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Over the past two decades, homogeneous gold catalysis 
has been extensively used to efficiently and selectively 
promote a variety of cyclization processes1–3. The typical 

casting involves bifunctional substrates bearing an unsaturation 
prompt to electrophilic activation and a judiciously positioned 
internal nucleophile. Protodemetalation of the organogold inter-
mediates to afford hydrofunctionalized products generally termi-
nates the catalytic cycles4. To pursue the step economy principle 
and aim for higher levels of molecular complexity, some in  situ 
postfunctionalization reactions of the organogold5 intermedi-
ate have been devised, such as electrophilic halogenation or 
cross-coupling reactions. Although palladium-catalysed cross-
coupling from an organogold(i) intermediate has been rendered 
possible6,7, this transformation still needs generality and most of 
the described coupling reactions have transited through a Au(i) 
to Au(iii) oxidation, necessitating an oxidant in stoichiometric 
quantity, transmetalation and a reductive elimination cycle8,9. A 
notable breakthrough in this area was achieved by Glorius10,11 
and Toste12,13, who bypassed the burden of stoichiometric oxi-
dants by merging gold catalysis with photoredox catalysis, ensur-
ing that the oxidation states shuttle14–16. Arylative cyclization and 
related transformations, as well as cross-coupling processes that 
rely on the use of easily reduced aryl diazonium salts, have been 
devised (Fig. 1a)17–24. Two mechanism pathways have been pro-
posed (Fig. 1b) that both feature the reductive elimination from 
a vinylgold(iii) intermediate of type D but differ by the stage of 
addition of the radical on gold (intermediate A versus F). Pathway 
I has been recently supported by stoichiometric reactions  
and calculations9,25,26. A ground-breaking advance in these  
reactions would be to promote the oxidative addition step by 
energy transfer (photosensitization) as this has found more  

relevance in visible-light catalysis involving organometallic 
complexes27. Useful photophysical guidelines for Dexter versus 
Förster and exergonic versus endergonic energy transfers have 
been drawn28.

Extending the scope of possible partners in these transforma-
tions is also highly desirable, and we aimed to develop alkynyla-
tive cyclization processes that correspond to a formal C(sp)2–C(sp) 
cross-coupling reaction, which has little precedent in this type of 
dual catalytic transformation13,29–31. Thus, replacing aryl diazoni-
ums with alkynyl iodide partners in our recent dual photoredox/
gold-catalysed arylative cyclization of o-alkynylphenols, which 
leads to benzofurans32, would constitute an appropriate base for 
exploration as well as provide valuable scaffolds. We were also 
aware that alkynyl iodides are much less reactive than aryl diazoni-
ums and that we would probably have to devise a distinct mode of 
activation of gold(i) complexes to promote the C–C bond forma-
tion step (Fig. 1c). Indeed, gold(i) complexes are notoriously resis-
tant to oxidative addition33. This can be rendered feasible only by 
using special sets of electrophilic reagents34–36 and/or certain con-
ditions. For instance, Toste and collaborators37 showed that CF3I 
adds to arylgold(i) complexes under UV irradiation. Substrates 
bearing a directing group or with inherent ring strain38,39 can also 
undergo oxidative addition to provide cyclometallated gold(iii) 
intermediates. Recently, Amgoune and Bourissou40,41 and Russell42 
have demonstrated that bidentate ligands on gold(i) with par-
ticular features promote oxidative addition and that the result-
ing gold(iii) intermediate can react with a nucleophile to provide 
cross-coupling products42, notably through a catalytic cycle41.  
In this work, we uncover a mode of C–C bond formation via pho-
tosensitized energy transfer that promotes oxidative addition of a 
gold(i) complex (Fig. 1c).
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Results and discussion
Optimization studies. We surveyed the feasibility of such a trans-
formation by examining the model reaction between 2-(p-tolyl-
ethynyl)phenol 1a and iodoethynyl benzene 2a under various 
conditions (see Supplementary Section III for detailed conditions 
optimization). Preliminary negative results based on the previous 
arylation protocol using a catalytic mixture of Ru(bpy)3Cl2 and 
PPh3AuCl in MeOH drove us to use other conditions. The first hits 
in the formation of benzofuran 3aa (structure confirmed by X-ray 
diffraction analysis, Cambridge Crystallographic Data Centre 
(CCDC) accession code no. 1850903) were obtained in acetoni-
trile and by adding a base (see Supplementary Section III. 2 and 
Table 1, entry 1). This finding was consolidated by using Ir[dF(CF3)
ppy]2(dtbbpy)PF6 ([Ir-F]) as a photocatalyst (entry 3, 26% of 3aa). 
A substantial gain of yield was observed (56% of 3aa) by switch-
ing PPh3AuCl to (p-CF3Ph)3PAuCl [Au-CF3] (entry 4). Finally,  
after substantial optimization it was found that the combination 
of [Au-CF3] (5 mol%), ([Ir-F]) (1 mol%), 1,10-phenanthroline 
(10 mol%), K2CO3 (2.5 equiv.) in degassed MeCN at room tem-
perature overnight under a blue light-emitting diode (LED) light 
gave the best result, since a 71% isolated yield of 3aa was obtained 
(entry 5). The reaction can work without a photocatalyst (entry 8) 
and the use of a more reductive photocatalyst such as fac-Ir(ppy)3 
was not beneficial (entry 2). Control experiments regarding the 

