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■ ABSTRACT GRAPHIC 

■ ABSTRACT

Naturally occurring benzoxanthenones which belongs to the vast family of lignans, are 

promising biologically relevant targets. They are biosynthetically produced by the oxidative 

dimerization of 2-propenyl phenols. In this manuscript, we disclose a powerful automated flow-

based strategy for identifying and optimizing a cobalt-catalyzed oxidizing system for the bio-

inspired dimerization of 2-propenyl phenols. We designed a reconfigurable flow reactor 

associating on-line monitoring and process-control instrumentation. Our machine was first 

configured as an automated screening platform to evaluate a matrix of 4 catalysts (plus the 

blank) and 5 oxidant (plus the blank) at two different temperatures, resulting in an array of 50 

reactions. The automated screening was conducted on micromole scale at a rate of one fully 
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characterized reaction every 26 minutes. After having identified the most promising cobalt-

catalyzed oxidizing system, the automated screening platform was straightforwardly 

reconfigured to an autonomous self-optimizing flow reactor by implementation of an 

optimization algorithm in the closed-loop system. The optimization campaign allowed the 

determination of very effective experimental conditions in a limited number of experiments 

which allowed to prepare natural products carpanone and polemannone B as well as synthetic 

analogues.

■ INTRODUCTION

Naturally occurring benzoxanthenones constitute a small group of natural products 

isolated as racemates and belonging to the vast family of lignans.1 The most 

representative members of benzoxanthenone-based natural products include carpanone 

1, polemannone A-C 2-4 and sauchinone 5 and feature a highly oxygenated polycyclic 

structure with five contiguous stereogenic centers (Figure 1). They have been identified 

as biologically relevant targets with anti-inflammatory,2-3 hepatoprotective,4-5 and 

antitumor properties.6 Synthetic analogues have also been reported to be potent 

inhibitors of exocytosis and might be useful for the study of vesicular traffic.7-8 

Therefore, the significant complexity of the benzoxanthenone skeleton associated to the 

potential of these structures to interfere with several biological mechanisms, make these 

structures appealing targets for synthetic chemists.

It has been postulated that the biosynthesis of the benzoxanthenone skeleton occurs through 

the oxidative dimerization of the corresponding 2-propenyl phenol.1 This assumption was latter 

supported by synthetic studies showing that the bio-inspired oxidative dimerization of 2-

propenyl phenols using a variety of oxidants such as PdCl2,9-10 [Co]/O2,11-12 CuCl2/()-

sparteine/O2,13-14 PhI(OAc)2
7-8

 and laccase,15 indeed furnishes the benzoxanthenone skeleton. 

We recently described the multi-step synthesis of carpanone 1 in flow using a modular 

autonomous flow reactor.16 Advantages of conducting reactions in flow with respect to 

traditional batch reactors include higher mass and heat transfers, better reproducibility, 

improved kinetics, safer experimental conditions and easier automation.17-24

In our approach, all discrete steps of the flow synthetic route were optimized with the use of 

a black-box optimization algorithm working without a priori reaction and gradient information. 

In particular, the oxidative dimerization furnishing carpanone 1 was optimized in 1,2-
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dichloroethane using molecular oxygen as the oxidant associated to a CoII(salen) complex as 

the catalyst. 
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FIGURE 1. Naturally occurring benzoxanthenones lignans. Oxidative dimerization of 2-

propenyl phenols as inset.

While these experimental conditions furnished carpanone 1 in 82% isolated yield, we later 

faced difficulties to prepare multi-gram amounts of carpanone 1 for two reasons. First, under 

the optimal conditions, carpanone 1 was prepared with an excellent isolated yield (82%) but 

with a modest productivity (ca. 17 mg/h) due to the high dilute experimental conditions (ca. 

0.015 M) and the modest kinetic (ca. 40 min residence time). Second, the use of a stock solution 

of 1,2-dichloroethane saturated with pure oxygen posed severe safety concerns for our 

industrial partner in charge of the scaling-up.25 While the first issue could be addressed with an 

increase of the initial concentration of starting materials, the second issue required us to 

reinvestigate the oxidative conditions through the screening of alternative oxidants and catalysts 

compatible with a flow regime. The experimental flow setup we developed for the synthesis of 

carpanone in our previous investigations was not adapted for reagents screening as it would 

require the use of three streams for the starting material, oxidant and catalyst, respectively. This 

also implies that an automated screening of oxidants and catalysts was not possible as it would 

require a manual change of the stock solutions. In this manuscript, we report the development 
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of a reconfigurable and intelligent synthesis platform that allows both automated micromole-

scale reagent screening and autonomous reaction optimization in flow. The automated platform 

includes a number of benefits as it allows very reproducible experiments on a micromole scale 

due to the use of a liquid handling robot and minimizes the consumption of solvent due to the 

use of a single stream. Additionally, the use of a liquid handling robot in charge of the reaction 

mixture preparation prevents issues associated with the reproducibility of the mixing process.

This machine led to the discovery of uncovered oxidative conditions for the construction of 

the benzoxanthenone skeleton and allowed the synthesis of naturally occurring capanone 1 and 

polemannone B 3 as well as a synthetic analogue.

■ RESULTS AND DISCUSSION

The bio-inspired oxidative dimerization of 2-propenyl phenols has been reported in 

batch under a variety of experimental conditions which are, for most of them, unsuitable 

for flow conditions due to either solubility issues (PdCl2, laccase) or long reaction times 

(CuCl2/()-sparteine/O2, 24 h). We demonstrated that the use of CoII(salen)/O2 as the 

oxidizing system could be efficiently transferred from batch to continuous flow 

conditions;16 however, the use of molecular oxygen was associated with safety concerns, 

especially in the industrial environment. Considering that the reasonable price of cobalt-

based catalysts was an important asset, we decided to explore the combination of a 

selection of commercially available Co catalysts with oxidants compatible with flow 

conditions to properly address safety concerns for scaling-up experiments; keeping in 

mind that oxidants are, by nature, hazardous compounds requiring careful handling, 

especially on large scale. 

