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ABSTRACT: In this work we report a new synthetic tactic for the
straightforward preparation of hardly accessible sulfinamidines and
sulfinamide esters, by using a simple metal-free protocol. The
process is robust and uses readily available sulfenamides as the S-
donor and sulfonyloxycarbamates as the N-source. The scope and
mechanism have also been investigated.

he development of novel synthetic strategies for the
installation of sulfur-bearing functional groups has great
impact in drug discovery, since these motifs can be found in
several biologically active molecules and natural products, and
their preparation allows the assessment of interesting
bioisosteres. Tetravalent sulfur motifs as sulfones and
sulfonamides are well established in pharmaceutics, and
recently there has been growing interest in the development
of synthetic methodologies for the preparation of their aza
analogues such as sulfoximines and sulfonamidamides.” In
particular, the replacement of the oxygen atom with nitrogen is
crucial to the efficient modulation of physicochemical
properties and to the introduction of molecular diversity. In
striking contrast, the landscape of trivalent sulfur motifs is
dominated by sulfoxides, sulfinate esters, and sulfinamides
while the preparation of other potentially important trivalent
sulfur aza-analogues, such as sulfinimidate esters and
sulfinamidines, remains a very poorly explored topic (Figure
1). In fact, synthesis of either sulfinimidate esters or
sulfinamidines represents a challenge, and the very few
methods available for their preparation have several limitations.
Sulfinamidines have been prepared by reaction of sulfurdiimide
with conjugated dienes or alkenes (Scheme 1a),”* or by usin§
sodium arylsulfonylchloroamide and disulfides (Scheme 1b).
Other strategies with limited scope and versatility have been
reported.®™®
Ferry reported the use of dialkylaminosulfur trifluorides,
amines, and trifluoromethyltrimethylsilane for a specific
synthesis of trifluoromethyl-substituted sulfinamidines
(Scheme 1c).” In spite of their application as ligands, synthetic
intermediates, and additives for lithium power sources,”®'’ no
relevant advances have been reported during the past decades
for a general synthesis of sulfinamidines. Furthermore, the
preparation and chemistry of sulfinimidate esters remains still
severely underdeveloped. Interestingly, only a single case of N-
tosylmethyloxysulfinimidate, relying on the reaction of N-tosyl
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Figure 1. Sulfur-bearing functional groups and their aza analogues.

sulfinamide with diazomethane, has been reported (Scheme
1d)."" Sulfinimidate esters have been reported as byproducts
or as sulfonium salts.'”"’

Regarding the synthesis of aza analogues of sulfurated
compounds, the direct imination of the sulfur atom represents
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Scheme 1. Strategies To Access Sulfinamidines and
Sulfinimidate Esters
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an interesting transformation, and important advances have
been achieved over the past few years by several research
groups.* Most of the reported strategies for the imination of
thioethers and sulfoxides involve the use of electrophilic
aminating reagents, with or without metal catalysis.'*>"
Moreover, several imination strategies have been developed
for the nitrogen transfer on other sulfurated compounds such
as sulfenamides, sulfinamides, and thiols."*#%° In continuation
of our interest in the development of strategies for the
electrophilic N-transfer to the sulfur atom, we became
interested in the development of an efficient strategy for
accessing extremely rare sulfinamidines and sulfinimidate
esters. Herein, we present a robust synthetic methodology to
streamline the preparation of such sulfurated motifs offering,
for the first time, a widely applicable tactic, overcoming
concerns related to the old procedures. Inspired by recent
contributions by Lebel and Amstrong, on the use of
sulfonyloxycarbamates as nitrene sources for the imination of
thioethers, we wanted to explore the reaction of such N-donor
species with sulfenamides en route to the corresponding
sulfinamidines.">*"”

Our investigation started with the reaction of methyl-
sulfonyloxycarbamate 2a with sulfenamide la in EtOH
(Scheme 2). With our surprise, we observed a quantitative

Scheme 2. Preparation of N-
[ (Benzyloxy)carbonyl|phenylsulfinimidate 3a
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conversion of 2a into the corresponding ethyl N-((benzyloxy)-
carbonyl)phenylsulfinimidate 3a as confirmed by NMR and
MS analysis (see Supporting Information (SI)), without
evidence of the expected sulfinamidine 4a.

However, we considered this result remarkable. In fact, this
simple procedure would have allowed the preparation of not
easily accessible sulfinimidate esters. With the aim to further
explore the reaction and validate the method, sulfenamides
la—j were reacted with N-mesyloxycarbamates 2a and 2b in
various alcoholic solvents (Scheme 3). To our delight,

Scheme 3. Scope for Sulfinimidate Esters 3
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sulfinimidate esters 3a—3s were isolated in good to excellent
yields. These results suggest that both 2a and 2b act as suitable
electrophilic nitrogen sources in the reaction with sulfena-
mides.

