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ABSTRACT: We report herein a direct unsymmetric coupling and controllable aromatization reaction of saturated N-
heterocycles enabled by synergistic photoredox and acid catalysis. The reaction furnishes C2-C3 connected bi-heterocycles 
in a highly chemo- and regioselective manner under rather mild conditions. Mechanistic studies indicated that the reaction 
proceeded via enamine-iminium coupling leading to exclusively C2-C3 connection.

KEYWORDS: acceptorless photoredox dehydrogenation • enamine/iminium coupling • unsymmetric coupling • heterocycles 
• synergistic multiple catalysis.

Catalytic dehydrogenation reaction is one of the most 
important strategies in organic transformations and 
manufacture of commodity chemicals.1 Comparing to the 
traditional oxidative dehydrogenation and hydrogen-
transfer strategies, catalytic acceptorless dehydrogenation 
avoids the use of any external oxidants with hydrogen gas 
as the sole by-products and hence has received great 
attention in recent years due to its sustainable features.2 In 
particular, catalytic acceptorless dehydrogenation has 
been successfully applied in the dehydrogenation of N-
heterocycles as a viable approach toward hydrogen storage 
materials (Scheme 1, I).3,4 Pioneering contributions from 
groups of Fujita,4a,d Xiao,4c Jones4e,g and Crabtree5f et al. 
presented independently acceptorless dehydrogenation of 
1,2,3,4-tetrahydroquinolines (THQs) catalyzed by iridium, 
iron and cobalt complex, respectively. Li,5a Kanai5b and 
Wang5c reported photoredox dehydrogenation of the same 
reaction at ambient temperature in the presence of 
photocatalyst (PC).5 Very recently, Lei5h successfully 
developed the first electrochemical acceptorless 
dehydrogenation of N-heterocycles. Such 
dehydrogenation processes eliminate the use of chemical 
oxidants and hence are atom-economic and of high 
chemoselectivity. They also display potential applications 
in hydrogen-storage materials (Scheme 1, I, path A).6 
Mechanistically, all these processes proceed via 
dehydrogenation of amines into imine intermediate, which 
are readily tautomerized into enamine. These 
intermediates could be further manipulated to achieve 
selective α- or β-C-H functionalization of N-heterocycles 
but only in the presence of stoichiometric amount of 
oxidant (Scheme 1, I, path B).7,8 The synthetic potentials of 
acceptorless dehydrogenation process remain to be further 
explored. 

Herein, we report a distinctive enamine-iminium 
coupling in the photoredox dehydrogenation of 
tetrahydroquinolines. The reaction led to bi-N-
heterocylces in a highly chemo- and regio-selective 
manners (Scheme 1, II). The resulted bi-heterocycle with 
C2-C3 connection turns out to be prevalent structural 
motif in a number of bioactive alkaloids9 such as 
Lycodine,9a Complanadine A9b and Complanadine E 
(Figure 1).9d The existing 
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Figure 1. C2-C3 connected bi-heterocycles scaffold in natural 
compounds.

Scheme 1. Dehydrogenative functionalization of N-
heterocycles
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strategies normally require tedious steps to achieve 
regioselective C2-C3 bi-heterocycle connection.10 On the 
basis of intrinsic property of enamine and iminium, an 
enamine-iminium coupling would lead only to C2-C3 
coupling of saturated N-heterocycles, thus bypassing the 
perplexing regioselective issue. Such a bis-heterocycle 
coupling was made possible by judicious combination of 
photoredox e/H transfer and acid promoted 
enamine/iminium tautomerization/coupling (Scheme 1, 
II).11