In our initial experimental procedure, a stock solution of cobalt catalyst in 1,2-

dichloroethane was saturated with oxygen gas (O2).16 While this protocol features an 

obvious simplicity reaching the main principles of sustainable chemistry,26 it suffers 

from safety concerns upon scaling-up, as the stock solution could represent a highly 

flammable volume of several liters.27 The other issue associated with this protocol is 

related to the difficulty in measuring the exact volume of O2 dissolved in 1,2-

dichloroethane so that the amount of oxygen available for the oxidative dimerization 

could not be precisely determined. This point is particularly relevant upon increasing the 

concentration of starting material as the amount of oxygen required by unit of volume 

would substantially increase until reaching a value where oxygen becomes the limiting 
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reagent. The use of a diluted gas mixture (5-10% O2 in N2) is an alternative strategy 

which allows users to keep the O2 concentration in the organic solvent below the 

explosive limit. However, the low amount of O2 which can be solubilized with such a 

strategy could preclude the reaction to reach complete conversion.28

With the aim of addressing these limitations we embarked on the search for a new oxidizing 

system avoiding the use of O2. In this frame, we designed a new reconfigurable and fully 

automated screening platform capable of preparing reaction mixture from specified reagents on 

the μmol scale (Figure 2, see also Figure S2 in SI for a photograph of the platform). Our one-

stream system includes a liquid handling robot in charge of the reaction mixture preparation, a 

pump, a thermostated reactor coil and a switch valve which samples a small fraction of the 

crude mixture for the on-line HPLC analysis. 
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An automatic data processing integrates the chromatogram and calculates the yield using an 

internal standard. All modules from the screening platform are connected to a computer through 

RS-232 ports and controlled with an ad-hoc process-control software.

To start a screening campaign, an operator populates the 56-well plate with vials containing 

the required reagents (starting material, catalyst, base…). After having fed the process-control 

software with the concentration of the stock solution-containing vials, the composition of the 

reaction mixture, the stoichiometry chosen for the screening and the volume injected in the coil 

reactor, the sampling robot automatically determines the volume of suction in each vial to 

prepare the reacting mixture injected in the coil reactor. Two different setups were designed 

depending on the nature of the oxidant. Non-gaseous oxidants were sampled by the liquid 

handling robot from the stock solutions and the reaction occurred in a PEEK reactor. Gaseous 

oxidants such as air and oxygen were supplied to the reaction mixture through the use of a gas-

permeable coil reactor made from the AF-2400 polymer.29-30 The search for a new oxidizing 

system using the screening platform was carried out with the benchmark oxidative dimerization 

of 2-propenyl phenol 6 to benzoxanthenone 10. We prepared a 40-member 3-dimensional array 

from a selection of 3 non-gaseous oxidants 8a-c (plus one blank) and 4 cobalt catalysts 9a-d 

(plus one blank). The array was split in two runs of 20 experiments carried out at 25 and 50 °C.  

An additional 10-member 2D array from a selection of catalysts 9a-d (plus one blank) and 2 

gaseous oxidants 8d-e were conducted at 25 °C. For safety reasons we did not studied gaseous 

oxidant, and especially oxygen, at 50 °C. In this screening campaign the use of oxygen served 

as a standard to assess the efficiency of other oxidants screened. To our knowledge, the cobalt-

catalyzed oxidative dimerization of 2-propenyl phenols had only been investigated with oxygen 

as oxidant and the potential of alternative oxidants in promoting the expected dimerization 

remained to be demonstrated.

Reactions explored with the screening platform were arbitrarily conducted using 4 

μmol of 6 with 1.5 equivalents of non-gaseous oxidant and 10 mol% of cobalt catalyst 

at either 25 or 50 °C. By using a high loading of cobalt catalysts and an excess of oxidant, 

we minimize the risk of missing an effective Co/oxidant combination. 2-Propenyl phenol 

6, non-gaseous oxidants and cobalt catalysts were prepared as stock solutions in 1,2-

dichloroethane at 0.2, 0.4, and 0.0025 M, respectively and placed in the 56-well plate of 

the liquid handling robot. For the use of gaseous oxidants, the experimental setup was 

slightly modified by switching the PEEK reactor for a gas permeable tubing reactor 

made from AF-2400 polymer that passed through a chamber supplied with a flow of 

either air or oxygen.29 This procedure differs from the one we previously published and 
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addresses the risk of lacking oxidant when using concentrated solution of 2-propenyl 

phenols. In order to allow the screening at an elevated throughput, all reactions were 

conducted at a single residence time of 10 minutes. Each fully automated experiment, 

including the robot-mediated reaction mixture preparation, the reaction time, the on-line 

HPLC analysis and the data processing (integration and yield calculation) was completed 

in ca. 26 minutes and the screening campaign was achieved at a rate of 27 experiments 

every 12 hours; for safety reason the machine was not used overnight. Both oxidants and 

catalysts were selected for their (i) potential to promote the oxidative dimerization, (ii) 

solubility in 1,2-dichloroethane, (iii) ease of handling under standard conditions and (iv) 

commercial availability. Several oxidants were discarded as they were either insoluble 

in DCE (DDQ and TEMPO) or required aqueous biphasic conditions (H2O2 and 

Oxone®).

The analysis of the 50-reaction screen revealed several interesting features (Figure 3). First, 

reaction conducted at 50 °C consistently gave lower HPLC yields of the targeted 

benzoxanthenone 10, suggesting a pronounced thermal sensitivity of either starting materials 

or benzoxanthenone 10. Second, [Co]-9a-b gave significantly higher yields than [Co]-9c-d 

whatever the oxidant used. Regarding the effect of oxidants it was observed that all 3 non-

gaseous oxidants 8a-c performed similarly while air and oxygen gave lower yields under such 

short residence time. These results validated our strategy to switch oxygen for a non-gaseous 

oxidant. A closer look on background reactions, revealed that PhI(OAc)4 8c was the only 

oxidant promoting the dimerization in a significant extent in the absence of cobalt catalyst. 

While the ability of PhI(OAc)4 8c to promote the dimerization of 2-propenyl phenols to 

benzoxanthenone skeletons was already known,7-8 our results show an uncovered exalted 

reactivity in the presence of cobalt catalysts. Despite the slightly better results obtained with 

PhI(OAc)4 8c, we selected t-BuOOH 8a as it is less expensive and only produces t-BuOH as 

by-product. Regarding the catalyst selection, both [Co]-9a and [Co]-9b gave promising results. 

Despite its much lower price, [Co]-9b proved to be particularly insoluble above 2.5 × 10-3 M, 

precluding any scale-up experiments under more concentrated conditions. We therefore 

preferred the use of [Co]-9a for our further studies. The process for discovering a new cobalt-

catalyzed oxidative system for the dimerization of 2-propenyl phenols to benzoxanthenone 

skeletons required 50 reactions at a throughput of one reaction every 26 minutes. Each reaction 

used 4 µmol of starting material 6 and 0.4 µmol of cobalt catalysts 9a-d. 
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FIGURE 3. Heatmap visualization of the automated micromole-scale screen across a 50-member 

array.