Moreover, the method tolerated different substituents on the
aromatic ring of the sulfenamide such as p-ClI (3i), p-F (3j and
3k), p-NO, (3n), and p-CF; (30). Similarly, the presence of
electron-donating groups such as p-OMe (3g and 3h), p-Me
(31 and 3m), and m-OMe (3p) allowed the preparation of the
products in good yields. The method was also compatible with
different aromatic and aliphatic S-substituents. The reaction
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proceeds efliciently with naphthyl-substituted sulfenamide 1j,
giving sulfinimidate ester 3q in 89% isolated yield, and with
aliphatic sulfenamide 1j, leading to derivatives 3r and 3s in
good yields (Scheme 3). It should be noted that the reaction
proceeds with piperidine-, pyrrolidine-, and morpholine-
substituted sulfenamides, and several primary and secondary
alcohols can proceed toward the formation of the correspond-
ing sulfinimidate esters. The structures of these unusual sulfur
derivatives were assigned on the basis of NMR and HMRS
analysis, and in the case of 3j the structure was confirmed by
X-ray analysis. Interestingly, the crystal structure of sulfinimi-
date ester 3j revealed an almost pyramidal sulfur atom, with
bond angles in the range 99°—111° and bond lengths of 1.78 A
(C-8), 1.62 A (S—0), and 1.59 A (S=N) respectively."®
However, the reaction must comply with steric requirements,
since the use of tert-amyl alcohol did not allow for the
preparation of the corresponding sulfinimidate ester 3t from
sulfenamide la even in traces (Scheme 4). Much to our

Scheme 4. First Evidence for Sulfinamidine
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surprise, we were able to isolate the benzyl-(phenyl(piperidin-
1-yl)-A*-sulfanylidene)carbamate 4a in 15% yield. The
structure of 4a was initially assessed based on NMR, IR, and
HRMS analysis.

Encouraged by this preliminary result, we persevered in our
search for an efficient synthetic strategy for the preparation of
sulfinamidines. First, we initiated an optimization study for the
reaction of sulfenamide la with 2a as the nitrogen source
(Table 1).

Sulfinamidine 4a was obtained in 20% yield when equimolar
quantities of la and 2a were stirred in toluene at room
temperature for 2 h (Table 1, entry 1). However, raising the

Table 1. Optimization Study for the Preparation of 4a
o

(0]
MsO. )J\ J\
oy e B AT
1a

Solvent, T, 2h
4a

Entry Solvent T (°C) Base (equiv) 2a (equiv) 4a yield”

1 toluene 25 — 1.0 20%
2 toluene 60 - 1.0 -

3 toluene 25 K,CO; (1.5)" 1.0 35%
4 toluene 25 DIPEA (1.5) 1.0 38%
s toluene 50 DIPEA (1.5) 12 53%
6 CH,CI, 0 K,CO; (1.5)" 1.0 21%
7 CH,Cl, 25 K,CO, (1.5)° 1.0 35%
8 CH,Cl, 0 K,CO; (1.5)" 13 29%
9 CH,Cl, 25 K,CO; (1.5)" 1.3 43%
10  2-MeTHF 25 K,CO; (1.5)° 1.0 -
11 MeOH 25 K,CO; (1.5)" 1.0 traces

“Yields calculated by '"H NMR analy51s of the crude reaction mixture
in the presence of internal standard. “An aqueous solution of K,CO;
was employed.

temperature up to 60 °C resulted in decomposition of the
reactants (Table 1, entry 2). Assuming that a base would have
been required in this process, we ran the reaction in the
presence of 1.5 equiv of aqueous K,CO; or DIPEA
(diisopropylethylamine). Under these conditions (Table 1,
entries 3—4), 4a was obtained in 35% and 38% yield,
respectively. The yield of 4a improved up to 53%, using 1.2
equiv of 2a at SO °C in toluene (Table 1, entry S). Similar
results were obtained for the reaction in CH,Cl, (Table 1,
entries 6—9), while complex mixtures were observed in polar
solvents such as 2-MeTHF or MeOH (Table 1, entries 10—
11). With the aim to improve yields of 4a and accelerate the
optimization study, a Design of Experiment (DoE) approach
was applied to this process. The equivalents of 2a and the
temperature were selected as the main variables, since such
factors appeared to be critical for the reaction. Therefore, a full
factorial 2* design (see SI. for details) was selected, and the
reactions were performed in toluene in the presence of 1.5
equiv of DIPEA (Table 2).

Table 2. DoE Optimization Study for the Preparation of 4a
0 o

MsO. )J\O/\© Nkom
_ 2a(equiv.) ~~F

DIPEA (1.5 equiv.)

SRe

Toluene, T, 2h
4a
Entry 2a (equiv) T (°C) 4a yield”
1 1.6 0 45%
2 1.9 0 53%
3 1.6 25 73%
4 1.9 25 95%

“Yields calculated by "H NMR analysis of the crude reaction mixture
in the presence of internal standard.