In our experiments, 1,2,3,4-tetrahydroquinoline 1a was 
first selected as the model substrate with 
Ru(bpy)3Cl2•6H2O as the photosensitizer and 
Co(dmgH)2PyCl as the hydrogen transfer catalyst. To our 
delight, the reaction proceeded smoothly with TsOH as an 
additive. Under the conditions, conversion was complete 
within 8 h and the desired unsymmetric product 2aa was 
obtained with 90% isolated yield and >99% H2 yield (Table 
1, entry 1). Variation of organic or inorganic acids led to 
reduced activity or inhibition of the transformation (Table 
1, entries 2-5). The optimal loading of acid was determined 
to be 20 mol%. Further increasing the loading led to 
decreased production of both 2a and H2 (SI for details). It 
is known that acid could effectively promote enamine-
iminium tautomerization in aminocatalysis. 11a In this case, 
we speculated that TsOH, as an acid additive can promoted 
enamine-iminium tautomerization (vide infra for detailed 
discussion) and their subsequent coupling by supressing 
the aromatization to quinolone (entry 8 vs entry 1).5a Other 
photosensitizers such as [Acr+Mes]BF4

- gave rather low 
yield (Table 1, entry 6) and the typical organic dye eosin Y 
couldn’t promote the reaction (Table 1, entry 7). Control 
experiments revealed that acid, photocatalyst, cobalt 
catalyst and visible light were essential in the reaction 
(Table 1, entries 8-11), and no desired reaction or poor yield 
was observed in their absence.
Table 1. Screening and optimization.a

1a 2aa

N
H

Ru(bpy)3Cl2·6H2O ( 2 mol %)
Co(dmgH)2PyCl (3 mol %)

TsOH·H2O (20 mol %)
DCM (0.1 M), N2, RT

3 W blue LEDs

2

N

+ 3 H2

[Co(dmgH)2PyCl]

Me

Me

N
N

O

O

Co N
N

O

H

O
H

Cl

Me
MeN

Ru

N
NN

N N
N

Ru(bpy)32+

2+

N
H

Entry Variation from standard 
conditions

Yield 2aa 
(%)b

H2 

Yield 
(%)c

1 None 92 (90)d > 99
2 TfOH instead of TsOH 90 > 99
3 CF3COOH 42 67
4 HBF4 (48 wt. % in H2O) 20 53
5 HClO4 < 10 41
6 [Acr+Mes]BF4

- (5 mol %) trace 9
7 Eosin Y (5 mol %) trace 0
8 No TsOH 0 e n.d.g

9 No Co(dmgH)2PyCl < 5 0
10 No Ru(bpy)3Cl2•6H2O n.r. f n.d.g

11 In dark n.r.f n.d.g

aReaction conditions: 1a (0.1 mmol), Ru(bpy)3Cl2•6H2O (2 
mol %), Co(dmgH)2PyCl (3 mol %), TsOH (20 mol %) were 
added to 1.0 mL solvent, then deaerated and irradiated for 8 h 
with 3 W blue LEDs at room temperature. bDetermined by 1H 
NMR analysis using 1, 3, 5-trimethoxybenzene as an internal 
standard. cDetermined by gas chromatography using methane 
as an internal standard. dIsolated yield. e40% yield of quinoline 
was obtained.fn.r. = no reaction. gn.d. = no detected.

Under the optimized conditions, the substrate scopes 
were then examined. As shown in Scheme 2, diverse 6-
substituted THQs including alkyl, halogen, alkoxyl, aryl 
and phenoxyl could all furnish the corresponding 2,3-
coupled products in good to excellent yields (Scheme 2, 
2aa-2ii). 5-Halogen or 7-halogen substituted substrates 
gave moderate yields (Scheme 2, 2kk, 2ll, 2oo). These 
results indicated that the electronic property of 
substituents on the substrates affected the products yields 
significantly. In general, those substrates with electron-
donating substituents afforded the products (Scheme 2, 
2aa-2cc, 2gg, 2hh) in relatively higher yields than those of 
electron-withdrawing substituents (Scheme 2, 2kk, 2ll, 
2oo). 8-Substituted THQs could react smoothly to give the 
coupling products with good to excellent yields (Scheme 2, 
2pp-2ss). Multi-substituted tetrahydroquinoline (Scheme 
2, 2uu) has also been examined to deliver the desired 
product with 35% yield (96% based on recovered starting 
material) and poor solubility as well as the bulkiness could 
be the reason for low conversion. Other aza-heterocycles 
such as pyrrolidine, morpholine or piperidine have also 
been examined, giving unfortunately no desired coupling 
products. 1,2,3,4-Tetrahydroquinoxaline gave the α-
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amination product 2ww with moderate yield. When N-
phenyl pyrrolidine was applied, a dimerization adduct 2xx 
was obtained as a result of cross coupling (a hetero-Diels-
Alder type reaction) of the in-situ generated enamine and 
iminium ion.
Scheme 2. Scopes of β-alkylation. a