Having identified [Co]-9a/t-BuOOH 8a as the most promising oxidative system from 

the screening of 50 reactions, we further optimized experimental conditions using an 

autonomous self-optimizing flow reactor. This emerging technology combines the 

power of automated flow devices with an assistive optimization algorithm and integrates 

a quasi-real time in-line/online monitoring.31-35

In most chemical laboratories, optimizations are traditionally conducted by modifying 

one factor at a time until reaching an optimum. While the simplicity of execution is the 

major asset explaining the popularity of this approach, the data obtained fail to explain 

interactions between variables, precluding any efficient automation. The automated 

screening of a set of predetermined experimental conditions generated from design-of-

experiment (DoE) methods partially addresses the issues of one-factor-at-a-time 

optimizations. However, multi-variable optimizations using DoE methods usually 

require a high number of experiments to locate a satisfactory optimum.

The use of feedback algorithms working in black box-type systems is a powerful 

alternative to traditional one-factor-at-a-time and DoE methods for optimizing chemical 

reactions.36-37 Several black box algorithms of different numerical complexity have been 

reported in the literature for integration in self-optimizing flow devices.38-49 From these 

algorithms, the Nelder-Mead method,50 also known as the simplex method, has been 

reported to be one of the simplest for implementation in automated flow reactors.51-60 
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Numerically, it is one of the simplest optimization algorithms and does not require 

gradient approximation which is a strong asset when working with expensive 

experiments. However, the Nelder-Mead method suffers from two important drawbacks: 

(i) it does not converge rapidly when optimizing large multi-variable problems and (ii) 

it only converges to a local optimum which quality highly depends on the initialization 

and the studied system.61 We addressed these issues through the development of a 

profoundly modified version of the Nelder-Mead method that includes (i) the possibility 

to temporarily modify the dimensionality of the search to explore a subspace, (ii) 

multiple stopping criteria to lower the number of experiments, (iii) diversification and 

intensification mechanisms to escape from an unsatisfactory local optimum, (iv) the 

golden search method for 1-D optimizations which cannot be addressed by the Nelder–

Mead method.62 Moreover, in addition to the traditional linear constraints imposed by 

boundary constraints, our algorithm contains an optional mechanism to restrict the 

search space through linear constraints in order to exclude experimental conditions 

considered as unsound (lack of reactivity, poor stability of reagents/products…).

The transformation of our automated screening platform to an autonomous self-

optimizing flow reactor was straightforward and convenient as the only modification 

consisted of the integration of our additional optimization algorithm to the process-

control software. Our approach allows to either screen discrete variables for reaction 

development or continuous variables for a fine-tuning of experimental conditions (self-

optimization). While the use of automated screening platforms have been described in 

the literature,63-68 the use of a reconfigurable platform for either screening or self-

optimization offers a much higher flexibility. The optimization was conducted at higher 

concentrations with stock solutions of 2-propenyl phenol 6, [Co]-9a and t-BuOOH 8a at 

concentration of 1 M, 0.03 M and 2 M, respectively, in order to assure an elevated 

throughput. 

The reaction yield was optimized in a 4-dimension space where the residence time, 

temperature, equivalent of t-BuOOH 8a and loading of [Co]-9a were selected as input variables 

in the range of 5-60 minutes, 25-50 °C, 1-2 equivalents, 1-10 mol%, respectively. In addition 

to the bounded search space, we also fixed the initial point X0 at 5 minutes of residence time, 

25 °C, 1 equivalent of t-BuOOH 8a and 5 mol% of [Co]-9a with d values of 10 min, 5 °C, 0.2 

equivalent and 2 mol%, respectively. While we preferred to focus on the reaction yield 

optimization, we were also interested in developing experimental conditions allowing decent 
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productivity. Therefore, for experimental conditions displaying the highest yields, the 

associated productivity have been considered as well. 

FIGURE 4. (a) Maximization of the yield of benzoxanthenone 10. (b) Representation of the four-

dimensional experimental conditions for the maximization of the yield for benzoxanthenone 

10.

The first 5 experiments corresponding to the initial 4-D simplex, gave promising yields 

ranging from 44 to 62% (Figure 4a-b, See Table S1 in SI for details). In the subsequent 

experiments, the algorithm rapidly decreased the loading of [Co]-9a until reaching the lower 

bound at 1 mol%, while in the same time the residence time progressively increased to ca. 30 

minutes. On the other hand, both the equivalents of t-BuOOH 8a and the temperature were set 

to ca. 1.00-1.10 equivalents and 27-33 °C, respectively. The algorithm reduced the dimension 

of the search from experiment 17 by fixing the catalyst loading to its lower bound, reaching an 

optimum corresponding to 95% yield. After 5 consecutive simplexes which did not improve 

the reaction yield, the algorithm reached a stopping criterion and the optimization stopped after 
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experiment 24. From the 24 experiments conducted through this optimization campaign, we 

observed two appealing solutions corresponding to experiments 16 and 17 which led to 

benzoxanthenone 10 as a single diastereoisomer with 92 and 95% yield, respectively. A closer 

look on the experimental conditions revealed that experiment 16 (27 minutes, 32 °C, 1.09 equiv 

8a and 1 mol% 9a) provided a better productivity than experiment 17 (31 minutes, 29 °C, 1.08 

equiv 8a, and 1 mol% 9a) with values of 887 and 800 mg.h-1, respectively. The calculated 

productivity for each experiment can be found in Table S1. Unfortunately, upon purification by 

flash chromatography, benzoxanthenone 10 turned to be extremely instable in our hand, leading 

to a modest isolated yield (55%).

We further pursued our efforts toward the synthesis of natural lignans carpanone 1 and 

polemannone B 3 using the optimized conditions from experiment 16. 