role of 1,10-phenanthroline were also performed. A stoichiomet-
ric amount of 1,10-phenanthroline proved detrimental to the yield 
(entry 6); however, other amines, such as quinuclidine (entry 7) 
or tetramethylethylenediamine (TMEDA), 1,4-diazabicyclo[2.2.2]
octane (DABCO) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) 
(see Supplementary Section III. 4), could also be used to improve the 
reaction. In sharp contrast, no desired product could be obtained in 
the absence of the base (K2CO3, entry 11), [Au-CF3] (entry 10) or 
light (entry 12). Finally, it is worth noting that the iodoetherifica-
tion product 4a and diyne 5a were the side compounds in almost 
all conditions. Diyne 5a was present in a lower quantity (<20%) and 
its formation presumably requires gold catalysis (see Supplementary 
Section III. 6). When (bromoethynyl)benzene 2a-Br was subjected 
to the reaction, only 9% of 3aa was obtained.

Mechanistic investigations. This preliminary set of findings drove 
us to delineate a plausible mechanism for the further development 
of the reaction. We first considered the addition of a radical inter-
mediate stemming from the photocatalytic cycle to produce the 
corresponding intermediate of type B through A (Fig. 1). Alkynyl 
radicals remain an elusive species, but they have been noted spo-
radically in the literature to be generated from alkynyl iodides43,44. 
Nevertheless, by using alkynyl iodide 2b as a probe (as it bears a 
fluorine label), this hypothesis was rapidly discarded. First, as the 
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reductive potential of 1-fluoro-4-(iodoethynyl)benzene at the 
ground state (E1/2(2b) = −1.47 V versus saturated calomel electrode 
(SCE) is substantially higher than the reduction potential of the 
excited state of the [Ir-F] catalyst (E*1/2 = −0.89 V versus SCE), pho-
toreductive formation of an alkynyl radical seemed unlikely. This 
was corroborated by fluorescence quenching studies that showed no 
quenching of excited [Ir-F] (3T1), denoted 3[Ir-F], by 2b, therefore 
precluding a photocatalysed electron transfer event. Another path-
way for the formation of the gold(iii) intermediate of type B was 
investigated due to the fact that alkynyl iodide 2b and the gold com-
plex [Au-CF3] convert into a new unstable gold species under blue 
LED irradiation, but the catalytic role of the latter remains elusive 
(see Supplementary Section V.5).

