The Brønsted base catalyst may promote the addition reaction of the *N*-EWG hydroxylamine **5** leading to the rapid transformation of the transient Knoevenagel product 7.¹⁹ It is also assumed that the *N*-EWG facilitates the base catalyzed decarboxylation event of **14** by stabilizing the corresponding enolate of isoxazolidinones **1** and the TS derived thereof.^{4e}

As a preliminary proposal, the general *syn*-selectivity could be rationalized in line with Yamamoto's model (TS **12**), ^{15b,16b,25} in which the allylic 1,3-strain is minimized when C-H and Meldrum's acid moiety faced to each other. Then, the incoming nucleophile would approach from the same face of the "outside" positioned γ -heteroatom (Y) of the more reactive conformation.

In summary, we discovered an extremely facile organocatalyzed multicomponent KaMC reaction between aldehydes, Meldrum's acid 3, and *N*-carbamate-NHOH 5. This MCR allows not only a straightforward elaboration of a large array of racemic

с

isoxazoldin-5-ones 1 but affords a new entry to diastereo- and enantioenriched scaffolds 1 as useful building blocks in organic synthesis. The development of an enantioselective MCR is currently under investigation.²⁶

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b02755.

Experimental procedures and characterization for new compounds (PDF) X-ray data for 1vb (CIF) X-ray data for 1wb (CIF) X-ray data for 1yb (CIF) X-ray data for 1yb (CIF) X-ray data for 1zb (CIF) X-ray data for 1zb (CIF)

X-ray data for zc (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: jean-francois.briere@insa-rouen.fr.

Author Contributions

⁸M.S. and H.O. are affiliated with the NMR department of the laboratory COBRA.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work has been partially supported by INSA Rouen, Rouen University, CNRS, EFRD and Labex SynOrg (ANR-11-LABX-0029), and region Haute-Normandie (CRUNCh network).

REFERENCES

(1) (a) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958. (b) Zhu, J.; Wang, Q.; Wang, M.-X. Front Matter. In Multicomponent Reactions in Organic Synthesis; Wiley–VCH, 2014.

(2) Recent reviews on organocatalyzed MCRs: (a) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237. (b) de Graaff, C.; Ruijter, E.; Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969. (c) Marson, C. M. Chem. Soc. Rev. 2012, 41, 7712. (d) Bonne, D.; Constantieux, T.; Coquerel, Y.; Rodriguez, J. Org. Biomol. Chem. 2012, 10, 3969.

(3) For representative recent examples, see: (a) Socha, D.; Jurczak, M.; Chmielewski, M. Tetrahedron 1997, 53, 739. (b) Pearson, C.; Rinehart, K. L.; Sugano, M.; Costerison, J. R. Org. Lett. 2000, 2, 2901. (c) Shindo, M.; Itoh, K.; Ohtsuki, K.; Tsuchiya, C.; Shishido, K. Synthesis 2003, 2003, 1441. (d) Janecki, T.; Wąsek, T.; Różalski, M.; Krajewska, U.; Studzian, K.; Janecka, A. Bioorg. Med. Chem. Lett. 2006, 16, 1430. (e) Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chem. Rev. 2010, 110, 3337. (f) Bentley, S. A.; Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Thomson, J. E.; Toms, S. M. Tetrahedron 2010, 66, 4604. (4) For direct catalytic synthesis of isoxazolidin-5-ones and preliminary asymmetric developments, see: (a) Camiletti, C.; Dhavale, D. D.; Donati, F.; Trombini, C. Tetrahedron Lett. 1995, 36, 7293. (b) Okino, T.; Hoashi, Y.; Takemoto, Y. Tetrahedron Lett. 2003, 44, 2817. (c) Seayad, J.; Patra, P. K.; Zhang, Y.; Ying, J. Y. Org. Lett. 2008, 10, 953. (d) Postikova, S.; Tite, T.; Levacher, V.; Brière, J.-F. Adv. Synth. Catal. 2013, 355, 2513. (e) Tite, T.; Sabbah, M.; Levacher, V.; Brière, J.-F. Chem. Commun. 2013, 49, 11569. (f) Nawaz, F.; Zaghouani, M.; Bonne, D.; Chuzel, O.; Rodriguez, J.; Coquerel, Y. Eur. J. Org. Chem. 2013, 2013, 8253

(5) (a) Sibi, M. P.; Liu, M. Org. Lett. 2000, 2, 3393. (b) Sibi, M. P.; Prabagaran, N.; Ghorpade, S. G.; Jasperse, C. P. J. Am. Chem. Soc. 2003, 125, 11796. (c) Sibi, M. P.; Soeta, T. J. Am. Chem. Soc. 2007, 129, 4522. (6) (a) Ibrahem, I.; Rios, R.; Vesely, J.; Zhao, G.-L.; Córdova, A. *Chem. Commun.* **2007**, 849. (b) Pou, A.; Moyano, A. *Eur. J. Org. Chem.* **2013**, 2013, 3103.

(7) For an elegant MCR toward precursors of isoxazolidin-5-ones, see: Juarez-Garcia, M. E.; Yu, S.; Bode, J. W. *Tetrahedron* **2010**, *66*, 4841 and references cited therein.