Desmethoxycarpacine 12, obtained in three steps from sesamol 11 following our 

previously published flow procedure, was dimerized to carpanone 1 in 85% isolated 

yield (Scheme 1).16 A minor isomer, identified on the crude mixture (ca. 3%), was lost 

during the purification step and carpanone 1 was isolated as a single isomer.  In such 

experimental conditions the productivity spectacularly increased from ca. 17 mg/h using 

our previous setup to ca. 263 mg/h in this work. The reproducibility of our automated 

screening platform machine was also assessed with the oxidative dimerization of 

desmethoxycarpacine 12 to carpanone 1 on 6 consecutive runs in the optimal conditions 

of experiment 16. The reaction yields calculated by the online HPLC system were 85, 

86, 86, 86, 86 and 87%, respectively, corresponding to an average HPLC yield of 86% 

(vs 85% for the isolated yield) and a standard deviation of only 0.63.
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C2H4Cl2

Matlab control

11, [0.25 M]
8a, [0.5 M]
[Co]-9a, [0.03 M]

V = 5 mL
T = 32 °C

0.19 mL/min

SCHEME 1. Improved flow synthesis of carpanone 1 in flow.

Regarding the total synthesis of polemannone B 3, we prepared the required 2-propenyl 

phenol 17 in 7 steps from commercially available sesamol (Scheme 2). A mixed batch-flow 

synthesis was developed for the synthesis of 17. The allylation of sesamol 11 with allyl iodide 

was conducted in flow providing the corresponding allyl ether 13 in 76% yield. The required 

methoxy group was installed through a 4-step batch sequence. The formylation of 13 with 

DMF/n-BuLi furnished the expected aldehyde 14 with a modest yield (51%). A Baeyer-Villiger 

oxidation of aldehyde 14 furnished the formate intermediate which was immediately 

hydrolyzed with aqueous NaOH to reveal the phenol function of 15 (48%, two steps). The latter 

was etherified with methyl iodide to give 16 in 84% yield. The thermal [3-3]-Claisen 

rearrangement was conducted under flow-mode as it provided an improved reaction rate and 

much safer experimental conditions. The rearrangement occurred in acetone at 250 °C and 70 

bar with a residence time of only 2.5 minutes to provide phenol 17 in 89% yield. Under such 

high-temperature/high-pressure conditions acetone reached its supercritical state.69-71 Lastly, 

allylphenol 17 was isomerized to the corresponding 2-propenyl phenol 18 by treatment with t-

BuOK in 49% yield. The 8-step total synthesis of polemannone B 3 was smoothly achieved 

through the oxidative dimerization of 2-propenyl phenol 18 using the automated platform under 

optimal conditions developed for the synthesis of 10, providing polemannone B 3 in 84% 

isolated yield as a single isomer. This synthesis complements the still scarce examples of total 

synthesis of natural products using a mixed batch/flow approach.72
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24 hOO
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14 CHO

2. NaOH
THF/H2O
25 °C, 1 h51%

V = 5 ml
T = 32 °C

48%, two steps

SCHEME 2. Total synthesis of Polemannone B 3 under mixed batch/flow modes.

The mechanism of the oxidative dimerization is still a subject of debate which has not 

led to a unanimous consensus at present; some authors also propose the possibility of 

several mechanisms depending on the experimental conditions.10 Though, the most 
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common mechanism proposed in the literature involves an initial anti-β,β-radical 

dimerization followed by an endo-[4+2] cycloaddition (Scheme 3). 

OH

RO

-H, -e O

RO

O

O

RO

RO

anti-,-coupling

endo

[4+2]
O

O

OR

H

HRO

A B

C D

SCHEME 3. Mechanistic proposal involving sequential anti-β,β-radical dimerization/endo-

[4+2] cycloaddition.

However, this mechanistic proposal fails to properly explain the perfect anti-selectivity 

observed at the methyl groups from the β,β-radical dimerization. Moreover, radical B would be 

reactive and could abstract, at least partially, a hydrogen atom from the solvent or the starting 

phenol, leading to the ortho-quinone methide E which is known to rapidly dimerize into the 

corresponding benzopyrane F (Scheme 4).15

O

RO

B
O

RO

E

H

HO

OR

A

O

RO

OR

HO

[4+2]-cycloaddition

F

+

SCHEME 4. Dimerization of ortho-quinone methides E to benzopyrane F.
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In all our tests, regardless of the oxidant used, we never observed the formation of 

benzopyrane-type structures. In a previous report we proposed an initial para-quinol-type 

coupling followed by an endo-[4+2] cycloaddition (Scheme 5, top).16 While this mechanism 

properly explains the anti-selectivity at the methyl group, we did not have any experimental 

evidence at that time to support this proposal. We have reinvestigated this mechanism, and we 

are now able to confirm our proposal when using [Co]-9a/t-BuOOH 8a as oxidizing system. 

The oxidation of [Co]-9a by t-BuOOH 8a produces the corresponding CoIII(salen)(OH) 

complex 19 along with the tert-butoxy radical (Scheme 5, bottom).73 Ligand exchange on 

CoIII(salen)(OH) complex 19 furnishes CoIII(salen)(OOt-Bu) complex 20 which restored 

starting cobalt complex 9a along with t-BuOO•. The latter abstracts the phenolic hydrogen from 

A to give the corresponding phenoxy radical H which by delocalization of the unpaired electron 

furnishes aryl radical I. Dimerization of H with I furnishes the para-quinol-type intermediate 

G which further cyclizes through an endo-[4+2] cycloaddition to give the benzoxanthenone 

skeleton D.
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SCHEME 5. Mechanistic proposal for the bio-inspired formation of benzoxanthenones lignans 

through Co(II)/t-BuOOH oxidative dimerization of 2-propenyl phenols.

■ CONCLUSION 

In this work we designed a reconfigurable flow reactor which could be used either as an 

automated screening platform or as an autonomous self-optimizing reactor for natural 

product synthesis. The capability of our automated screening platform to screen discrete 

variables on the micromole scale and analyze the crude content through an online 

monitoring in a short time frame is a strong asset in reaction discovery. By associating 

process control instrumentation and online analysis to an optimization algorithm in a 

closed-loop system, the screening platform can be easily transformed to a powerful 

autonomous self-optimizing flow reactor for the optimization of continuous variables. 

The automated screening platform identified a new cobalt-catalyzed oxidative system 
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for the dimerization of 2-propenyl phenols to benzoxanthenone skeletons from an array 

of 50 reactions which represent a total of only 200 μmol (0.66 mg per reaction) of starting 

material. The cobalt-catalyzed oxidative system identified with the screening platform 

was further optimized in a 4-dimension space using an autonomous closed-loop system. 

A very satisfactory optimum was located after only 16 experiments and the system 

reached a stopping criterion after only 24 experiments. This cobalt-catalyzed oxidizing 

proved to be particularly efficient to prepare natural products carpanone and 

polemannone B as well as a synthetic analogue.