Literature reports9,14,16 indicate that a vinylgold(iii) intermedi-
ate of type D of Fig. 1, which would undergo reductive elimination 
to provide benzofurans 3, is presumably involved. To investigate 
this, vinylgold(i) 6 of type E was prepared in 82% yield by an inde-
pendent route45 as shown in Fig. 2a. An X-ray diffraction analysis 
of suitable crystals of 6 confirmed its structure (CCDC 1850902, 
Fig. 2b) and provided useful structural data for further modelling 
studies. No conversion of 6 when reacted with one equivalent of 
alkynyliodide 2b was observed after 3 h at room temperature (25 °C) 
in the absence of irradiation with a blue LED. However, blue LED 
irradiation changed the scenario. A low conversion (<10%) was 
observed after 2 h at room temperature, while overnight irradiation 
resulted in the formation of 33% of benzofuran 3ab (accompanied 
by 20% of 4a and 35% of protodeauration product 7 as determined 
by 1H NMR (Fig. 2c)). The addition of 10 mol% of [Ir-F] markedly 
altered the outcome and yielded 3ab almost quantitatively (Fig. 2d). 
Therefore, experimental conditions to trigger the key C–C bond 
formation were successfully found. Although benzofuran forma-
tion could be achieved under direct irradiation conditions without 
photocatalyst [Ir-F] (Fig. 2c,d), which brings some rationalization 
for the finding in entries 8 and 9 of Table 1, benzofuran formation 
seems to be greatly enhanced in its presence. This was confirmed 
by measuring the steady-state luminescence spectra of mixtures of 
[Ir-F] and 6. We observed a drop in the [Ir-F] luminescence signal 

when the concentration of 6 was increased, which suggested that 
6 acts as a quencher of 3[Ir-F] (Fig. 2e). In parallel, we recorded 
the luminescence lifetime of the same solutions and observed that 
it decreased from 2.4 µs in the absence of 6 (in agreement with pre-
vious reports46,47) to 290 ns in the presence of 745 µM of 6, thereby 
confirming the quenching of 3[Ir-F] by 6 (see Supplementary 
Fig. 3). Values of 2.9 × 109 mol l−1 s−1 and 4.1 × 109 mol l−1 s−1 were 
extracted for the bimolecular quenching rate constant (kq) from 
the luminescence intensity (I0/I) and lifetime (τ0/τ) Stern–Volmer 
plots respectively (see inset of Fig. 2e and Supplementary Fig. 4). 
These kq values are almost in the range of the encounter rate under 
the control of molecular diffusion. This observation suggests that 
no major molecular reorganization occurs during the reaction 
between 3[Ir-F] and 6, which would be reasonably in line with a  
Dexter-type energy transfer according to equation (1) (ref. 28), while 
considering that the triplet level of 3[Ir-F] is considerably higher 
than that of 36 (ref. 48).

3 Ir� F½  þ 6 ! Ir� F½  þ 36 ð1Þ

We also recorded the transient absorption spectra of [Ir-F] 
solutions containing various concentrations of 6 (Fig. 2f). The 
differential spectrum of 3[Ir-F] exhibited a maximum at around  
480–500 nm, which is in agreement with the literature49. The addi-
tion of an equimolar amount of 6 yields a decrease in the 3[Ir-F] sig-
nal, consistent with the 3[Ir-F] luminescence quenching observed 
in Fig. 2e. In the presence of a ninefold excess of 6, the 3[Ir-F] signal 
almost disappears and is replaced by a broad differential absorp-
tion tentatively attributed to 36 (new contributions below 450 nm 
and above 550 nm). The formation of 3ab is also enhanced by the 
presence of 10 mol% benzophenone in the reaction medium, which 
presumably also acts as a sensitizer (Fig. 2d). Another important 
point to check was the formation of 6 in the reaction conditions. 
This was achieved by exposing 1a to a stoichiometric amount of 
[Au-CF3] in CD3CN overnight. After this reaction time in the 
dark, the formation of 6 was observed by NMR in 26% yield (See 
Supplementary Section V. 4).

Table 1 | Defining the key parameters of the alkynylative cyclization

OH

+

[Au] (5 mol %), [PC] (1 mol%),
2.5 equiv. K2CO3, additive

MeCN, blue LED,
r.t., overnight

O

1a
1 equiv.

2a
1.5 equiv.

