Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

Improved hydrogen storage properties of LiAlH₄ by mechanical milling with TiF₃

Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin Key Lab of Metal, Nankai University, 94 Weijin Road, Tianjin 300071, China

ARTICLE INFO

Article history: Received 23 March 2015 Received in revised form 2 June 2015 Accepted 4 June 2015 Available online 10 June 2015

Keywords: Hydrogen storage materials Energy storage Complex hydride LiAlH₄ TiF₃ Ball milling

ABSTRACT

Dehydrogenation behavior of LiAlH₄ (lithium alanate) admixed with TiF₃ is investigated by pressurecomposition-temperature (PCT), fourier transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), differential scanning calorimetry (DSC) and temperature programmed desorption (TPD). The TiF₃ addition enhances kinetics of LiAlH₄ and decreases the decomposition temperature. The LiAlH₄-2 mol % TiF₃ sample starts to release hydrogen at about 35 °C and the dehydrogenation rate reaches a maximum value at 108.4 °C, compared with 145 °C and 179.9 °C for the as-received LiAlH₄. As for the dehydrogenation kinetics, the LiAlH₄-2 mol % TiF₃ sample releases about 7.0 wt % H₂ at 140 °C within 80 min. In comparison, the as-received LiAlH₄ sample releases only 0.8 wt % hydrogen under the same conditions. The existence of proposed catalyst, Al₃Ti formed in-situ in the process of dehydrogenation, has been confirmed experimentally by XRD measurements. The activation energy of LiAlH₄-2 mol % TiF₃ composite is deduced to be 66.76 kJ mol⁻¹ and 88.21 kJ mol⁻¹ for the first and second reaction stages of LiAlH₄ dehydrogenation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid global economic development, the fossil energy is in an accelerating pace towards exhaustion. CO₂ and other harmful gases from the burning of fossil fuels, can lead to the global warming and environmental pollution problem. In order to solve these problems, many countries around the world are positively developing renewable energy and clean energy. Hydrogen is an ideal energy carrier due to its storability, environmental friendliness, high calorific value and cost effectiveness [1,2]. Hydrogen generation and storage are considered as one of the main problems which have to be solved in the future development of hydrogen technology [3–11]. It is crucial to find new applicable hydrogen storage materials with high performances. Solid state hydrogen storage materials have large volume density, good safety performance, ease of use and transportation advantages. Therefore, future research will focus on the safety of hydrogen storage and development of new solid hydrogen storage materials with highperformance [12]. According to the goal of DOE for 2015, the target of hydrogen capacity is 6.5 wt. % [13].

In recent years, light weight complex hydrides are receiving increasing attention owing to their high gravimetric and volumetric hydrogen capacities [14]. Among them, LiAlH₄ is regarded as one of the most promising hydrogen storage materials owing to its high theoretical hydrogen storage capacity (10.5 wt %). LiAlH₄ material has the following advantages: higher theoretical hydrogen storage capacity; lower decomposition reaction enthalpy change, which lets it release hydrogen at relatively low temperature [15]. Dehydrogenation of LiAlH₄ occurs as given in the following reaction:

$$Li_3AIH_6 \rightarrow 3LiH + AI + 1.5H_2$$
 (2.6 wt % H₂) R2

$$LiH + Al \rightarrow LiAl + 1.5H_2$$
 (2.6 wt % H₂) R3

It releases 5.3 wt % H₂ in the first step at 150 °C–175 °C, and in the second step it releases 2.6 wt % H₂ at 180 °C–220 °C [16–18]. The whole process of R₃ only occurs in vacuum and releases 2.6 wt % H₂ at above 400 °C, which is considered to be unsuited for various applications. Thus, it is commonly accepted that only the first two desorption processes of LiAlH₄ are considered. However, there are also many disadvantages for LiAlH₄ material, such as: extremely

ALLOYS AND COMPOUNDS

霐

^{*} Corresponding author. E-mail address: liujian@nankai.eud.cn (J. Liu).

high plateau pressure at relatively low temperatures, which makes the hydride practically irreversible; the presence of an exothermic decomposition reaction [15]. In addition, the hydrogen release rate is relatively slow, which can be improved by ball milling and doping. At present, a lot of research has been carried out on doping modification. LiAlH₄ starts to decompose at 61 °C with 3 mol % NiFe₂O₄ as an additive and releases 7.2 wt % H₂ at 180 °C [19]. Balema et al. mechanically ball milled LiAlH₄-3 mol % TiCl₄ at room temperature for 5 min, and then LiAlH₄ has completely broken down to Li₃AlH₆, Al and H₂ [20]. So far, the reported catalysts for LiAlH₄ are as given in the following: (1) metal hydrides, such as MgH₂ [21]; (2) elemental metals, such as Al [22], Ti [23], Fe [24], Ni [25], and Sc [23]; (3) metal halides, such asVCl₃ [26] and [27], TiF₃ [28], TiCl₃ [29,32] and TiCl₄ [20] and [30]; (4) alloys, such as TiAl₃ and Ti₃Al [23]; (5) metal oxides, such as Nb₂O₅ and Cr₂O₃ [31], Fe_2O_3 and Co_2O_3 [29,32]; and (6) others, such as TiC and TiN [33], graphite [34], MnFe₂O₄ [35] and MWCNTs [36].

