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Cell-to-cell communication in staphylococci is mediated by 
secreted peptide signalling molecules—the so-called auto-
inducing peptides (AIPs)1. These peptides are 7–12 amino 

acids long, contain a carboxy (C)-terminal cyclic thiolactone (or 
lactone) and are part of the quorum-sensing machinery, which is 
expressed by the chromosomal locus known as the accessory gene 
regulator (agr)2–4. The agr system regulates group behaviour, such 
as virulence gene expression and biofilm formation, in response 
to cell density via a regulatory RNAIII. Once the AIP concentra-
tion reaches a certain threshold, the cognate AIP activates its trans-
membrane receptor AgrC, resulting in upregulated expression of all 
quorum-sensing-controlled virulence factors2–4. The agr has mostly 
been characterized in Staphylococcus aureus but is also present in 
the coagulase-negative staphylococci, and more than one specificity 
group may be present in a given species, forming unique AIP–AgrC 
pairs, such as for S. aureus where four agr groups exist (agr-I–IV)2.

AIPs potently activate their cognate AgrC receptor and often 
inhibit AgrC receptors of other staphylococcal species or sub-
groups within their own species5,6. This bacterial cross-talk is  
not fully understood from a biological standpoint but offers a  
platform for the development of quorum-sensing inhibitors. The 
AIPs of S. aureus agr-I–IV (1–4) have been investigated exten-
sively for this purpose7–16, and more recently, AIPs of non-S. aureus  
staphylococci have received considerable attention17–21. A limiting 
factor for these studies has been the challenging identification of 
new AIP molecules.

The low concentrations of secreted AIPs and the complex nature 
of the growth medium represent a significant obstacle. The AIPs 
known to date have been identified through activity-guided high-
performance liquid chromatography (HPLC) purifications1,5,22,23 or 
enabled by advanced mass spectrometry20,24–26. Even though the first 
AIPs were discovered more than 20 years ago, only 11 AIPs from 

6 species have been characterized thus far. Herein, we present an 
alternative approach that allows rapid identification of AIPs using 
standard laboratory equipment, enabled by trapping the peptides 
through their thiolactone functionality and performing subsequent 
genome sequence-guided liquid chromatography mass spectrom-
etry (LC-MS) analysis (Fig. 1).

Results and discussion
Development of native chemical ligation (NCL) trapping. 
C-terminal thiolactones are reactive intermediates in NCL reac-
tions27, and AIPs readily react with thiols to form linear C-terminal 
thioesters28. We therefore envisioned that an acid-labile Rink-amide 
resin29 loaded with unprotected cysteine would covalently trap AIPs 
from the bacterial supernatant through NCL reaction. This allows 
enrichment through extensive washing, cleavage from the solid sup-
port, and reconstitution of the resulting cysteine-modified AIP for 
LC-MS analysis. AIP identification is then guided by the genomic 
sequence of the AIP precursor peptide AgrD, which has a con-
served overall structure in all staphylococci3. The AIP-containing 
AgrD sequence is flanked by a C-terminal recognition sequence 
and an amino (N)-terminal leader peptide, which can be identi-
fied by highly conserved residues (shown in blue boxes in Fig. 2b). 
However, the cleavage site between the leader peptide and the thio-
lactone-forming cysteine cannot be predicted based on the genome. 
Therefore, examination of extracted ion chromatograms (EICs) for 
all seven possible linear AIP-Cys analogues is necessary (Fig. 2c).

First, we successfully tested our hypothesis with synthetic AIPs 
and high-swelling polyethylene glycol polyacrylamide (PEGA) 
resin loaded with Rink-amide linker and cysteine (Cys-Rink-PEGA 
resin; 5) (see Supplementary Fig. 1). Next, we performed NCL 
trapping with lyophilized AIP-II (2)-containing bacterial superna-
tant that was reconstituted in phosphate buffer (0.1 M, pH = 7.4)  
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containing 20% N,N-dimethylformamide (DMF) and tris(2-car-
boxyethyl)phosphine (TCEP; 30 mM) (Fig. 2a). The resin was then 
washed extensively, and resin-bound AIP-II (6) was released using 
trifluoroacetic acid (TFA) to give linear AIP-II with a C-terminal 
cysteine amide residue (7). Examination of the sequence of AgrD-II 
provided 7 possible AIPs ranging from 6–12 amino acids (Fig. 2b).  
We displayed the m/z [M + H]+ values corresponding to the 7 pos-
sible linear peptides containing a C-terminal cysteine amide as 
individual EICs and found a strong signal for the expected m/z 
[M + H]+ = 999.4 (Fig. 2c). The applicability of our NCL trapping 
strategy was confirmed in a control experiment, where synthetic 
AIP-II (2) was added to fresh tryptic soy broth (TSB) medium—
the medium used to grow S. aureus—and trapped using the same 
method, giving identical results (Fig. 2c). The protocol was further 
validated by confirming the identity of the remaining AIPs from  
S. aureus (1, 3 and 4) (Table 1 and Supplementary Figs. 2–5).