Ph

I

Ph3aa

O

I

4a

Ph

5a

++ Ph

Entry [Au]a [PC]a Additive, 10 mol%a 3aa yield (%)c 4a yield (%)

1b PPh3AuCl Ru(bpy)3(PF6)2 - 15 21

2b PPh3AuCl fac-Ir(ppy)3 - 8 22

3b PPh3AuCl [Ir-F] - 26 33

4 [Au-CF3] [Ir-F] - 56 22

5 [Au-CF3] [Ir-F] phen. 72 (71)f 15

6 [Au-CF3] [Ir-F] phen. (1 equiv.) 25 25

7 [Au-CF3] [Ir-F] quinuclidine 65 19

8 [Au-CF3] - phen. 26 29

9 [Au-CF3] - - 11 29

10 - [Ir-F] phen. - 8

11d [Au-CF3] [Ir-F] phen. - 27

12e [Au-CF3] [Ir-F] phen. - 16
a[Au-CF3] = (p-CF3Ph)3PAuCl; [Ir-F] = Ir[dF(CF3)ppy]2(dtbbpy)PF6; phen. = 1,10-phenanthroline. bOnly 1 equiv. of K2CO3 was used. cYields were determined by 1H NMR using 1,3,5-trimethoxybenzene as 
the internal standard, the yield in parentheses is the isolated yield. dNo K2CO3. eNo light. fIsolated yield.
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All these studies converge to imply an excited state of 6, whose 
formation is promoted by the long-lived triplet state 3[Ir-F] (ref. 50). 
This finding is in line with a recent study on excited-state organo-
metallic catalysis by McCusker and MacMillan51, who reported 
an energy-transfer-mediated reductive elimination of an excited 
arylnickel(ii) intermediate, in the same vein as other related reports 
on copper52,53 and nickel intermediates54–56. Further support for 
these conclusions was provided by calculations. The spin densi-
ties of 3[Ir-F] in isolation or in the vicinity of 6 were compared  
(Fig. 2g,h and Supplementary Sections VIII. 2–3 for calculation 
details). As shown in Fig. 2g, part of the 3[Ir-F] spin density is trans-
ferred to the approaching furan moiety of 6, intimating that energy 
transfer is taking place. This would lead to the formation of 6 in 

an excited electronic state, which may further react with 2a. Note 
that the same calculations performed on 3[Ir-F] approached by 2a 
show that no transfer is occurring to 2a (see Supplementary Fig. 7). 
This finding is consistent with the quenching studies carried out on 
[Ir-F] in the presence of 6 or 2a. Note that [Au-CF3] also does not 
quench the fluorescence of [Ir-F]. To determine which electronic 
states of 6 are accessible via this energy transfer, time-dependent 
density functional theory calculations were carried out. Results 
show that only 36 was accessible within the blue LED energy range 
(470 nm, see Supplementary Section VIII. 3 for details).

Modelling studies. Following these findings, we conducted a 
detailed theoretical study of the reaction of 36 with 2a. The ground 
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state reactivity of 6 was also checked to help rationalize the role 
of blue LED in the mechanism efficiency. For the sake of clar-
ity, we will now refer to 6 either as 16 or as 36 to unambiguously 
point to the 1S0 ground state or the 3T1 excited state of 6, respec-
tively. All calculations presented below were obtained at the PBE0/
SDD(Au), 6–311G*(I), 6–31G** (other atoms) level of theory,  

taking into account solvent effects by SMD procedure. If not 
stated otherwise, reported energies are Gibbs free energies in 
CH3CN DGCH3CN (ΔGMeCN).