However, the catalytic mechanism of TiF₃ on LiAlH₄ is still an unsolved problem. It is thought that TiF₃ reacts with LiAlH₄ to form Al₃Ti [28], and Al₃Ti is considered to be an effective catalyst for the dehydrogenation of LiAlH₄ [22]. The formation of nano/microcrystalline Al₃Ti in the milling process of 4:1 LiAlH₄/TiCl₄ and 3:1 NaAlH₄/TiCl₃ mixtures has been reported by Balema et al. [37] and Majzoub et al. [38]. but Al₃Ti cannot be detected experimentally for samples of a typical doping level <5 mol %. To our best knowledge, there is no report on the in-situ formation of Al₃Ti during the process of dehydrogenation. However, another mechanism of fluoride substitution has been reported for Na₃AlH₆ and NaBH₄ [39–41]. Fluorine partially substitutes hydrogen to form $Na_3AlH_{6-x}F_x$ and $NaBH_{4-x}F_x$. It may lead to destabilization, which tends to facilitate hydrogen desorption. In the present work, $TiF_3(1, 1)$ 2, 4, 6 mol %)-LiAlH₄ have been ball milled under certain conditions. Samples have been analyzed by Pressure-composition- temperature (PCT) apparatus, differential scanning calorimetry (DSC), Xray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and temperature programmed desorption (TPD). The kinetic and thermodynamic performances of the LiAlH₄-TiF₃ composite will be further explored, and the in-situ formation of Al₃Ti in dehydrogenation will be discussed.

2. Experimental

The starting materials, LiAlH₄ (95%) were purchased from Acros Corp. and TiF₃ (99%) were purchased from Alfa Aesar. All the materials were used without further purification. LiAlH₄ was mechanically milled with x mol % (x = 1, 2, 4, 6) TiF₃ for 0.5 h under 1 MPa H₂ atmosphere using a QM-3SP2 planetary ball mill at 300 rpm in a stainless steel vessel. The ball-to-powder ratio was 60:1. For comparison, pure LiAlH₄ was also mechanically milled under identical conditions. All sample operations were performed in a glove box under Ar (99.999% purity) and the H₂O and O₂ contents were kept below 1 ppm.

XRD analysis was carried out using a powder X-ray Diffraction (XRD, Rigaku D/Max PC2500, Cu K_α radiation, 40 kV, 100 mA) at a scanning rate of 4° per min over the range of 20–80°20. The sample holder was covered with Mylar film to protect the sample from moisture and atmospheric oxygen during transportation. Temperature Programmed Desorption (TPD) of H₂ was performed using a home-made apparatus, which measures gas release rate at various temperatures. About 70 mg sample was used and heated at a ramping rate of 2 °C min⁻¹ in a 35 mL/min Ar flow while heating from 30 to 260 °C. Dehydrogenation kinetics was measured by pressure-composition-temperature (PCT) apparatus at certain temperatures. FTIR spectra were measured by using an FTIR-650 spectrometer (Tianjin Gangdong) at a resolution of 4 cm⁻¹.

Differential scanning calorimetry (DSC) was performed using a TA apparatus (DSC Q20P) in a flow (50 ml min⁻¹) of high purity Ar, with about 6 mg sample for each measurement.

3. Results and discussion

3.1. Dehydrogenation properties

3.1.1. Effect of the doping ratios on dehydrogenation

Firstly, the LiAlH₄-xTiF₃ composites ($x = 0, 1, 2, 4, 6 \mod \%$, respectively) have been prepared to optimize the addition amount of TiF₃, with x standing for the mole percentage of TiF₃ relative to LiAlH₄. For comparison, the dehydrogenation profiles of the doped samples and as-received $LiAlH_4$ are all presented in Fig. 1(A). Obviously, TiF₃ enormously enhances the dehydrogenation kinetics of commercial LiAlH₄. The dehydrogenation rate becomes faster with the adding amount of TiF₃ increasing. As shown from profile 'a' in Fig. 1(A), dehydrogenation of the undoped-LiAlH₄ sample occurs obviously in two steps (R1 and R2) and releases 7.4 wt % H2 within 30 min at 250 °C. For comparison, LiAlH₄-1 mol % TiF₃ releases 6.96 wt % H₂ within 20 min; LiAlH₄-2 mol % TiF₃ releases 7.25 wt % H₂ within 18 min; LiAlH₄-4 mol% TiF₃ releases 6.82 wt % H₂ within 13 min; LiAlH₄-6 mol % TiF₃ releases 6.16 wt % H₂ within 10 min. As we can see, with increasing addition amount of TiF₃, dehydrogenation rate of LiAlH₄ increases considerably.