(8) Pair, E.; Berini, C.; Noël, R.; Sanselme, M.; Levacher, V.; Brière, J.-F. *Chem. Commun.* **2014**, *50*, 10218.

(9) For an insightful review on Meldrum's acid and the corresponding alkylidenes, see: Dumas, A. M.; Fillion, E. *Acc. Chem. Res.* **2010**, *43*, 440.

(10) For a previous organocatalyzed domino Michael-cyclocondensation reaction but through C-C bond formation, see: (a) Wang, J.-Y.; Zhang, H.; Liao, Y.-H.; Yuan, W.-C.; Feng, Y.-J.; Zhang, X.-M. Synlett **2012**, 23, 796. (b) Caruana, L.; Mondatori, M.; Corti, V.; Morales, S.; Mazzanti, A.; Fochi, M.; Bernardi, L. Chem. - Eur. J. **2015**, 21, 6037.

(11) Reviews on Meldrum's acid in MCRs: (a) Gerencsér, J.; Dormán, G.; Darvas, F. QSAR Comb. Sci. 2006, 25, 439. (b) Lipson, V.; Gorobets, N. Y. Mol. Diversity 2009, 13, 399.

(12) Pair, E.; Levacher, V.; Brière, J.-F. RSC Adv. 2015, 5, 46267 and references cited therein.

(13) For a MCR involving an hydrazine derivative and Meldrum's acid but requiring hash conditions, see: Saluja, P.; Khurana, J. M.; Sharma, C.; Aneja, K. R. *Aust. J. Chem.* **2014**, *67*, 867.

(14) The formation of *N*-Boc nitrones requires the preformation of α -sulfone amide derivatives: Guinchard, X.; Vallée, Y.; Denis, J.-N. *Org. Lett.* **2005**, *7*, 5147.

(15) (a) Larchevêque, M.; Tamagnan, G.; Petit, Y. J. Chem. Soc., Chem. Commun. 1989, 31. (b) Fujimori, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4964. (c) Dumas, A. M.; Fillion, E. Org. Lett. 2009, 11, 1919.

(16) (a) Ramachary, D. B.; Chowdari, N. S.; Barbas, C. F. Angew. Chem., Int. Ed. 2003, 42, 4233. (b) Dardennes, E.; Gérard, S.; Petermann, C.; Sapi, J. Tetrahedron: Asymmetry 2010, 21, 208. (c) Ramachary, D. B.; Reddy, Y. V.; Banerjee, A.; Banerjee, S. Org. Biomol. Chem. 2011, 9, 7282.

(17) For conjugated addition of BnNHOH to chiral acrylates, see: (a) Niu, D.; Zhao, K. J. Am. Chem. Soc. **1999**, 121, 2456. (b) Moglioni, A. G.; Muray, E.; Castillo, J. A.; Álvarez-Larena, Á.; Moltrasio, G. Y.; Branchadell, V.; Ortuño, R. M. J. Org. Chem. **2002**, 67, 2402 and references cited therein.

(18) Michel, P.; Ley, S. V. Angew. Chem., Int. Ed. 2002, 41, 3898.

(19) For a MCR through alkylidene Meldrum's acid and faster than the sequential process, see: Ramachary, D. B.; Vijayendar Reddy, Y. J. Org. Chem. **2010**, 75, 74.

(20) For representative diastereoselective syntheses of isoxazolidin-5ones from chiral nitrones or acrylates, see: (a) Xiang, Y.; Gi, H.-J.; Niu, D.; Schinazi, R. F.; Zhao, K. J. Org. Chem. **1997**, *62*, 7430. (b) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. J. Org. Chem. **2000**, *65*, 5575.

(21) (a) Hoang, C. T.; Bouillère, F.; Johannesen, S.; Zulauf, A.; Panel, C.; Pouilhès, A.; Gori, D.; Alezra, V.; Kouklovsky, C. J. Org. Chem. 2009, 74, 4177. (b) Davies, S. G.; Fletcher, A. M.; Lebée, C.; Roberts, P. M.; Thomson, J. E.; Yin, J. Tetrahedron 2013, 69, 1369.

(22) (a) Fountain, K. R.; Erwin, R.; Early, T.; Kehl, H. *Tetrahedron Lett.* **1975**, *16*, 3027. (b) Baldwin, J. E.; Harwood, L. M.; Lombard, M. J. *Tetrahedron* **1984**, *40*, 4363.

(23) (a) Schreiber, B.; Martinek, H.; Wolschann, P.; Schuster, P. J. Am. Chem. Soc. **1979**, 101, 4708. (b) Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. **1986**, 108, 5251. (c) Oh, H. K.; Kim, T. S.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. **2003**, 24, 193. (d) Kaumanns, O.; Mayr, H. J. Org. Chem. **2008**, 73, 2738 and references cited therein.

(24) For insight into Cope-type hydroamination, see: Beauchemin, A. M. Org. Biomol. Chem. **2013**, *11*, 7039.

(25) Yamamoto, Y.; Chounan, Y.; Nishii, S.; Ibuka, T.; Kitahara, H. J. Am. Chem. Soc. **1992**, 114, 7652.

(26) A first screening of chiral Brønsted base catalysts (see the Supporting Information) revealed the feasibility of an enantioselective version but in low 25% ee thus far.