Identified AIPs. Next, we focused on the identification of new 
non-S. aureus staphylococcal AIPs from a collection of diverse 
Staphylococcus species (Table 1, Supplementary Tables 1–3 and 
Supplementary Figs. 6–17). First, the structure of the recently  
identified AIP of the coagulase-negative strain S. saprophyticus  
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Fig. 1 | Overview of the reported workflow. Supernatants of bacterial 
overnight cultures contain minute amounts of secreted AIPs. The AIPs contain 
a thiolactone moiety, which enables chemoselective reaction with resin-bound 
cysteine through NCL, and thereby covalent trapping of the AIPs as linear 
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using TFA and subsequently analysed by LC-MS. The LC-MS analysis is guided 
by the amino acid sequence of the AIP precursor peptide, which is obtained by 
genomic sequencing. The identity of the excreted AIP is thus confirmed by an 
m/z signal corresponding to the mass of the AIP + cysteine amide.
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Fig. 2 | NCL trapping and sequence-guided identification of AIP-II (2). a, Spent medium (supernatant) containing AIP-II (2) was lyophilized and 
reconstituted in trapping buffer, to which Cys-Rink-PEGA resin (5) was also added. After incubation at 37 °C overnight, the resin was washed, and trapped 
molecules were released by treatment with TFA and collected for LC-MS analysis. b, The AIP-II (2) precursor AgrD-II consists of three segments: an 
N-terminal leader peptide; an AIP-containing sequence; and a C-terminal recognition sequence. The segments can be identified by the highly conserved 
residues highlighted in blue boxes. The unpredictable length of the exotail of the AIP is defined by the seven-amino-acid sequence before the conserved 
thiolactone moiety, giving rise to seven possible AIP structures. c, LC-MS analysis of the cleaved AIP-II-Cys-NH2 conjugate (7) through examination of the 
EICs for m/z = [M + H]+ of the seven possible linear AIP-II derivatives containing the C-terminal cysteine amide confirmed the identity of AIP-II (2). This 
was further validated by performing a control experiment with synthetic AIP-II (2).
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(Ssa-AIP; 8)26 was confirmed, and the predicted AIP of the second  
specificity group of the human pathogen S. lugdunensis agr-II  
(Slu-AIP-II; 9)30 was identified to be seven amino acids in length. 
The AIP of the agr-I-inhibiting S. schleiferi strain (Ssc-AIP; 10) was 
then identified as a nonapeptide, in contrast with the previously 
predicted octapeptide (Ssc-AIP8, YPF-[CIGYF]; 10a)18,19, thus cor-
recting its structure and highlighting the importance of direct AIP 
identification from the biological source.

We further identified the AIPs of three animal pathogens—
namely S. simulans31 (Ssi-AIP; 11), S. hyicus32 (Shy-AIP; 12) and  
S. chromogenes31 (Sch-AIP; 13)—as being nonapeptides, and  
classified the recently described33 S. schweitzeri and S. argenteus as 
strains that express AIP-IV (4) and AIP-I (1), respectively. Applying 
the protocol further confirmed the predicted AIP34 of the human 
pathogen S. warneri35 (Swa-AIP; 14) to be the octapeptide struc-
ture. Finally, the structures of the AIPs of three coagulase-negative  

strains (that is, S. vitulinus36 (Svi-AIP; 15), the antimicrobial  
peptide-producing strain S. hominis37 (Sho-AIP; 16) and the clini-
cally relevant strain S. haemolyticus38 (Sha-AIP; 17)) were found  
to be nine amino acids in length, revealing a total of seven new  
AIPs that were different from the often previously predicted  
octapeptide structures3.

Quorum-sensing modulation. All newly identified AIPs were syn-
thesized using a previously reported on-resin cyclization–cleavage 
protocol19 in acceptable-to-good yields (Fig. 3).