In contrast to the dehydrogenation rate, the H₂ release amount of LiAlH₄ decreases and is lower than that of the as-received LiAlH₄. We think that TiF₃ is a beneficial catalyst and effectively improves the dehydrogenation kinetics of pure LiAlH₄. As seen in Fig. 1(B), our initial speculation has been verified that more addition of TiF₃ further reduces the amount of released hydrogen when the H₂ capacity is calculated on the basis of the total mass of samples. Taking the dehydrogenation kinetics and hydrogen capacity into consideration, the LiAlH₄-2 mol % TiF₃ composite is the best compromise to be further explored.

Fig. 2 shows FTIR spectra of the 0.5 h ball-milled LiAlH₄ doped with 0, 1, 2, 4, 6 mol % TiF₃. For the undoped-LiAlH₄, the peaks at 883 and 705 cm⁻¹ are the bending modes of [AlH₄]⁻, and the peaks at 1780 and 1621 cm^{-1} are the stretching modes of $[\text{AlH}_4]^-$. There is no vibration peak of Li₃AlH₆. Thus, we can consider that as-milled LiAlH₄ is stable and no Li₃AlH₆ formed during ball milling. In comparison with the as-milled LiAlH₄, it is obvious that the [AlH₄]⁻ bands for the LiAlH₄-TiF₃ composite are still in the same positions, however the peak intensities decrease. Obviously, there are IR vibration peaks $(v_3 [AlH_6]^{3-})$ at 1402 and 1298 cm⁻¹ which are the stretching modes of [AlH₆]³⁻, suggesting that a certain amount of LiAlH₄ decomposes into Li₃AlH₆, resulting from a small amount of hydrogen release during ball-milling. This is in accordance with the results of PCT that the hydrogen capacity of LiAlH₄-TiF₃ composite is lower than the as-received LiAlH₄ after ball–milling. As we can see, the stretching modes of $[AlH_6]^{3-}$ are weak, indicating a small amount of Li₃AlH₆. That is to say, only a small part of LiAlH₄ decomposes during high-energy ball milling process. Obviously, the peak intensity of the $[AIH_6]^{3-}$ increases with the content of TiF_3 , indicating that the decomposition amount of LiAlH₄ increases. The addition of TiF₃ benefits reaction (R1) for LiAlH₄ during the ball milling.

3.1.2. Effect of placing for different time and temperature

As reported in literature, the initial temperature of LiAlH₄-4 mol % TiF₃ composites after ball milling is 80 °C [28]. However a special phenomenon was found in our experimental process, the decomposition amount of LiAlH₄ obviously decreased, after the ball-milled materials were placed at room temperature for a period of time. As shown in Fig. 3(A), if we make the dehydrogenation test of

Fig. 1. The dehydrogenation profiles of the ball-milled LiAlH₄-xTiF₃ composites by PCT at 250 °C: (a) undoped-LiAlH₄; (b) LiAlH₄-1 mol % TiF₃; (c) LiAlH₄-2 mol % TiF₃; (d) LiAlH₄-4 mol % TiF₃; (e) LiAlH₄-6 mol % TiF₃. The hydrogen capacity was calculated: (A) only on the basis of LiAlH₄ and (B) after taking the weight of TiF₃ into account.

Fig. 2. FTIR spectra of the as-milled LiAlH₄; LiAlH₄-1 mol % TiF₃, LiAlH₄-2 mol % TiF₃, LiAlH₄-4 mol % TiF₃, LiAlH₄-6 mol % TiF₃ samples after ball milling.

the LiAlH₄-2 mol % TiF₃ composites at 250 °C immediately after ball milling, it releases 7.25 wt % H₂; however, the amount of H₂ release decreases to 7.04 wt % after the ball-milled sample is placed in the glove box for 5 h. This suggests that the sample probably releases some hydrogen when placed at room temperature. We then make the dehydrogenation test of samples which are placed in the glove box at room temperature (about 30 °C) for 10 h, 24 h, 48 h, and 120 h; and the amount of H₂ release is 6.32 wt %, 4.7 wt %, 3.87 wt % and 3.5 wt % respectively.