Through this work, we demonstrated that while essentially used for preparative 

procedures, flow reactors are also particularly well suited for automated reagent 

screening and autonomous reaction optimization. While the development of automation 

in chemistry is a modern preoccupation,74-79 the results described in this work shows that 

process control instrumentation associated to menial and assistive algorithms assist 

chemists and improve their intellectual productivity.

■ EXPERIMENTAL SECTION 

General information. All commercially available chemicals were used as received unless 

otherwise noted. 1H and 13C NMR spectra were recorded at 300 or 400 and 75 MHz or 100 

MHz, respectively. 1H and 13C NMR spectra were referenced to the internal deuterated solvent 

(CDCl3) at 7.26 and 77.16 ppm, respectively. FT-IR spectra were recorded in the ATR mode. 

Wavelengths of maximum absorbance (νmax) are quoted in wave numbers (cm-1). High 

resolution mass spectrometry (HRMS) was recorded on a microTOF spectrometer equipped 

with orthogonal electrospray interface (ESI). Analytical thin-layer chromatography (TLC) was 

carried out on silica gel 60 F254 plates and visualized with a UV lamp at 254 nm or stained with 

a basic potassium permanganate solution. Flash column chromatography was performed using 

silica gel 60 (40−63 µm). 

Details of the experimental setup. HPLC pumps (JASCO PU2080) equipped with a RS-

232 port were employed to flow the solution through the system. A sampler handler (JASCO 

AS 2055) equipped with a RS-232 port was used to inject the reagents in the line. The reactor 

coil was heated with a heating plate (Heidolph, MR Hei-Connect) equipped with a RS-232 port. 

A 2-way 6-port valve (VICI, Cheminert C2-3006D) equipped with a RS-232 port was used to 

inject an aliquot of the crude mixture within the on-line HPLC unit. The HPLC column outlet 

was connected to a UV detector (JASCO, UV 2075) equipped with a RS-232 port. The flow 
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outlet was connected to a programmable fraction collector (Advantec, CHF 1225C). All units 

equipped with a RS-232 port were autonomously controlled with MATLAB® through the use 

of communication protocols provided by the manufacturers.

Synthesis of (E)-4-methoxy-2-(prop-1-en-1-yl)phenol (6).13 To a solution n-BuLi (13.85 mL, 

26.3 mmol, 1.9 M in hexane) in distilled THF (65 mL) was added ethyltriphenylphosphonium 

bromide (9.76 g, 26.3 mmol) at 25 °C. The resulting mixture was stirred for 45 min and then 2-

hydroxy-5-methoxybenzaldehyde (2 g, 13.2 mmol) was added in one portion. After being 

stirred for 3 h, the reaction was quenched with 0.5 M HCl (30 mL) and the aqueous phase was 

extracted three time with EtOAc (3 × 30 mL). The collected organic extracts were dried over 

anhydrous MgSO4, filtered and concentrated under reduced pressure. Purification by flash 

chromatography (20% EtOAc-petroleum ether) furnished 6 (1.60 g, 74%) as pale yellow liquid. 

IR (ATR) ν 3372, 3035, 2937, 2912, 2834, 1652, 1607, 1497, 1428, 1280, 1201, 1160, 1037, 

968 cm-1. 1H NMR (300 MHz, CDCl3) δ 6.86 (d, 1H, J = 2.9 Hz), 6.72 (d, 1H, J = 8.6 Hz), 6.66 

(dd, 1H, J = 2.9, 8.7 Hz), 6.57 (dq, 1H, J = 1.7, 15.8 Hz), 6.14-6.26 (dq, 1H, J = 6.6, 15.8 Hz), 

4.73 (br d, 1H, J = 2.8 Hz), 3.77 (s, 3H), 1.91 (dd, 3H, J = 1.7, 6.6 Hz). 13C{1H} NMR (100 

MHz, CDCl3) δ 153.9, 146.7, 128.4, 126.0, 125.5, 116.6, 113.7, 112.3, 55.9, 19.0. HRMS 

(ASAP+) m/z [M + H]+ Calcd for C10H13O2 165.0916; Found 165.0920

Experimental setup of the automated screening platform. An automatic sample handler 

prepared 200 µL of the reaction mixture from stock solutions of 2-propenyl phenol 6 (0.2 M 

plus xylene as the internal standard at 0.5 M), oxidants (0.4 M) and catalysts (2.5 × 103 M). 

The reaction mixture was injected in a stream of C2H4Cl2 pumped at 0.5 mL/min as depicted in 

Figure 2. The oxidative dimerization occurred either in a PEEK reactor coil (5 mL, 0.75 mm 

id) heated at the required temperature (25 or 50 °C) for oxidants 8a-c or in a AF-2400 reactor 

coil that passed through a glass bottle closed with a GL-45 cap and supplied with a flow of 

either air or oxygen.29 The reactor outlet was connected to an automatic 2-way 6-port switch 

valve which injected 0.2 µL of the crude mixture in the HPLC unit while the remaining stream 

was collected in a fraction collector. A mixture of MeOH/H2O (70/30, v/v) was used as mobile 

phase for the HPLC analysis at a flowrate of 0.4 mL/min. A UV detector was connected to the 

outlet of the HPLC column (Agela Promosil C18, 3.5 mm × 150 mm, 5 µm) to follow the 

absorbance at a wavelength of 270 nm. Peak integration and yield calculation were under full 

MATLAB automation.

Experimental setup of the autonomous self-optimizing flow reactor. Synthesis of 

benzoxanthenone (10). An automatic sample handler prepared 200 µL of the reaction mixture 

from stock solutions of 2-propenyl phenol 6 (1 M plus xylene as the internal standard at 2.5 M), 
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t-BuOOH 8a (2 M) and [Co]-9a (0.03 M). The reaction mixture was injected in a stream of 

C2H4Cl2 pumped at the required flow. The oxidative dimerization occurred in a PEEK reactor 

coil (5 mL, 0.75 mm id) heated at the required temperature. The reactor outlet was connected 

to an automatic 2-way 6-port switch valve which injected 0.2 µL of the crude mixture in the 

HPLC unit while the remaining stream was collected in a fraction collector. A mixture of 

MeOH/H2O (70/30, v/v) was used as mobile phase for the HPLC analysis at a flowrate of 0.4 

mL/min. A UV detector was connected to the outlet of the HPLC column (Agela Promosil C18, 