2aa: R = H, 8 h, 90%
2bb: R = Me, 8 h, 93%
2cc: R = i-Pr, 8 h, 92%
2dd: R = F, 8 h, 81%
2ee: R = Cl, 12 h, 81%

2mm: 6 h, 90%

2ss: 12 h, 80%

2rr:12 h, 75%

2nn: 12 h, 83%

2qq: 8 h, 92%

2tt: 24 h, 56%

2oo: 24 h, 31%

2pp: 6 h, 75%

2ll: 24 h, 43%2jj: 12 h, 65% 2kk: 24 h, 38%

2uu: 24 h, 35% [96%]b
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Co(dmgH)2PyCl (3 mol %)

TsOH·H2O (20 mol %)
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2vv: 12 h, 72% 2xx: 48 h, 26%

2ff: R = Br, 12 h, 65%
2gg: R = Ph, 8 h, 83%
2hh: R = OMe, 12 h, 80%
2ii: R = OPh, 8 h, 56%

NH
NN

N
2ww: 24 h, 30%

aIsolated yield. byield based on recovered starting material.

The reaction was not limited to β-alkylation of 
quinolines. When the reaction time was prolonged to 36 h, 
further dehydrogenation proceeded to an aromatized 
product 3aa. The reaction time could be shortened to 12 h 
under 10 W blue LEDs irradiation. We believed that the 
product 3aa was generated from further acceptorless 
dehydrogenation of the intermediate 2aa via [Ru]/[Co] 
catalysis. Promoted by such an easily manageable 
unsymmetric coupling and aromatization transformation, 
THQs with a variety of substitutes on the phenyl moiety 
were tested in this reaction (Scheme 3). Those substituted 
THQs could transform smoothly to the desired β-arylation 
adducts with good to excellent yields. 4-Methyl THQ gave 
only 13% yield of coupled adduct 3yy probably due to steric 
effect.
Scheme 3. Scopes of β-aromatization.a

3mm: 36 h, 76%

3ss:48 h, 88%

3rr: 48 h, 77%

3nn: 48 h, 77%

3pp:48 h, 73%

3jj: 36 h, 66%

3aa: R = H, 36 h, 90%b

3bb: R = Me, 36 h, 91%
3cc: R = i-Pr, 36 h, 92%
3dd: R = F, 48 h, 80%

3yy: 72 h, 13%
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3ee: R = Cl, 72 h, 81%
3ff: R = Br, 72 h, 42%
3hh: R = OMe, 36 h, 78%
3ii: R = OPh, 48 h, 80%

DCM (0.1 M), N2, RT
3 W blue LEDs

aIsolated yield. b > 99 % H2 yield (see SI Figure S4). 
The cross coupling of two different THQs were next 

explored. Initial experiments revealed that homo-coupling 
was unavoidable (Scheme 4, I). In searching THQ 
derivatives with balanced redox property and enamine-
iminium coupling reactivity, it was noted 4-substituted 
THQ was readily oxidized but reluctant to undergo homo-
coupling likely due to steric effect (Scheme 3, 3yy). In this 
regard, 4,4-dimethyl tetrahydroquinoline 1A was identified 
to undergo cross-coupling with other THQs effectively 
with little competitive homo-coupling of 1(Scheme 4, II).
Scheme 4. Scopes of cross-dehydrogenative coupling.
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Ru(bpy)3Cl2·6H2O ( 2 mol %)
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4fA: R = Br; 5 h, 58%, ( 6%b)
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2aa: 21%
2da: 21%

2ad: 19%

2dd: 24%

+

+

+

I. Cross coupling of two different THQsa

II. Cross coupling of 4-substituted THQ with others

standard condition

a Isolated yield. The ratio was determined by 1H NMR and 19F 
NMR analysis. bHomo-coupling yield of 1.