It would be reasonable that low temperature is beneficial to keep the samples from decomposition. As seen from profile 'a' in Fig. 4, the amount of hydrogen release from the sample kept at 0 °C for 48 h is 7.2 wt %, and it is almost the same as that from the asprepared sample. For comparison, the amount of hydrogen release from the sample kept at room temperature (about 30 °C) for 48 h decreases to 4.3 wt %. We think that the LiAlH₄-2 mol % TiF₃ composites release hydrogen considerably at room temperature. With the addition of TiF₃ catalyst, the initial dehydrogenation temperature of LiAlH₄ reduces to nearly room temperature. The XRD tests have provided evidence for this explanation. As shown in Fig. 3 (B), the peak at $2\theta = 31.6$ belongs to the Li₃AlH₆. The diffraction intensity of Li₃AlH₆ is stronger with increasing time of placing at room temperature; meanwhile, the peak intensity of Al is

Fig. 3. (A) The dehydrogenation profiles and (B) The XRD profiles of the ball-milled LiAlH₄-2 mol % TiF₃ composites placed in the glove box for different lengths of time at room temperature.

Fig. 4. The dehydrogenation profiles at 250 °C of the ball-milled LiAlH₄-2 mol % TiF₃ composites (a) kept with ice bath at 0 °C; (b) placed in the glove box at room temperature for 48 h, respectively.

stronger and the peak of LiAlH₄ decreases. The first reaction (R1) of LiAlH₄-2 mol % TiF₃ composites takes place at room temperature.

3.1.3. TPD measurements

TPD tests further prove our speculation. Fig. 5 shows TPD curves of the ball-milled LiAlH₄ doped with 0, 1, 2, 4, 6 mol % TiF₃. As shown in Fig. 5(A), there are two distinct hydrogen desorption peaks for five samples when heating from 30 °C to 260 °C, which is in accordance with the two-step dehydrogenation reaction (R1 and R2) of LiAlH₄. The onset temperature of the undoped-LiAlH₄ sample is around 145 °C with the maximum at 179.9 °C. The LiAlH₄-2 mol % TiF₃ sample starts to release hydrogen at around 35 °C with the maximum at 108.4 °C, which is 71.5 °C lower than that for the undoped-LiAlH₄ sample (179.9 °C). It has proved that the onset temperature of LiAlH₄-2 mol % TiF₃ composites has reduced to nearly room temperature. Furthermore, the peak of dehydrogenation shifts to lower temperatures with TiF₃ amount increasing. The peak of the first reaction for LiAlH₄-TiF₃ is a broad peak. For the second dehydrogenation reaction, the signal intensities become weaker with increasing TiF₃ amount, and the dehydrogenation temperature just decreases a little. It is clear that TiF₃ is an effective catalyst for the decrease of desorption temperature.

Fig. 5(B) presents the TPD dehydrogenation capacity of LiAlH₄, LiAlH₄-1 mol % TiF₃, LiAlH₄-2 mol % TiF₃, LiAlH₄-4 mol % TiF₃ and LiAlH₄-6 mol % TiF₃. The dehydrogenation capacity decreases with increasing addition amount of TiF₃ from 1 to 2 mol %, and then it decreases from 2 to 6 mol %. It reveals that the hydrogen capacity reduces obviously with more addition of TiF₃. TiF₃ catalyst decreases the dehydrogenation temperature, with the cost of loss of hydrogen release content. The excessive amount of TiF₃ catalyst is detrimental for hydrogen capacity. The hydrogen desorption capacity of LiAlH₄-2 mol %TiF₃ sample is 7.1 wt %, which is more than those of any other doping samples. The doping of TiF₃ is beneficial for complete decomposition of LiAlH₄ which leads to an increase of hydrogen capacity. On the other hand, the loss of hydrogen probably increases with more TiF₃ during ball milling, which then leads to a decrease of hydrogen capacity. As a result of the two factors, the hydrogen capacity of LiAlH₄-2 mol % TiF₃ composite reaches a maximum. However, the hydrogen capacity of doped-LiAlH₄ samples is always lower than the theoretical value (7.9 wt %). It is because as-received LiAlH₄ sample containing impurities, which results in the hydrogen capacity not reaching the theoretical value. On the other hand, the TiF₃ also makes LiAlH₄ decompose to Li₃AlH₆ and release a small amount of hydrogen during ball-milling, which has been confirmed by the IR spectra. Meanwhile, R1 becomes slower and goes on over a wider temperature range and the boundaries of R1 and R2 becomes more and more undefined, it is probably because R2 already starts before R1 finishes completely [28]. The details of TPD dehydrogenation curves are shown in Table 1.