3.5 mm × 150 mm, 5 µm) to follow the absorbance at a wavelength of 270 nm. Peak integration 

and yield calculation were under full MATLAB automation. The calculated yield was 

automatically sent to the algorithm which set new experimental conditions to the units via RS-

232 ports. A 4-D optimization of the reaction yield was conducted using the temperature, 

residence time, loading of [Co]-9a and equivalents of t-BuOOH 8a as the input variables. The 

initial experiment of the simplex was: 25 °C, 5 min of residence time, 5 mol% of [Co]-9a and 

1 equivalent of t-BuOOH 8a with d values of 5 °C, 10 min, 2 mol% and 0.2 equivalent, 

respectively. The lower and upper boundaries of the research space were the following: 25-50 

°C, 5-60 min, 1-10 mol% and 1-2 equiv. for the temperature, residence time, catalyst loading 

and equivalents of oxidant, respectively. An optimum giving 92% HPLC yield was found in 

experiment 16 at 32 °C, 27 min of residence time, 1 mol% of [Co]-9a and 1.09 equivalents of 

t-BuOOH 8a (see Table S1 for details). An analytical sample of benzoxanthenone 10 was 

obtained by flash chromatography (10% Et2O-cyclohexane) as a white solid (23.8 mg, 55%). 

mp 88.5-89.5 °C. IR (ATR) ν 2958, 2929, 2873, 2835, 1678, 1617, 1492, 1268, 1199, 1115, 

1035 cm-1. 1H NMR (300 MHz, CDCl3) δ 7.24 (d, 1H, J = 10.2 Hz), 7.01-7.03 (m, 1H), 6.89-

6.90 (m, 1H), 6.75 (d, 1H, J = 8.7 Hz), 6.66 (dd, 1H, J = 2.8, 8.8 Hz), 6.31 (d, 1H, J = 10.2 Hz), 

3.76 (s, 3H), 3.31-3.33 (m, 1H), 3.31 (s, 3H), 3.12-3.16 (m, 1H), 2.59-2.66 (m, 1H), 2.17-2.23 

(m, 1H), 1.15 (d, 3H, J = 7.2 Hz), 0.67 (d, 3H, J = 7.5 Hz). 13C{1H} NMR (75 MHz, CDCl3) δ 

186.8, 154.4, 145.1, 143.7, 142.7, 131.8, 128.1, 125.6, 118.0, 113.6, 113.3, 55.8, 49.3, 37.1, 

36.8, 35.2, 34.0, 21.8, 21.4. HRMS (ESI) m/z [M + Na]+ Calcd for C20H22NaO4 349.1416; 

Found 349.1407.

Synthesis of Carpanone (1). An automatic sample handler prepared 200 µL of the reaction 

mixture from stock solutions of (E)-6-(prop-1-enyl)-1,3-benzodioxol-5-ol 1216 (0.25 M, 1 

equiv), t-BuOOH 8a (0.5 M, 1.09 equiv) and [Co]-9a (0.03 M, 1 mol%). The reaction mixture 

was injected in a stream of C2H4Cl2 pumped at 0.19 mL/min as depicted in Scheme 1. The 

oxidative dimerization occurred in a PEEK reactor coil (5 mL, 0.75 mm id) heated at 32 °C. 

The reactor outlet was connected to an automatic 2-way 6-port switch valve which injected 0.2 
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µL of the crude mixture in the HPLC unit while the remaining stream was collected in a fraction 

collector. A mixture of MeOH/H2O (70/30, v/v) was used as mobile phase for the HPLC 

analysis at a flowrate of 0.4 mL/min. A UV detector was connected to the outlet of the HPLC 

column (Agela Promosil C18, 3.5 mm × 150 mm, 5 µm) to follow the absorbance at a 

wavelength of 270 nm. Peak integration and yield calculation were under full MATLAB 

automation. An analytical sample of carpanone 1 was obtained by flash chromatography (10% 

Et2O-cyclohexane) as a white solid (34 mg, 85%). mp 192-193 °C [Lit.15 189-190 °C]. IR 

(ATR) ν 2872, 1674, 1622, 1478, 1158, 1032, 910, 840 cm-1. 1H NMR (400 MHz, CDCl3) δ 

7.00-7.02 (m, 1H), 6.80 (s, 1H), 6.33 (s, 1H), 5.90 (d, 1H, J = 1.4 Hz), 5.87 (d, 1H, J = 1.4 Hz), 

5.69 (s, 1H), 5.66 (s, 1H), 5.64 (s, 1H), 3.27 (dd, 1H, J = 7.4, 2.6 Hz), 3.19 (dt, 1H, J = 7.5, 2.5 

Hz), 2.52 (br qd, 1H, J = 6.9, 2.1 Hz), 2.18-2.24 (m, 1H), 1.15 (d, 3H, J = 7.2 Hz), 0.71 (d, 3H, 

J = 7.6 Hz). 13C{1H} NMR (100 MHz, CDCl3) δ 187.0, 168.5, 146.8, 145.3, 143.3, 142.7, 126.5, 

115.4, 107.3, 101.4, 100.6, 100.3, 99.4, 98.9, 36.4, 35.6, 35.4, 33.7, 21.6, 21.3. HRMS (ESI) 

m/z [M + H]+ calcd for C20H19O6, 355.1182, found 355.1180.

5-Allyloxy-1,3-benzodioxole (13). The experimental setup consisted in two streams as 

depicted in Scheme 2. The first stream contained a solution of sesamol 11 (0.4 M) and KOH 

(0.6 M) in MeOH/H2O (95/5, v/v) while the second stream contained a solution of alkyl iodide 

(0.8 M) in MeOH/H2O (95/5, v/v). Each solution was continuously pumped with two 

independent pumps at 32 µL/min for the first stream and 29 µL/min for the second stream. The 

two streams met in a stainless steel T-shaped piece (internal volume: 0.57 μL). The resulting 

mixture was introduced in a stainless steel reactor coil (2 mL, 0.75 mm id) heated at 75 °C. The 

reactor outlet was connected to a back pressure regulator (BPR) to maintain the internal pressure 

at ca. 15 bar. An analytical sample of 5-allyloxy-1,3-benzodioxole 7 was obtained by flash 

chromatography (10% AcOEt-petroleum ether) as a colourless oil (1.04 g, 76%). IR (ATR) ν 

2283, 1629, 1483, 1178, 1035, 923, 780 cm-1. 1H NMR (300 MHz, CDCl3,) δ 6.70 (d, 1H, J = 

8.5 Hz), 6.52 (d, 1H, J = 2.5 Hz), 6.34 (dd, 1H, J = 2.5, 8.5 Hz), 6.03 (ddt, 1H, J = 5.3, 10.6, 

17.2 Hz), 5.91 (s, 2H), 5.39 (dq, 1H, J = 1.6, 17.3 Hz), 5.28 (dq, 1H, J = 1.4, 10.5 Hz), 4.46 (dt, 

2H, J = 1.5, 5.3 Hz). 13C{1H} NMR (100 MHz, CDCl3): δ 154.2, 148.3, 141.8, 133.5, 117.7, 

108.0, 106.1, 101.2, 98.4, 69.9. HRMS (ASAP+) m/z [M]+ Calcd for C10H10O3 178.0630; Found 

178.0631.