The new AIPs were then tested for their potential as quorum-
sensing modulators of all four S. aureus agr groups (Table 2). 
Activation assays were performed in case there was no detectable 
inhibition at a peptide concentration of 10 μM. The trends of pre-
viously reported half-maximal inhibitory concentration (IC50) and 
half-maximal effective concentration (EC50) values, employing 

Table 1 | Identified AIPs

AIP Structure AIP Structure

S. aureus agr- Ia 

YST-[CDFIM] 
AIP-I (1) 

S. hyicus b

KINP-[ CTVFF] 
Shy-AIP (12) 

S. aureus agr -II a

GVNA-[CSSLF] 
AIP-II ( 2) 

S. chromogenes b

SINP-[CTGFF] 
Sch-AIP (13) 

S. aureus agr -III a

IN-[CDFLL] 
AIP-III ( 3) 

S. argenteusb

YST-[CDFIM] 
AIP-I (1)

S. aureus agr -IVa

YST-[CYFIM] 
AIP-IV (4) 

S. schweitzeri b

YST-[CYFIM] 
AIP-IV (4)

S. saprophyticus a

INP-[CFGYT] 
Ssa-AIP (8) 

S. warneri b

YSP-[CTNFF] 
Swa-AIP (14) 

S. lugdunensis agr -II b

DM-[CNGYF] 
Slu-AIP-II (9) 

S. vitulinus b

VIRG-[ CTAFL] 
Svi-AIP (15) 

S. schleiferi b

KYPF-[ CIGYF] 
Ssc-AIP (10) 

S. hominis b

TYST-[CYGYF] 
Sho-AIP (16)

S. simulans b

KYNP-[ CLGFL] 
Ssi-AIP (11 ) 

S. haemolyticus b

SFTP-[CTTYF] 
Sha-AIP (17) 

Staphylococcus species
Sequence 

Staphylococcus species
Sequence 

aKnown AIP identity confirmed in this study. bAIP characterized for the first time from the mentioned species.
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similar assays, are in agreement with our results7,10. Several newly 
identified AIPs (8, 9 and 14–17) exhibited weak-to-undetectable 
inhibition of the AgrC-I–IV activation in S. aureus. Medium-to-
high potencies against AgrC-I–IV activation were exhibited by  
Ssi-AIP (11), Shy-AIP (12) and Sch-AIP (13). Compounds 10–13 were 
more potent than AIP-I–IV (1–4) against several subgroups, and 
in some cases equipotent to the optimized, global, pan-inhibitor  
AIP-III D4A (3a)12, rendering them promising candidates for  
further quorum-sensing inhibitor development.

Interestingly, three tested AIPs (10, 10a and 16) were potent 
activators of AgrC-IV, which is an intriguing discovery, keeping  
in mind that the sequence similarity of AgrC-I and AgrC-IV is  
87% and that their native AIPs are cross-activators2. To the best  
of our knowledge, Ssc-AIP (10) and Sho-AIP (16) constitute the 
first staphylococcal interspecies agonists discovered. Furthermore, 
no compounds except AIP-III D4A (3a) exhibit potent inhibi-
tion against AgrC-IV. The S. aureus agr group IV is considered an  
evolutionary divergence from group I39 and is known to have 
early or hyperactive activation kinetics23. While a previous testing  
of compound 10a was in agreement with the current results19, we 
measured it to be an inhibitor of AgrC-IV in the original account18. 
We suspect that this is due to the mentioned activation kinetics, 
which makes the potency measurements highly sensitive to assay 
conditions. Based on the collective evidence, we are confident that 
both 10 and 10a should be considered activators of the S. aureus agr 
group IV.

Investigation of Listeria monocytogenes. Having identified and 
characterized 16 staphylococcal AIPs, we were interested in apply-
ing the protocol to other Gram-positive bacteria known to have 
agr-like systems40. In L. monocytogenes, the agr system has been 

shown to control biofilm formation, virulence and carbohydrate 
metabolism41–44, and an AIP of L. monocytogenes was recently  
identified directly in spent medium by advanced LC-MS/mass 
spectrometry to be the thiolactone-containing hexapeptide Lmo-AIP 
(20; Fig. 4a)26. To further test our protocol, three different isolates 
of L. monocytogenes were therefore grown in either TSB or brain 
heart infusion media (a commonly used medium for the growth of 
Listeria strains). NCL trapping experiments were then performed 
on the lyophilized and reconstituted supernatants, as outlined 
above. Surprisingly, no signal for the linear heptapeptide 21 (m/z 
[M + H]+ = 819.3) or other masses corresponding to potential AIP 
sequences, could be detected in any of these experiments, includ-
ing the mass resulting from trapping the pentapeptide thiolactone 
previously described44 (see Supplementary Fig. 18). However, this 
thiolactone would be expected to undergo spontaneous S–N shift 
under our trapping conditions to furnish the corresponding cyste-
ine-containing homodetic pentapeptide, which would not be prone 
to undergoing NCL with resin (5).