3.2. Dehydrogenation kinetics and thermodynamics

The dehydrogenation kinetics of the LiAlH₄-2 mol % TiF₃ sample under relatively lower temperatures are shown in Fig. 6, while the kinetic behavior of undoped-LiAlH₄ is also included. The results show that the LiAlH₄-2 mol % TiF₃ composite releases 1.75, 3.25, 4.1, 5.1, 6.77 and 7.0 wt % H₂ at 45, 60, 80, 100, 120 and 140 °C, respectively. The hydrogen capacity becomes higher with higher desorption temperatures. Acting as a catalyst, TiF₃ enormously decreases the dehydrogenation temperature. As can be seen from Fig. 6, at 140 °C, the LiAlH₄-2 mol % TiF₃ sample releases 7 wt % H₂ within 80 min, whereas the undoped LiAlH₄ sample (without ball milling) only releases 0.8 wt % H₂ within the same time. The hydrogen capacity of the undoped LiAlH₄ is only 4.4 wt % at this temperature. At 45 °C, the LiAlH₄-2 mol % TiF₃ sample releases about 1.75 wt % H₂ within 8 h; on the other hand, the undoped sample cannot release H₂ at this temperature. The above results show that the dehydrogenation rate of LiAlH₄-2 mol % TiF₃ is much faster than that of the undoped LiAlH₄. The improved kinetics is

Fig. 5. TPD dehydrogenation curves of undoped-LiAlH₄, LiAlH₄-1 mol % TiF₃, LiAlH₄-2 mol % TiF₃, LiAlH₄-4 mol % TiF₃, LiAlH₄-6 mol % TiF₃ (Heating ramp 2 °C/min).

Tal	hla	1
Id	Die	: 1

Details of TPD dehydrogenation curves of undoped-LiAlH₄, LiAlH₄-1 mol % TiF₃, LiAlH₄-2 mol % TiF₃, LiAlH₄-4 mol % TiF₃, LiAlH₄-6 mol % TiF₃

	Initial temp. (°C)	Dehydrogenation peak of R_1 (°C)	Dehydrogenation peak of R_2 (°C)	Total amount of H ₂ release (%)
LiAlH ₄	145	179.9	216.6	7.3
LiAlH ₄ -1 mol % TiF3	35	114.6	202.2	6.8
LiAlH ₄ -2 mol % TiF3	35	108.4	201.9	7.1
LiAlH ₄ -4 mol % TiF3	35	88.1	198	6.7
LiAlH ₄ -6 mol % TiF3	35	80.5	194	5.9

Fig. 6. The PCT dehydrogenation characteristics of undoped LiAlH₄ sample at 140 $^{\circ}$ C and ball-milled LiAlH₄-2 mol % TiF₃ sample at various temperatures.

probably owing to the defect creation, formation of some kind of active material, and particle size reduction during milling [28,42-44]. Moreover, the catalytic properties of TiF₃ is superior to some previously documented catalysts, such as TiCl₄ [20], elemental metals [22-25], carbon material [34,36].

To further investigate dehydrogenation kinetics and thermodynamics of LiAlH₄-2 mol % TiF₃ sample, the DSC curves were measured with heating from 50 °C to 260 °C at various rates of 2, 5, 8 °C/min, respectively. In the aspect of thermodynamics, as shown in Fig. 7 (A), DSC curves of LiAlH₄-2 mol % TiF₃ sample exhibit two distinct endothermic peaks at heating ramp of 2 °C/min. Clearly, the first peak of LiAlH₄-2 mol % TiF₃ sample is at about 125.81 °C and the second is at 179.83 °C, which corresponds to the two-step decomposition reactions. To explore how the TiF₃ catalyst acts on the kinetic performance of LiAlH₄. Ea of LiAlH₄-2 mol % TiF₃ sample has been determined with the Kissinger's approach [16]. Fig. 7(B) shows the Arrhenius plots for the two endothermic peaks of LiAlH₄-2 mol % TiF₃ sample. Ea of the two dehydrogenation reactions for LiAlH₄ is deduced to be 66.76 kJ mol⁻¹ and 88.21 kJ mol⁻¹, which are 49.44 kJ mol⁻¹ and 44.79 kJ mol⁻¹ lower than the theoretical value of pure LiAlH₄ (116.2 kJ mol⁻¹ and 133.0 kJ mol⁻¹) [35]. This reveals that the TiF₃ enormously reduces the activation energy of LiAlH₄ and obviously improves the dehydrogenation kinetics of LiAlH₄-2 mol % TiF₃ composite.

3.3. Mechanism analysis

Fig. 8 shows the XRD patterns of as-received LiAlH₄, as-milled LiAlH₄, as-milled LiAlH₄-2 mol % TiF₃ and LiAlH₄-2 mol % TiF₃ after dehydrogenation. The small peak at $2\theta = 34.8$ is the impurity LiCl, which could explain the results of PCT and TPD that the dehydrogenation capacity of doping LiAlH₄ is lower than theoretical capacity. As seen from profile 'b' in Fig. 8, the peak positions of as-milled LiAlH₄ were the same as those of the as-received LiAlH₄ except for the decreasing of intensity. That is to say, ball-milling does not make LiAlH₄ decompose and just make the particle size smaller. As seen from profile 'c', the small peak at $2\theta = 31.6$ belongs to the Li₃AlH₆. A small amount of LiAlH₄ has already decomposed to Li₃AlH₆, which is consistent with the result of FTIR. However, it should be noted that no F-containing and Ti-containing phases are detected after ball milling or after dehydrogenation. It is probably because that their amount is beyond the detection limit of XRD technique or it is in amorphous state. The following reactions probably take place, according to the mechanism proposed by S.-S. Liu et al. [28].