5-Allyloxy-4-formyl-1,3-benzodioxole (14).80 A solution of n-BuLi (6 mL, 1.6 M) was added 

dropwise to a solution of 5-allyloxy-1,3-benzodioxole 13 (1.41 g, 7.91 mmol) in dry THF (20 

mL) at 78 °C. The resulting yellow solution was stirred for 45 min and then dry DMF (1.25 

mL, 15.8 mmol) was added. After 30 min at 78 °C, the reaction mixture was hydrolyzed with 
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saturated NH4Cl solution and extracted with Et2O (3 × 20 mL). The collected organic fractions 

were dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. 

Purification by flash chromatography (60% CH2Cl2-petroleum ether) furnished the 

corresponding aldehyde 14 (823 mg, 51%) as a yellow solid. mp 98-99 °C [Lit.80 98-100 °C]. 

IR (ATR) ν 2881, 1675, 1630, 1455, 1234, 1075, 913, 745 cm-1. 1H NMR (300 MHz, CDCl3) 

δ 10.42 (s, 1H), 6.89 (d, 1H, J = 8.6 Hz), 6.33 (d, 1H, J = 8.6Hz), 6.09 (s, 2H), 5.98-6.12 (m, 

1H), 5.42 (dq, 1H, J = 1.6, 17.2 Hz), 5.31 (dq, 1H, J = 1.4, 10.5 Hz), 4.56 (dt, 2H, J = 1.5, 5.2 

Hz). 13C{1H} NMR (75 MHz, CDCl3) δ 188.3, 155.3, 148.5, 142.8, 132.6, 118.1, 113.1, 111.3, 

103.8, 103.1, 70.2. HRMS (ESI) m/z [M + Na]+ Calcd for C11H10O4Na 229.0477; Found : 

229.0485.

5-Allyloxy-4-formate-1,3-benzodioxole. m-CPBA (5.62 g, 19.5 mmol, 60% in water) was 

added to a solution of 4-formyl-5-allyloxy-1,3-benzodioxole (2.12 g, 10.3 mmol) in CHCl3 (34 

mL) at 0 °C and the resulting mixture was stirred at 0 °C for 24 h. After completion, the mixture 

was diluted with chloroform (50 mL) and was successively washed with saturated aqueous 

Na2SO3 solution (50 mL), saturated aqueous Na2CO3 solution (50 mL), brine (50 mL) and water 

(50 mL). The organic phase was dried over anhydrous MgSO4 and concentrated under reduced 

pressure. The crude formate was obtained as a yellow oil (1.82 g, 80%) and directly used in the 

next step without further purification.

5-Allyloxy-4-hydroxy-1,3-benzodioxole (15).80 5-Allyloxy-4-formate-1,3-benzodioxole 

(1.82 g, 8.2 mmol) in solution in THF (30 mL) was hydrolyzed by 3N NaOH (9 mL). After 

being stirred for 1 h at 25 °C, the reaction mixture was diluted with CH2Cl2 (50 mL). The 

organic phase was extracted with water (4 × 30 mL). The aqueous phase was acidified with 2 

N HCl and extracted with CH2Cl2 (3 × 50 mL). The organic phases were dried over anhydrous 

MgSO4 and concentrated under reduced pressure. Purification by flash chromatography (30% 

CH2Cl2-petroleum ether) furnished 5-allyloxy-4-hydroxy-1,3-benzodioxole 15 (964 mg, 61%) 

as a white solid. mp 51-52 °C. IR (ATR) ν 3301, 2902, 1656, 1471, 1244, 1053, 913, 767 cm-

1. 1H NMR (300 MHz, CDCl3) δ 6.33 (s, 1H), 6.33 (s, 1H), 5.98-6.11 (m, 1H), 5.94 (s, 2H), 

5.47 (s, 1H), 5.39 (dq, 1H, J = 1.5, 17.2 Hz), 5.31 (dq, 1H, J = 1.3, 10.4 Hz), 4.53 (dt, 2H, J = 

1.4, 5.5 Hz). 13C{1H} NMR (75 MHz, CDCl3) δ 143.6, 142.4, 134.1, 133.1, 131.1, 118.6, 104.8, 

101.8, 98.9, 71.2. HRMS (ESI) m/z [M + Na]+ Calcd for C10H10O4Na  217.0477; Found : 

217.0470.

5-Allyloxy-4-methoxy-1,3-benzodioxole (16). To a solution of 5-allyloxy-4-hydroxy-1,3-

benzodioxole (1.69 g, 8.70 mmol) in acetone (9 mL) was added sequentially K2CO3 (2.40 g, 

17.39 mmol) and CH3I (2.70 ml, 43.48 mmol, 5 equiv). The resulting reaction mixture was 
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stirred at 25 °C for 72 h and then evaporated to dryness under reduced pressure. Inorganic 

residues were dissolved in water (15 mL) and the aqueous phase was extracted with Et2O (3 × 

15 mL). The collected organic extracts were dried over anhydrous MgSO4 and concentrated 

under reduced pressure. Purification by flash chromatography (30% CH2Cl2-petroleum ether) 

furnished 5-Allyloxy-4-methoxy-1,3-benzodioxole 16 as a colorless oil (1.52 g, 84%). IR 

(ATR) ν 2886, 1630, 1459, 1231, 1049, 923, 778 cm-1. 1H NMR (300 MHz, CDCl3) δ 6.42 (d, 

1H, J = 8.5 Hz), 6.35 (d, 1H, J = 8.5 Hz), 5.99-6.12 (m, 1H), 5.90 (s, 2H), 5.37 (dq, 1H, J = 1.5, 

17.2 Hz), 5.25 (dq, 1H, J = 1.3, 10.5 Hz), 4.50 (dt, 2H, J = 1.4, 5.4 Hz), 4.00 (s, 3H). 13C{1H} 

NMR (75 MHz, CDCl3) δ 146.3, 143.5, 138.2, 135.0, 133.7, 117.7, 107.3, 101.4, 101.3, 71.4, 

60.4. HRMS (ESI) m/z [M + H]+ Calcd for C11H13O4 209.0814; Found : 209.0806.

5-hydroxy-4-methoxy-6-(2-propenyl)-1,3-benzodioxole (17). A solution of 5-Allyloxy-4-

methoxy-1,3-benzodioxole 16 in acetone (1.5 M) was loaded in a PEEK injection loop (2 mL) 

connected to a stream of acetone pumped at a flow rate of 2 mL/min as depicted in Scheme 2.  