To examine whether the hexapeptide Lmo-AIP (20) would be 
trapped using our protocol, and to investigate the detection limit 
in the two different media, we synthesized Lmo-AIP (20) and  
performed NCL trapping experiments using the synthetic AIP  
in growth media at varying concentrations (Fig. 4 and Supple
mentary Fig. 18). We were pleased to find that, regardless of the 
medium, concentrations as low as 0.063 μM still allowed the detec-
tion of the linear heptapeptide 21 or its disulfide 22, corresponding 
to a concentration of Lmo-AIP (20) of 12.5 nM in the supernatant 
before lyophilization and reconstitution in a trapping experiment 
(Fig. 4a,b and Supplementary Fig. 18). This should be seen in  
the light that S. aureus AIPs are estimated to reach a concentration  
of around 1 μM in the supernatant45. We further tested synthetic  
Lmo-AIP (20), as well as the supernatants of our three L. mono-
cytogenes isolates, for their ability to inhibit or activate S. aureus  
AgrC-I–IV. None of the supernatants showed measurable inhi-
bition, and Lmo-AIP (20) only partially inhibited AgrC-III at the  
highest tested concentration (Fig. 4c and Supplementary Fig. 18). 
We conclude that Lmo-AIP (20) can be trapped and identified at  
concentrations corresponding to just 12.5 nM in bacterial super
natants, and that if this AIP were expressed under our growth con-
ditions, it must have been secreted in a concentration below this 
very low threshold.
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Fig. 3 | Synthesis of AIPs. Reagents and conditions were as follows. 
aAutomated fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide 
synthesis (SPPS) on MeDbz-Gly resin (18) using Fmoc-Xaa-OH 
(5 equivalents), 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate (HBTU) (5 equivalents), i-Pr2EtN (10 equivalents) 
and DMF for 40 min. b4-Nitrophenolchloroformate (5 equivalents) in 
CH2Cl2, then i-Pr2EtN (25 equivalents) in DMF. cTFA–i-Pr3SiH–H2O for 
2 hours. dDeprotected peptidyl-resin 19 was swollen in cyclization buffer for 
2 hours at 50 °C, furnishing the desired AIPs in 12–49% yield after HPLC 
purification (length varying from hepta- to nona-petide).

Table 2 | IC50 and EC50 values (nM) for quorum-sensing 
modulation measured in a β-lactamase assay using S. aureus 
AgrC-I–IV reporter strains

AIP AgrC-I AgrC-IIa AgrC-IIIa AgrC-IVa

AIP-I (1) 5.4 ± 0.5b 700 ± 126 80 ± 11 790 ± 66b

AIP-II (2) 110 ± 12 3.7 ± 0.5b 40 ± 15 230 ± 19

AIP-III (3) 120 ± 15 150 ± 63 11 ± 1b >1,000

AIP-IV (4) 59 ± 2b 47 ± 9 9.8 ± 0.2c 2.6 ± 0.2b

Ssa-AIP (8) 360 ± 30 –d –d –d

Slu-AIP-II (9) >1,000 –d –d –d

Ssc-AIP (10) 2.8 ± 0.8 86 ± 6 80 ± 16c 31 ± 6b

Ssi-AIP (11) 8.6 ± 0.5 23 ± 2 50 ± 11 280 ± 66

Shy-AIP (12) 3.3 ± 0.5 350 ± 90 4.0 ± 0.8 180 ± 33

Sch-AIP (13) 15 ± 1 200 ± 13 60 ± 13 350 ± 85

Swa-AIP (14) 100 ± 10 1,000 ± 105 460 ± 59 >1,000

Svi-AIP (15) 190 ± 15 800 ± 116 690 ± 46 –d

Sho-AIP (16) 134 ± 8 580 ± 61 220 ± 46c 54 ± 5b

Sha-AIP (17) 340 ± 25 –d 340 ± 91 –d

AIP-III 
D4A (3a); 
IN-[CAFLL]

3.5 ± 0.8 34 ± 1 1.6 ± 0.2c 10 ± 0.2

Ssc-AIP8 (10a); 
YPF-[CIGYF]

3.3 ± 0.7 62 ± 4 22 ± 4 29 ± 5b

aP3-fused β-lactamase reporter strains expressing AgrC-II–IV were constructed (see 
Supplementary Information). bEC50 values. cOnly partial inhibition observed. All inhibition assays 
were performed in the presence of 100 nM cognate AIP and the results represent means ± s.e.m. 
of at least duplicate determinations performed in biological triplicate. dNo inhibition recorded at 
the highest AIP concentration tested.
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Considering these results, we are confident that our protocol  
will be useful for the investigation of quorum-sensing systems  
of Gram-positive bacteria that rely on thiolactone-containing  
signalling molecules beyond the staphylococci.