$$3\text{LiAlH}_4 + \text{TiF}_3 \rightarrow 3\text{LiF} + \text{Al}_3\text{Ti} + 6\text{H}_2$$
 R4

$$3\text{LiAlH}_4 + \text{TiF}_3 \rightarrow 3\text{LiF} + 3\text{Al} + \text{TiH}_2 + 5\text{H}_2$$
 R5

$$3\text{LiAlH}_4 + \text{TiF}_3 \rightarrow 3\text{LiF} + 3\text{Al} + \text{Ti} + 6\text{H}_2$$
 R6

Fig. 7. (A) DSC profiles of LiAlH₄-2 mol % TiF₃ sample(2, 5 and 8 °C min⁻¹); (B) Kissinger plots for the dehydrogenation of LiAlH₄-2 mol % TiF₃ sample (A: LiAlH₄ \rightarrow Li₃AlH₆; B: Li₃AlH₆ \rightarrow LiH).

Fig. 8. XRD patterns of the samples (a) as-received LiAlH₄; (b) as-milled LiAlH₄; (c) as-milled LiAlH₄-2 mol % TiF₃; (d) LiAlH₄-2 mol % TiF₃ after dehydrogenation.

Kang et al. conclude that the formation of Al₃Ti is favorable. Because Al₃Ti ($\Delta G_{f.}136 \text{ kJ mol}^{-1}$) is more stable than TiH₂ ($\Delta G_{f.}86 \text{ kJ mol}^{-1}$) [45]. It is thought that only some of TiF₃ reacted with LiAlH₄ to form the catalyst Al₃Ti during ball-milling and Al₃Ti catalyzed the LiAlH₄ decomposition to Li₃AlH₆. However, Al₃Ti is not detected after dehydrogenation. It is probably because the diffractions of Al₃Ti are weak due to its large peak widths, high dispersion, some amorphous state or small amount [46]. However, another view indicates that fluorine substitute hydrogen to form the stable structures of AlF₆ and AlF₄, which tends to facilitate hydrogen desorption [39–41].

To further investigate catalytic mechanism of TiF₃, the PCT and XRD curves were measured with the LiAlH₄–TiF₃ samples of 3:1 mol ratio. As seen from profile 'b' in Fig. 9(A), the 3LiAlH₄–TiF₃ sample with physical mixture quickly releases nearly 9 wt % H₂ (larger than 7.9 wt %, which is the sum of hydrogen release from R1 and R2) within 2 min at 250 °C. Correspondingly, the diffraction peaks of Al₃Ti and LiF are present in profile 'd' in Fig. 9(B). Although the formation of Al₃Ti has been confirmed during the process of ball

milling [37,38], the Al₃Ti formed in-situ during dehydrogenation process has been detected by XRD for the first time to our best knowledge. Thus, we can believe that LiAlH₄ reacts with TiF₃ as reaction R4, not R5 or R6, and Al₃Ti forms in the process of dehydrogenation when the ratio is 3:1 at certain temperatures; and the in-situ formed Al₃Ti catalyzes dehydrogenation through reaction R1 and R2. However, the dehydrogenation capacity cannot reach the theoretical value (10.5 wt %), it is probably because the asreceived LiAlH₄ is not pure and some LiAlH₄ still decomposes as R1 and R2, which lowers the dehydrogenation capacity of the samples.

For comparison, the ball-milled sample releases only 2.2 wt % H_2 at 250 °C, and Al_3Ti cannot be found in the XRD patterns both before and after dehydrogenation. However, there was a small amount of LiAlH₄ remaining after ball milling. We can deduce that only a small amount of LiAlH₄ reacts with TiF₃ as R4 during ball milling even though the ratio is 3:1. It is probably because the slow speed and the small energy of ball milling could not make the reaction complete. And then the formed Al_3Ti catalyzes the LiAlH₄ decompose, whereas the amount of Al_3Ti is still beyond the detection limit of XRD, or it is amorphous in the samples. From the results above, we can verify the formation of crystalline Al_3Ti in reaction R4.