The [3,3]-Claisen rearrangement occurred in a stainless steel reactor coil (5 mL, 0.75 mm id) 

heated at 250 °C. The line was constantly pressurized at 70 bar with an electronic back pressure 

regulator (BPR) to prevent the vaporization of acetone. The product collected in a flask was 

concentrated under reduced pressure and the resulting residue was purified by flash 

chromatography (from 30% CH2Cl2-petroleum ether to 50% CH2Cl2-petroleum ether) to give 

17 as a white solid (791 mg, 89%). mp 31.5-32 °C. IR (ATR) ν 3503, 2885, 1637, 1432, 1176, 

1045, 981, 915, 645 cm-1. 1H NMR (300 MHz, CDCl3) δ 6.33 (s, 1H), 5.88-6.02 (m, 1H), 5.85 

(s, 2H), 5.40 (br s, 1H), 5.02-5.09 (m, 2H), 4.04 (s, 3H), 3.31 (dt, 2H, J = 1.2, 6.5 Hz). 13C{1H} 

NMR (75 MHz, CDCl3) δ 141.8, 140.0, 136.9, 134.4, 131.2, 117.7, 115.5, 103.0, 101.0, 60.0,   

33.9. HRMS (ASAP+) m/z [M]+ Calcd for C11H12O4 208.0736; Found : 208.0736. 

(E)- 5-hydroxy-4-methoxy-6-(prop-1-enyl)-1,3-benzodioxole (18). A solution of t-BuOK in 

THF (3.5 mL, 3.47 mmol, 1 M, 1.2 equiv) was added to a solution of 5-hydroxy-4-methoxy-6-

(2-propenyl)-1,3-benzodioxole 17 (603 mg, 2.90 mmol, 1 equiv) in THF (3 mL) under argon. 

The resulting mixture was stirred at 70 °C for 90 min and then quenched with water (50 mL) 

and 5% HCl (10 mL). The aqueous layer was extracted with EtOAc (3 × 30 mL). The collected 

organic extracts were dried over anhydrous MgSO4 and concentrated under reduced pressure. 

Purification by flash chromatography (30% CH2Cl2-petroleum ether) furnished 18 as a white 

solid (295 mg, 49%). mp 66-67 °C. IR (ATR) ν 3382, 2886, 1622, 1422, 1178, 1046, 977, 927, 

803 cm-1. 1H NMR (400 MHz, CDCl3) δ 6.61 (dq, 1H, J = 1.5, 15.8 Hz), 6.58 (s, 1H), 6.08 (dq, 

1H, J = 6.6, 15.8 Hz), 5.56 (s, 2H), 5.54 (s, 1H), 4.04 (s, 3H), 1.87 (dd, 3H, J = 1.7, 6.6 Hz). 
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13C{1H} NMR (100 MHz, CDCl3) δ 142.3, 139.7, 134.9, 131.2, 124.9, 124.8, 116.9, 101.1, 99.0, 

60.1, 18.8. HRMS (ESI) m/z [M + H]+ Calcd for C11H13O4 209.0814; Found 209.0806.

Synthesis of Polemannone B (3). An automatic sample handler prepared 200 µL of the 

reaction mixture from stock solutions of (E)-5-methoxy-6-(prop-1-enyl)-1,3-benzodioxol-5-ol 

18 (0.25 M, 1 equiv), t-BuOOH 8a (0.5 M, 1.09 equiv) and [Co]-9a (0.03 M, 1 mol%). The 

reaction mixture was injected in a stream of C2H4Cl2 pumped at 0.19 mL/min as depicted in 

Scheme 2. The oxidative dimerization occurred in a PEEK reactor coil (5 mL, 0.75 mm id) 

heated at 32 °C. The reactor outlet was connected to an automatic 2-way 6-port switch valve 

which injected 0.2 µL of the crude mixture in the HPLC unit while the remaining stream was 

collected in a fraction collector. A mixture of MeOH/H2O (70/30, v/v) was used as mobile 

phase for the HPLC analysis at a flowrate of 0.4 mL/min. A UV detector was connected to the 

outlet of the HPLC column (Agela Promosil C18, 3.5 mm × 150 mm, 5 µm) to follow the 

absorbance at a wavelength of 270 nm. Peak integration and yield calculation were under full 

MATLAB automation. An analytical sample of polemannone B 3 was obtained by flash 

chromatography (20% Et2O-cyclohexane) as a white solid (25.2 mg, 84%). mp 160-161°C 

[Lit.81 170 °C]. IR (ATR) ν 2899, 1666, 1618, 1429, 1284, 1097, 1044, 888, 758 cm-1. 1H NMR 

(400 MHz, CDCl3) δ 7.03-7.08 (m, 1H), 6.52 (s, 1H), 5.87 (dd, 2H, J = 1.3, 14.9 Hz), 5.65 (d, 

2H, J = 8.5 Hz), 3.96 (s, 3H), 3.93(s, 3H), 3.26 (dd, 1H, J = 2.6, 7.6 Hz), 3.17 (dt, 1H, J = 2.3, 

7.5 Hz) 2.45-2.52 (m, 1H), 2.17-2.26 (m, 1H), 1.13 (d, 3H, J = 7.1 Hz), 0.70 (d, 3H, J = 7.6 

Hz). 13C{1H} NMR (100 MHz, CDCl3) δ 183.3, 151.7, 143.9, 143.2, 138.1, 136.0, 133.8, 131.7, 

126.6, 117.0, 101.5, 101.3, 100.8, 98.9, 60.4, 59.9, 36.5, 35.8, 35.3, 34.3, 21.6, 21.2. HRMS 

(ESI) m/z [M + Na]+ Calcd for C22H22O8Na 437.1212; Found : 437.1205.
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