On the singlet potential energy surface, the reaction pathway 
was quite straightforward to determine. However the barrier to 
formation of the oxidative addition adduct, gold(iii) complex 1I is  
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prohibitive: almost 28 kcal mol−1 (see Supplementary Section VIII. 
4) and renders the overall pathway unlikely. On the other hand, the 
reaction on the triplet potential energy surface seemed to be more 
sinuous, but also more favourable thermodynamically (see Fig. 3). 
The approach of 2a to 36 (along the Au–C (bearing the iodine) bond 
reaction coordinate) leads to the formation of an intermediate com-
plex 3II, located 18.5 kcal mol−1 below the reagents. Interestingly, the 
geometry adopted by 2a in this complex is bent (I–C–C angle of 
115°) and reminiscent of that of modelled 32a (I–C–C angle of 129° 
versus 180° for 2a in its ground state, see Supplementary Fig. 15). 
This feature suggests that the 36 complex may transfer energy to 2a 
when these reactants approach each other. Checking the spin den-
sity along the Au–C (bearing the iodine) bond reaction coordinate 
effectively confirms that a transfer is occurring at a relatively long 
distance (from 3.6 Å, see Supplementary Fig. 16). Therefore, 36 could 
act as a relay for transferring energy to 2a, which would provide 
access to a reactive bent structure of the acetylenic compound. From 
complex 3II and by approaching the iodine atom to gold, intermedi-
ate 3III is localized on which Au(i) is oxidized to Au(iii) and organic 
precursors lie in the trans position. This step occurs with a low acti-
vation energy of 2.2 kcal mol−1 via TS3. By reducing the C–Au–C 
angle on 3III (that is bringing together the two C atoms involved in 
the forthcoming new C–C bond), it was possible to localize a transi-
tion structure TS4, requiring a formation barrier of 18.8 kcal mol−1. 
TS4 connects to the Au(iii) complex intermediate 3IV, on which 
the formation of the key C–C bond between 6 and 2a is observed 
but with the iodine still interacting with the slightly elongated triple 
bond (d(I–C) = 2.29 Å). Finally, two pathway variants can be envis-
aged from 3IV. First, the 3IV complex may further rearrange to lead 
to a 3V complex (−27 kcal mol−1 below 3IV) via an inexpensive TS5 
transition structure (+0.001 kcal mol−1 compared with 3IV). Then 
3V easily dissociates to lead to 33aa+ (p-CF3Ph)3PAuI (barrier TS6 
of 6 kcal mol−1). An electronic decay of 33aa can then be envisaged 
to lead to the final coupling product 3aa+ (p-CF3Ph)3PAuI. Another 
possible pathway would imply a direct electronic decay of 3IV from 
S0 to T1 leading to a complex that was revealed to be dissociative. It 
would therefore directly provide the final coupling products.

The proposed reaction pathway using 36 as a starting product 
seems to be extremely favourable from a thermodynamic point of 
view, as all intermediate complexes and transition structures have 

lower energies than the starting products. This would be consis-
tent with the great efficiency of the observed reaction of Fig. 2d. 
The aforementioned data all support the plausible catalytic path-
way of Fig. 4.

In addition to the use of the photosensitizer [Ir-F], two other 
factors seem to optimize this process. First, the substitution of 
Ph3PAuCl by [Au-CF3] seemed to be highly beneficial (Table 1, entry 
3 versus 4), perhaps due to the higher electrophilicity of [Au-CF3]25. 
Second, the adjunction of 1,10-phenanthroline gave a significant 
yield increase regardless of the pathway followed (compare entry 
4 versus 5 and entry 8 versus 9 in Table 1). The reason for this is 
not clearly established and several hypotheses have been proposed. 
For instance, some halogen bonding between phenanthroline and 
the alkynyl iodides 2 (which are known halogen-bonding donors)57 
might be at work and explain the increased reactivity of the system.

Scope of the reaction. We then explored the scope of this trans-
formation. For this, a series of substituted aryl iodoalkynes 2 were 
reacted with 2-(phenylethynyl)phenols 1 under optimized reaction 
conditions (Fig. 5a). Aryl iodoethynyl bearing electron-withdraw-
ing groups in the para position, such as F and CF3, produced the cor-
responding benzofurans 3ab and 3ac in good yields. Meta F or ortho 
Cl-substituted aryl iodoalkynes reacted smoothly with 2-(phenyl-
ethynyl)phenol 1a, providing 3ad and 3ae in 78% and 63% yields, 
respectively. The presence of the electron-donating groups (–Me, 
–t-Bu, –OMe) at the para position, or no substitution, furnished the 
alkynylbenzofurans in slightly lower (3af, 3ag and 3ba) to moderate 
(3ah) yields. No reaction was observed with an iodoalkyne bearing 
a 4-nitro arylgroup, instead the protodeauration cyclization product 
7 was obtained. In addition, alkylalkynes bearing n-pentyl, cyclo-
hexyl, and 3-nitrile butyl groups could be incorporated into the 
benzofuran scaffold (3aj–3al) from the corresponding alkyl iodo-
alkynes, albeit in significantly lower yields (25–42%).

