
ISSN 1001-604X • CN 31-1547/O6

mc.manuscriptcentral.com/cjoc

www.cjc.wiley-vch.de

Title: Sequential Ir-Catalyzed Allylation/2-aza-Cope Rearrangement Strategy for the 
Construction of Chiral Homoallylic Amines

Authors: Ruo-Qing Wang, Chong Shen, Xiang Cheng, Zuo-Fei Wang, Hai-Yan Tao, 
Xiu-Qin Dong,* and Chun-Jiang Wang*

This manuscript has been accepted and appears as an Accepted Article online.

This work may now be cited as: Chin. J. Chem. 2020, 38, 10.1002/cjoc.202000065.

The final Version of Record (VoR) of it with formal page numbers will soon be
published online in Early View: http://dx.doi.org/10.1002/cjoc.202000065.

Accepted Article

中 国 化 学 - An International JournalCJC
Chinese Journal 

of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcjoc.202000065&domain=pdf&date_stamp=2020-03-14


This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1002/cjoc.202000065 

 

Sequential Ir-Catalyzed Allylation/2-aza-Cope Rearrangement Strategy 
for the Construction of Chiral Homoallylic Amines 

Ruo-Qing Wang,a,§ Chong Shen,a,§ Xiang Cheng,a Zuo-Fei Wang,a Hai-Yan Tao,a Xiu-Qin Dong,*a and Chun-Jiang Wang*a,b 

a Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan 
University, Wuhan, 430072, China. 
b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China. 

Cite this paper: Chin. J. Chem. 2019, 37, XXX—XXX. DOI: 10.1002/cjoc.201900XXX 

Summary of main observation and conclusion  Sequential Ir-catalyzed asymmetric allylation/2-aza-Cope rearrangement of arylidene aminomalonates 
with allylic carbonates was successfully developed, and a variety of enantioenriched homoallylic amine derivatives were obtained in high yields with good 
chirality transfer and excellent E/Z-geometry control (up to 99% yield, 96% ee). Compared with previous dual catalytic system established for this 
transformation, the current mono metal catalytic system provides a simpler and more practical protocol employing the readily available starting materials. 

Background and Originality Content 
Chiral homoallylic amines and derivatives have been 

represented as an important class of privileged structural units, 
which are universally distributed in a number of nature products, 
drugs and biologically active molecules.[1] In addition, they can be 
served as versatile chiral building blocks and key intermediates in 
the field of asymmetric synthesis.[2] As a result, highly efficient 
synthesis of chiral homoallylic amines and derivatives is of 
particular interest. Extensive efforts have been made toward the 
construction of these scaffolds, and many synthetic strategies have 
been studied extensively and well-established.[2a-2b,3-6] Apart from 
the traditional reactions of imines with allyl metal reagents or 
metalloids under chiral substrate control or by the aid of chiral 
auxiliaries,[3] the asymmetric catalytic allylations of imines using 
allylic metal[4] or boron reagents[5] have been regarded as the 
important synthetic methodologies. However, allylic metal and 
boron reagents always required multi-step preparation and are 
generally sensitive to air or moisture, which enormously limited 
their wide application in organic synthesis. With chiral or achiral 
1,1-disubstituted homoallylic amines as the starting materials, 
Kobayashi, Rueping, Wulff and Johnson documented chiral 
Brønsted acid-catalyzed 2-aza-Cope rearrangement for the 
construction of enantioenriched homoallylic amines.[7] Recently, an 
elegant Ir-catalyzed asymmetric allylation/2-aza-Cope 
rearrangement of sterically bulky N-fluorenyl imines to access 
chiral homoallylic amines was reported by Niu’s group.[8] Based on 
the strategy of synergistic activation, our group developed dual 
Cu/Ir and PTC/Ir catalytic system to prepare a series of chiral 
homoallylic amines via a sequential allylation/2-aza-Cope 
rearrangement using the sterically bulky α-substituted aldimine 
esters as the nucleophiles, which provided the driving force for the 