Remarkably, sulfinamidine 4a could be obtained in 95%
yield carrying out the reaction at 25 °C, and with the use of 1.9
equiv of 2a. With the optimal conditions in hand, the scope of
the reaction was explored (Scheme S). Sulfenamides la—k
were reacted with N-sources 2a and 2b under the optimized
conditions resulting in the formation of the corresponding
sulfinamidines 4a—m in good to excellent yields. The reaction
leading to 4a was scaled to 2 mmol, and the corresponding
sulfinamidine crystallized. With our delight, X-ray analysis
confirmed the structure of 4a and revealed a pyramidal sulfur
atom with angles in the range 99°—111° and bond lengths of
1.62 and 1.68 A for S—N double and single bonds respectively,
and 1.78 A for the C—S bond."” The reaction tolerated both
electron-withdrawing (i.e, 4d,f, 4gh) and electron-donating
groups (i.e., 4c, 4i,j) as well as the naphthyl group (4k) and
aliphatic S-substituents (41,m). However, the transformation of
((cyclohexyl)thio)morpholine 1j required longer reaction
times (24 h), affording the products in excellent yields.
Similarly, when 1-((4-nitrophenyl)thio)piperidine 1f was
reacted, the reaction mixture was stirred for 24 h before the
total consumption of sufenamide was observed. Remarkably,
the use of commercially available NH-sulfenamide 1k returned
the corresponding sulfinamidines 4n and 40 in good yields.
However, the preparation of this kind of scaffold would require
multistep synthesis.”’

After assessing the methods for the preparation of either
sulfinimidate esters 3 and sulfinamidines 4, we turned our
attention to the mechanism of the reaction. To this end, we
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Scheme 5. Scope for Synthesis of Sulfinamidines 4

o
MsO\N)kO/\R3
H . o
2a, R%= Ph
, 2b, R3= j-Pr I}I‘XOARs
R1’S‘N’R (1.9 equiv.) R1/S\N,R2
R? DIPEA (1.5 equiv.) R2

Toluene, 25°C, 2to 24 h

@OMQOQO QO

4b 90% 4c, 77% 4d, 60%
o o
o
o~ o~
N0 Ph N" 0" Ph Nko/\,ph
S. N $
IOROFOROENONS
4e, 50% 4f, 63% 4g, 46%
1 iy i
N0 Ph N~ 0" Ph I}IIJ\O/\i-Pr
N M N <
oY Ut
FiC
4h, 62% 4i, 78% 4j, 81%
Jk o i i
O/\i-Pr
SONY U Cf
4k, 80% 41, 70% 4m, 95%
3 iy i
0" Ph N)ko/\i-Pr

¢~</ PO
P
I

performed an NMR investigation conducting the reaction in an
NMR tube (see SI). First, we studied the formation of
sulfinamidine 4a by monitoring the reaction with sequential 'H
NMR analysis. This study revealed a quick reaction between 2a
and la with an almost instantaneous formation of an
intermediate species, likely the salt § (Scheme 6). Sub-
sequently, the addition of DIPEA to the solution cleanly
afforded sulfinamidine 4a. A slightly different situation was
observed in the case of sulfinimidate ester 3a. In fact, the
outcome of the experiments depended on the adopted reaction
conditions. The NMR investigation revealed a competition in
the formation either of 4a or 3a and that the presence of the
alcohol was crucial to improve the reaction time and selectivity.
It was observed that in the presence of the alcohol and traces
of acid, sulfenamide 1a was partially converted into a sulfenate
ester (6, Scheme 6). Upon addition of the N-source 2a,
conversion of ester 6 into the sulfinamidate ester 3 occurred.
Based on our mechanistic investigation, we proposed the

Scheme 6. Proposed Mechanisms
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pathways depicted in Scheme 6 to explain the formation of
derivatives 3 and 4. To further support our hypotheses, the
reaction was investigated computationally in silico on a model
system using the DFT-B3LYP method with the def2-tzvp basis
set (see SI).

Computational results suggested that the substitution
reaction leading to intermediate § (Scheme 6) is an exothermic
process, with a calculated enthalpy AH = —94.9 kJ/mol (see
SI). In addition, a proton transfer forming SH was ruled out by
calculations. It is reasonable that adducts similar to 5 give
sulfinamidines 4 when reacted under basic conditions. Our
attention was subsequently focused on the elucidation of the
mechanisms for the formation of sulfinimidate esters 3. The
NMR study suggested that the reaction can follow different
pathways. Sulfinimidate esters may arise by direct immination
of sulfenate ester 6 (path a, Scheme 6) or from a solvent-
induced (R*OH) displacement of the aminic portion on
intermediate S or 5-H, after proton exchange between the
carbammic and aminic nitrogen, followed by the final
deprotonation (path b, Scheme 6). On the other hand, the
proton exchange may be promoted by the solvent proximity in
a concerted transformation. Such hypotheses are supported by
calculations that revealed a minimum for 5-H in methanol,
although this is less stable than 5, while intermediacy of a
tetrahedral intermediate was ruled out by calculations. In
conclusion, in this work we reported a new synthetic route for
the straightforward preparation of hardly accessible sulfinami-
dines and sulfinamide esters using a simple metal-free
procedure. The mechanism has been investigated spectroscopi-
cally and computationally and proposed. The process is robust
and provides stable trivalent sulfur derivatives that could be
used as precursors of other interesting sulfur derlvatlves such as
sulfonimidates, sulfoximines, and sulfonimidamides.”* Further
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investigations are ongoing in our lab and will be reported in
due course.
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