4. Conclusions

It has been demonstrated that TiF₃ obviously enhances the desorption kinetics of as-received LiAlH₄. The addition of 2 mol % TiF₃ leads to the onset temperature of LiAlH₄ decreasing to around 35 °C and the dehydrogenation rate reaches a maximum value at 108.4 °C. As for the dehydrogenation kinetics, the LiAlH₄-2 mol % TiF₃ sample releases about 7.0 wt % H₂ at 140 °C within 80 min. The Ea values of the LiAlH₄-2 mol % TiF₃ sample decrease to 66.76 kJ mol⁻¹ and 88.21 kJmol⁻¹ for the two hydrogen desorption reaction of LiAlH₄, resulting in a faster dehydrogenation rate. The presence of Li₃AlH₆ is confirmed by FTIR and XRD after ball milling, demonstrating that the addition of TiF₃ leads to the decomposition of LiAlH₄ during ball milling. On reaction mechanism, the in-situ formed Al₃Ti has been found in XRD patterns of the mixed 3LiAlH₄-TiF₃ samples without ball milling, after dehydrogenation at 250 °C. TiF₃ presumably reacts with LiAlH₄ to form the Al₃Ti and LiF, following the proposed reaction R4, and then the formed Al₃Ti catalyzes LiAlH₄ to decompose.

Fig. 9. (A) PCT profiles of 3LiAlH₄—TiF₃ sample at 250 °C (a: after ball milling; b: physical mixture without ball milling); (B) XRD profiles of 3LiAlH₄—TiF₃ sample (a: the ball-milled sample before dehydrogenation, b: the ball-milled sample after dehydrogenation; c: the physically-mixed sample before dehydrogenation, d: the physically-mixed sample after dehydrogenation).

Acknowledgment

The authors thank the Tianjin Natural Science Foundation 09JCZDJC24800 for the financial support for our research.

References

- [1] M.Q. Fan, S. Liu, L.X. Sun, F. Xu, S. Wang, J. Zhang, D.S. Mei, F.L. Huang, Q.M. Zhang, Int. J. Hydrogen Energy 37 (2012) 4571–4579.
- H.B. Dai, G.L. Ma, H.J. Xia, P. Wang, Energy & Environ. Sci. 4 (2011) 2206–2212. [2] [3] K.A. Brown, S. Dayal, X. Ai, G. Rumbles, P.W. King, J. Am. Chem. Soc. 28 (2010)
- 9672-9680. [4] K.M. Fair, X.Y. Cui, L. Li, C.C. Shieh, R.K. Zheng, Z.W. Liu, B. Delley, M.J. Ford,
- S.P. Ringer, C. Stampfl, Phys. Rev. B 87 (2013) 014102.
- [5] J. Hensel, G. Wang, Y. Li, J.Z. Zhang, Nano Lett. 2 (2010) 478–483. [6] D. Streich, Y. Astuti, M. Orlandi, L. Schwartz, R. Lomoth, L. Hammarstrom, S. Ott, Chem. A Euro. J. 1 (2010) 60–63.
- [7] Z.G. Huang, T. Autrey, Energy Environ. Sci. 5 (2012) 9257–9268.
- [8] R. Khnayzer, L.B. Thompson, M. Zamkov, S. Ardo, G. Meyer, C. Murphy, F.N. Castellano, J. Phys. Chem. C 1 (2012) 1429-1438.
- [9] H.M. Chen, C.K. Chen, M.L. Tseng, P.C. Wu, C.M. Chang, L.C. Cheng, H.W. Huang, T.S. Chan, D.W. Huang, R.-S. Liu, Small 17 (2013) 2926–2936.
 [10] D.J. Bull, E. Weidner, I.L. Shabalin, M.T.F. Telling, C.M. Jewell, D.H. Gregory,
- D.K. Ross, Phys. Chem. Chem. Phys. 12 (2010) 2089-2097.
- [11] H. Lv, J. Song, H. Zhu, Y.V. Geletii, J. Bacsa, C. Zhao, T. Lian, D.G. Musaev, [11] In Ev, J. Song, I. Sing, I. Sing, I. Sing, J. Song, J. Song, I. So
- [13] S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, Catal. Today 120 (2007) 246 - 256
- [14] L. Li, Y. Wang, F.Y. Qiu, Y.J. Wang, Y.N. Xu, C.H. An, L.F. Jiao, H.T. Yuan, J. Alloy Compd. 566 (2013) 137-141.
- [15] R.A. Varin, L. Zbroniec, J. Alloy Compd. 504 (2010) 89-101.
- [16] A. Andreasena, T. Veggea, A.S. Pedersena, J. Phys. Chem. C 116 (2012) 22327-22335
- [17] F.Q. Zhai, P. Li, A.Z. Sun, S. Wu, Q. Wan, W.N. Zhang, Y.L. Li, L.Q. Cui, X.H. Qu, J. Phys. Chem. C 116 (2012) 11939-11945.
- [18] J. Chen, N. Kuriyama, J. Phys. Chem. B 105 (2001) 11214-11220.
- [19] P. Li, Z.L. Li, F.Q. Zhai, Q. Wan, X.Q. Li, X.H. Qu, A.V. Alex, J. Phys. Chem. C 117 (2013) 25917 - 25925.
- [20] V.P. Balema, J.W. Wiench, K.W. Dennis, J. Alloy Compd. 329 (2001) 108.
- [21] T. Czujko, Z. Zaranski, I.E. Malka, Z. Wronski, J. Alloys Compd. 509 (2011) 604-609.