Conclusion
The data presented here provide a readily applicable protocol  
that exploits the chemoselective reaction between thiolactones 
and a resin-bound cysteine, which allows trapping of AIPs  
from bacterial supernatants via NCL. The developed method 
facilitated rapid doubling of the number of known staphylococcal 
AIPs, and thus provides the means to start mapping of the staphy-
lococcal AIP signalling molecule landscape. The Staphylococcus 
genus currently includes 52 species and 28 subspecies46, where 
several species have more than one specificity group, such as  
S. aureus agr-I–IV. Thus, a conservative estimate of the poten-
tial number of staphylococcal AIPs is likely to comprise more 
than 100 peptides still to be discovered. We furthermore expect  
the methodology to be broadly applicable to other Gram-positive 
bacteria that use thiolactone-containing auto inducers and  
therefore to enable the achievement of a better understand-
ing of quorum sensing in general. Finally, access to new AIPs  
paves the way to detailed studies of quorum sensing and its 
impact on important pathogen properties such as biofilm  
formation, colonization, virulence and interactions with com-
mensal staphylococci.

Methods
NCL trapping of AIPs from bacterial supernatants. Fmoc-Cys(StBu)-Rink-
PEGA resin (5) (50 mg) was placed in a 10 ml fritted polypropylene syringe, 
swelled in DMF for 30 min and washed with DMF (5 × 1 min). The resin was 
treated with piperidine in DMF (1:4 v/v, 2.0 ml) (1 × 2 min and 1 × 20 min) and 
washed with DMF (3 × 1 min), MeOH (3 × 1 min) and H2O (3 × 1 min). The 
resin was treated with a TCEP solution (0.5 M, pH = 7.00, 0.5 ml) for 15 min 
and subsequently washed with H2O (3 × 1 min), MeOH (3 × 1 min) and DMF 
(3 × 1 min). Lyophilized supernatant (original volume 50 ml) was dissolved in 
10 ml trapping buffer (phosphate buffer (0.1 M, pH = 7.4)–DMF–TCEP solution 
(0.5 M, pH = 7.0) = 7.4:2:0.6 v/v/v) and the solution was added to the resin. The 
syringe containing the trapping mixture was agitated at 37 °C overnight. The 
trapping solution was removed from the resin and the resin was subsequently 
washed with DMF (3 × 1 min), MeOH (3 × 1 min) and H2O (3 × 1 min). The resin 
was then treated with a TCEP solution (0.5 M, pH = 7.00, 0.5 ml) for 10 min and 
subsequently washed with H2O (3 × 2 ml). A solution of DMF in H2O (10 ml, 1:1 
v/v) was added to the resin and the resin was agitated at 37 °C. After 30 min, the 
resin was washed with DMF (3 × 1 min), MeOH (3 × 1 min) and DCM (3 × 1 min) 
and dried under suction for 15 min. The dried resin was treated with a cleavage 
cocktail (1.5 ml TFA–Milli-Q water, 97:3 v/v) for 2 h at room temperature. The 
peptide containing cleavage solution was removed from the resin and collected, 
and the resin was rinsed with neat TFA (1.0 ml). The combined TFA fractions were 
evaporated under an N2 stream to near-dryness, redissolved in a solution of MeCN 
in H2O (100 μl, 1:1 v/v) and filtered (0.22 μm). The solution was analysed by LC-MS 
as described.

Sequence-guided LC-MS analysis. The filtered TFA cleavage solution was 
analysed using a Waters Acquity ultra-HPLC system equipped with a Phenomenex 
Kinetex column (1.7 μm, 100 Å, 50 × 2.10 mm) applying a gradient with eluent C 
(0.1% HCOOH in water) and eluent D (0.1% HCOOH in MeCN) rising linearly 
from 0–95% of D over 10.0 min at a flow rate of 0.6 ml min−1 and an injection 
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volume of 40 μl. The total ion chromatograms were analysed by displaying EICs of 
m/z [M + H]+ values of the possible linear peptides with an additional C-terminal 
cysteine amide residue compared to the AgrD sequence.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Primary sequencing data are deposited at the National Centre for Biotechnology 
Information (NCBI GenBank). All other data generated and analysed during this 
study are available in the article and its Supplementary Information. Further details 
are available from the corresponding author on request.
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