The effect of substitution on both aromatic rings of o-alkynyl-
phenols 1 was then investigated in reactions with 1-(iodoethynyl)-
4-(trifluoromethyl)benzene 2c (Fig. 5b). Arylalkynes with no 
substitution or bearing a CH3F group or F atom at the para or meta 
position to the alkyne gave good yields of benzofurans (3bc, 3ac, 
3ec and 3fc). Similarly, precursors with an electron-withdrawing 
ester group on the phenol moiety at the para or meta position of the 
alkyne delivered corresponding ethynylbenzofurans in good yields 
(3cc and 3dc).

Postfunctionalization and other systems. The benzofurans 3 
are valuable scaffolds for further elaboration, notably through the 
potential reactivity of the alkyne moiety. For instance, the prod-
uct 3aa can be hydrogenated by formic acid under palladium(0) 
catalysis. Depending on the reaction conditions Z-alkene 8 or the 
E-isomer 9 can be selectively obtained. Triazole 10 could also be 
formed in thermal conditions through a Huisgen type of reaction 
between 3aa and sodium azide (Fig. 5c, see Supplementary Section 
VI for details).

Finally, the sensitization protocol is not restricted to substrates 
1 and 2. Other organogold intermediates such as vinylgold 11 and 
arylgold 13 can undergo the oxidative addition (reductive elimina-
tion sequence to provide respectively 12 and 14 as shown in Fig. 5d). 
One pot reactions are also possible using a vinyliodide electrophile 
(15) or an o-alkynyl tosylaniline (17) as nucleophilic precursor. In 
the latter case, a new route to 2,3-disubstituted indoles is available.

Conclusions
This study describes a dual catalysis transformation, involving elec-
trophilic gold catalysis and iridium photosensitization to allow a 
C(sp)2–C(sp) cross-coupling reaction, useful for the alkynylation of 
benzofurans. A thorough luminescence study, supported by density 
functional theory calculations, revealed the mechanistic pathway. 
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Blue LED-excited [Ir-F] interacts with a vinylgold(i) intermedi-
ate, stemming from a gold(i)-promoted 5-endo-dig O-cyclization 
via energy transfer, to trigger oxidative addition at gold(i). In 

other words, the triplet excited state of the vinylgold(i) intermedi-
ate and the alkynyl iodide partner readily engage in an oxidative 
addition–trans/cis isomerization sequence that forges the desired  
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C(sp)2–C(sp) bond, followed by reductive elimination that deliv-
ers the benzofuran product. The process described in this Article 
enables the oxidative addition–reductive elimination pathway to be 
used with organogold intermediates and, because other nucleophilic 
and electrophilic partners are competent, it opens new avenues in 
the field of excited-state gold catalysis.

Methods
General procedure for alkynylative cyclization of o-alkynylphenols with 
iodoalkynes. A Schlenk tube was equipped with a magnetic stirring bar and 
charged with the photocatalyst [Ir-F](1 mol%) before the addition of the gold(i) 
complex [Au-CF3] (5 mol%), K2CO3 (2.5 equiv), 1,10-phenanthroline (10 mol%), 
the appropriate iodoalkyne 2 (0.15 mmol) and o-alkynylphenol derivative 1 
(0.1 mmol), with MeCN (2 ml). The mixture was degassed using three freeze 
pump–thaw cycles and purged with Ar, then irradiated for 16 h (unless otherwise 
stated) with blue LED light (see Supplementary Section VI for set-up). The stirring 
speed was ≥1,200 r.p.m. The reaction was quenched with Et2O (3 ml) and a 2 M 
HCl solution (3 ml) and the solution was then extracted by Et2O (3×5 ml). The 
combined organic layer was dried over MgSO4, filtered and concentrated under 
reduced pressure to give the crude product. The residue was purified by flash 
chromatography (FC) on silica gel to afford 3.

Data availability
Crystallographic data for the structures reported in this Article have been 
deposited at the Cambridge Crystallographic Data Centre under deposition 
numbers 1850903 (3aa) and 1850902 (6). Copies of the data can be obtained free 
of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting 
the findings of this study are available within the Article and the Supplementary 
Information, or from the corresponding authors on reasonable request.
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