- [22] M. Resan, M.D. Hampton, J.K. Lomness, D.K. Slattery, Int. J. Hydrogen Energy 30 (2005) 1417-1421.
- [23] H.W. Langmi, G.S. McGrady, X.F. Liu, C.M. Jensen, J. Phys. Chem. C 114 (2010) 10666-10669.
- [24] A.V. Robert, R. Parviz, Int. J. Hydrogen Energy 37 (2012) 9088-9102.
- [25] X.P. Zheng, X.H. Qu, I.S. Humail, P. Li, G.Q. Wang, Int. J. Hydrogen Energy 32 (2007) 1141-1144.
- [26] D. Blanchard, H.W. Brinks, B.C. Hauback, P. Norby, Mater. Sci. Eng. B 108 (2004) 54 - 59
- [27] J.R. Ares, K.F. Aguey-Zinsou, M. Elsaesser, X.Z. Ma, M. Dornheim, T. Klassen, Int. J. Hydrogen Energy 32 (2007) 1033–1040. [28] S.S. Liu, L.X. Sun, Y. Zhang, F. Xu, J. Zhang, H.L. Chu, M.Q. Fan, T. Zhang,
- X.Y. Song, J.P. Grolier, Int. J. Hydrogen Energy 34 (2009) 8079–8085.
- [29] B.A. Placidus, T.G. John, J.S. Patrick, A.V. Andrey, S.F. Timothy, J. Phys. Chem. C 116 (2012) 21886-21894.
- [30] J. Fu, L. Rontzsch, T. Schmidt, M. Tegel, T. Weißgarber, B. Kieback, Int. J. Hydrogen Energy 37 (2012) 13387–13392.
- [31] Rafiuddin, X.H. Qu, P. Li, L. Zhang, A. Mashkoor, J. Phys. Chem. C 26 (2011) 13088-13099
- [32] Z.L. Li, P. Li, Q. Wan, F.Q. Zhai, Z.W. Liu, K.F. Zhao, L. Wang, S.Y. Lu, L. Zou, X.H. Qu, A. Alex, M. Volinsky, J. Phys. Chem. C 117 (2013) 18343-18352.
- [33] R.A. Varin, R. Parviz, Int. J. Hydrogen Energy 39 (2014) 2575-2586.
- [34] M. Ismail, Y.X. Zhao, B. Yu, S.X. Dou, Int. J. Electroact. Mater. 1 (2013) 13–22. [35] Q. Wan, P. Li, Z.L. Li, F.Q. Zhai, X.H. Qu, A. Alex, J. Phys. Chem. C 117 (2013) 26940-26947
- [36] W.C. Hsu, C.H. Yang, W.T. Tsai, Int. J. Hydrogen Energy 39 (2014) 927–933.
 [37] V.P. Balema, J.W. Wiencha, K.W. Dennisa, M. Pruskia, V.K. Pecharsky, J. Alloy Compd. 329 (2001) 108-114.
- [38] E.H. Majzoub, K.J. Gross, J. Alloy Compd. 356 (2003) 363-367.
- [39] N. Eigen, U. Boesenberg, J.B. von Colbe, J. Alloy Compd. 477 (2009) 76-80.
- [40] L.H. Rude, U. Filsø, V. D'Anna, A. Spyratou, B. Richter, S. Hino, Phys. Chem. Chem. Phys. 15 (2013) 18185–18194.
- [41] H.W. Brinks, A. Fossdal, B.C. Hauback, J. Phys. Chem. C 112 (2008) pp.5658-pp.5661.
- [42] J.R. Ares, K.F. AgueyeZinsou, M. Porcu, J.M. Sykes, M. Dornheim, T. Klassen, Mater. Res. Bull. 43 (2008) 1263-1275.
- [43] L.H. Kumar, B. Viswanathan, S.S. Murthy, Int. J. Hydrogen Energy 33 (2008) 366-373
- [44] L. Li, Y.N. Xu, Y. Wang, Y.J. Wang, F.Y. Qiu, C.H. An, L.F. Jiao, H.T. Yuan, Dalton Trans. 43 (2014) 1806-1813.
- [45] X.D. Kang, P. Wang, X.P. Song, X.D. Yao, G.Q. Lu, H.M. Cheng, J. Alloy. Compd. 424 (2006) 365-369.
- [46] S.S. Liu, Y. Zhang, L.X. Sun, J. Zhang, J.N. Zhao, F. Xu, F.L. Huang, Int. J. Hydrogen Energy 35 (2010) 4554-4561.