ensuing 2-aza-Cope rearrangement through the release of the 
steric hindrance (Scheme 1a).[9] According to the mechanistic 
studies, we found that the stereoselectivity control of chiral copper 
catalyst is not indispensable to deliver the final homoallylic amines 
in the dual catalysis system followed by the subsequent acidic 
hydrolysis. The key role of copper complex is converting aldimine 
ester under basic condition to form more rigid and nucleophilic 
metallated azomethine ylide, which initiate the first asymmetric 
allylation[10] step as a nucleophile.[11] In order to make this method 
more economical and easy manipulation, it is important to develop 
a simple and efficient catalytic system to realize this transformation. 
We envisioned that the more active nucleophilic 2-azallyl carbanion 
could be readily generated under basic condition in the absence of 
copper complex through introducing an additional electron-
withdrawing group at α-position of aldimine esters. Herein, we 
successfully developed a sequential Ir-catalyzed asymmetric 
allylation/2-aza-Cope rearrangement of easily available arylidene 
aminomalonates, affording various enantioenriched homoallylic 
amines and derivatives with well chirality transfer and excellent 
E/Z-geometry control (Scheme 1b). 
 
Scheme 1  a) Dual Cu/Ir or PTC/Ir-catalyzed allylation/2-aza-Cope 
rearrangement; b) Mono metal-catalyzed allylation/2-aza-Cope 
rearrangement (This Work). 
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a) Previous work: cooperative dual Cu/Ir or PTC/Ir catalysis

b) This work: mono metal-complex catalysis
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Results and Discussion 
The initial study was began with diisopropyl benzylidene 

aminomalonate 1a and methyl cinnamyl carbonate 2a as model 
substrates with Ir(I)/(S,S,S)-L complex[12,13] (5 mol%) in CH2Cl2. The 
branched allylation product was obtained in good yield with 
excellent enantioselectivity (vide infra), then the desired 
homoallylic amine derivative 3aa could be readily achieved in high 
yield with 96% ee through a stereospecific 2-aza-Cope 
rearrangement upon heating the allylation intermediate in toluene 
at 110 oC for 6 h (Table 1, entry 1). We found that base played an 
important role in Ir-catalyzed allylation step, and no allylation 
intermediate was observed in the absence of base (Table 1, entry 
2). Subsequently, various bases such as Cs2CO3, NEt3 and TMG, 
were inspected in this sequential process (Table 1, entries 3-5), and 
DBU was revealed as the best of choice in terms of yield and 
enantioselectivity. Variation of ester moiety in benzylidene 
aminomalonate was applied to further investigate the reactivity 
and enantioselectivity. Although the similar reactivity was 
observed with diethyl benzylidene aminomalonate 1b as the 
nucleophilic precursor, the enantioselectivity is lower than that 
with diisopropyl benzylidene aminomalonate 1a (Table 1, entry 7 
vs entry 1). With the bulky di-tert-butyl benzylidene 
aminomalonate 1c as the reaction partner, the corresponding 
product 3ca was separated with 95% ee albeit with a little lower 
yield (Table 1, entry 8). With the chiral ligand (R,R)-THQ-Phos 
developed by You’s group,[14] similar level of reactivity and 
enantioselectivity was observed (Table 1, entry 9).  

Table 1  Optimization reaction conditions for sequential Ir-catalyzed 
allylation/2-aza-Cope rearrangement.a 

OCO2MePh
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entry R base solvent 3 yield (%)b ee (%)c 

1 iPr (1a) DBU CH2Cl2 3aa 90 96 

2 iPr (1a) - CH2Cl2 3aa NR NA 

3 iPr (1a) Cs2CO3 CH2Cl2  3aa 87 93 

4 iPr (1a) Et3N CH2Cl2  3aa 92 92 

5 iPr (1a) TMG CH2Cl2 3aa 88 96 

6 iPr (1a) DBU PhMe  3aa 87 96 

7 Et (1b) DBU CH2Cl2 3ba 95 90 

8 tBu (1c) DBU CH2Cl2  3ca 80 95 

9d iPr (1a) DBU CH2Cl2 3aa 85 95 
a All reactions were carried out with 0.30 mmol of 1 and 0.20 mmol of 2a in 
2 mL of solvent at room temperature within 12 h, then heated in PhMe at 
110 °C for 6 h. DBU is 1,8-Diazabicyclo[5.4.0]undec-7-ene, TMG is 
1,1,3,3-Tetramethylguanidine. NR = no reaction. NA = not available. b 
Yields refer to the isolated products after chromatographic purification. c 
The ee value was determined by HPLC analysis. d (R,R)-THQ-Phos was used 
instead of (S,S,S)-L. 
 