To probe the utility of our method in preparative 
synthesis, a scale-up reaction of 1a was performed. Under 
the standard conditions, conversion was complete within 
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24 h with 72% isolated yield (Scheme 5, I), highlighting the 
practical potential for large-scale applications.

We have tried to synthesize enamine/iminium 
intermediate B/C (Scheme 6) and in all the attempts a 
conjugated 1,2-dihydroquinoline D was obtained. When D 
was subjected to the standard reaction conditions, the 
desired coupling product was isolated in 71% yield (Scheme 
5, II), indicating a fast equilibrium between B/C and D. 
Control experiment also verified the dehydrogenation 
conversion of 2aa to 3aa under the catalytic conditions 
(Scheme 6, III). The oxidation potential of 2aa was 
determined to be 1.233 V (vs Ag/AgCl), much higher than 
that of 1a (1.080 V vs Ag/AgCl) (Fingure S11), and this may 
explain the controllable unsymmetric coupling (formation 
of 2aa) and aromatization (formation of 3aa) in our 
reaction system as 1a would be preferentially photo-
oxidized in the presence of 2aa. The critical role of acid in 
facilitating both enamine-iminium coupling and 
aromatization could aslo be verified in the control 
experiments and sluggish reaction or no conversion was 
observed in its absence (Scheme 5).
Scheme 5. The scale-up reaction and control 
experiments

II. 1,2-dihydroquinoline coupling experiment

III. -alkylation product futher dehydrogenation

2aa 3aa

standard condition

N
H

2aa  standard condition: 71 %
 without TsOH: 0 %

standard condition
3 h

N

N
H

N

N
 standard condition: > 99 %
 without TsOH: 15 %30 h

D

I. The scale-up reaction

N
H

N

N
H

1a
1.0 g 2aa

10 W blue LED
24 h

standard condition

0.71 g, 72 % yield

On the basis of previous reports and our own studies,5a,11 
a proposed mechanism was drawn in Scheme 6. Upon 
visible light irradiation, the excited state *[Ru(bpy)3]2+ is 
oxidized to [Ru(bpy)3]3+ by [CoIII] through single-electron 
transfer (SET). Subsequently, another SET process 
between 1a and [Ru(bpy)3]3+ produces a radical cation A 
and completes the [Ru] catalytic cycle.[12] The intermediate 
A undergoes further e/H transfer to give iminium B which 
readily tautomerizes to enamine C in the present of TsOH. 
[CoII] can capture the e/H in the process and form [CoIII-
H], which is readily protonated by H+ to release H2. As 
known, the addition of acid could promote hydrogen 
production in this step,13c, 13d thus facilitating the 
aromatization as experimentally observed (Schem 5).14  
Acid promoted coupling of B and C and subsequent photo-
oxidative electron/H transfer then affords the coupling 
product 2aa, which undergoes further dehydrogenation to 
3aa under the standard conditions after 1a was completely 
consumed. 
Scheme 6. Proposed catalytic cycle.
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In summary, we have developed a visible light promoted 
unsymmetric coupling and controllable aromatization of 
N-heterocycles enabled by combining Ru/Co mediated 
photoredox dehydrogenation and acid promoted 
enamine/iminium tautomerization. The current protocol 
provides a straight-forward approach to accessing bi-
heterocycles bearing C2-C3 connection in a highly chemo- 
and regio-selective manner under rather mild conditions. 
The facile and regioselective nature of the current 
enamine-iminium coupling may also suggest a possible 
biosynthetic pathway for this type of natural alkaloids 
endowed with C2-C3 connected bi-heterocycles.
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