With the optimized reaction conditions in hand, we made effort 
to investigate the substrate generality of this sequential Ir-
catalyzed allylation/2-aza-Cope rearrangement. A wide range of 
diisopropyl arylidene aminomalonates were first examined, and 
these results were summarized in Table 2. These arylidene 
aminomalonates containing electron-donating (1d-1g, 1m) or 
electron-withdrawing (1h-1l, 1n-1o) substituents on the phenyl 
ring reacted with cinnamyl carbonate 2a smoothly to give the 
corresponding homoallylic amine derivatives (3da-3oa) with 
moderate to high yields and excellent enantioselectivities (75%-95% 
yields, 89%-96% ee, Table 2, entries 1-12). We found that the 
substitution position on the phenyl ring has little effect on the 
reactivity and enantioselectivity, and comparable performance was 
still achieved for ortho-methyl and ortho-chloro-substituted 
aminomalonates (Table 2, entries 3 and 7). The fused 2-
naphthylaldehyde-derived aminomalonate (1p) also worked well, 
affording the corresponding product (3pa) with 85% yield and 91% 
ee (Table 2, entry 13). Moreover, the heteroaromatic thiophene 
aldehyde-derived substrate (1q) was good reaction partner to 
provide the desired product (3qa) with 99% yield and 93% ee (Table 
2, entry 14). However, alkyl aldehyde-derived aminomalonate was 
not compatible in this sequential process probably due to the less 
reactivity and fast decomposition of the imine ester. 

Table 2  Substrate scope study of imines for sequential Ir-catalyzed 
allylation/2-aza-Cope rearrangement.a 
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entry R 3 yield (%)b ee (%)c 
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1 p-MeC6H4 (1d) 3da 80 95 

2 m-MeC6H4 (1e) 3ea 95 93 

3 o-MeC6H4 (1f) 3fa 76 89 

4 p-tBuC6H4 (1g) 3ga 94 93 

5 p-ClC6H4 (1h) 3ha 80 94 

6 m-ClC6H4 (1i) 3ia 75 94 

7 o-ClC6H4 (1j) 3ja 77 90 

8 p-FC6H4 (1k) 3ka 82 96 

9 p-BrC6H4 (1l) 3la 80 90 

10 3,5-Me2C6H3 (1m) 3ma 90 92 

11 2,4-Cl2C6H3 (1n) 3na 87 90 

12 p-CF3C6H4 (1o) 3oa 91 92 

13 2-napthyl (1p) 3pa 85 91 

14 2-thiophenyl (1q) 3qa 99 93 
a Unless otherwise noted, all reactions were carried out with 0.30 mmol of 
1 and 0.20 mmol of 2a in 2 mL of CH2Cl2 at room temperature within 12-16 
h, then heated in PhMe at 110 °C for 6 h. b Yields refer to the isolated 
products after chromatographic purification. c The ee value was determined 
by HPLC analysis. 

 
Encouraged by the excellent performance with respect to the 

nucleophilic partner, we turned our attention to exploring a variety 
of π-allyl precursors for further substrate scope study. As shown in 
Table 3, allyl carbonates bearing the substituted groups on the 
phenyl ring with diverse electronic properties and different 
positions were tolerated well in this sequential transformation, 
which led to various enantioenriched homoallylic amine derivatives 
(3ab-3am) in high yields and excellent enantioselectivities (89%-99% 
yields, 90%-95% ee, Table 3, entries 1-12). The ortho-methyl and 
chloro-substituted cinnamyl carbonates (2d, 2i) with steric 
hindrance did not react efficiently to obtain the corresponding 
products with satisfied yields and enantioselectivities when using 
(S,S,S)-L as the chiral ligand. Fortunately, THQ-Phos ligand exhibited 
excellent asymmetric induction and catalytic activity for these 
ortho-substituted cinnamyl carbonates (Table 3, entries 3 and 8). 2-
Naphthyl substituted allyl carbonate 2n reacted smoothly to 
prepare product 3an with 85% yield and 92% ee (Table 3, entry 13). 
To our delight, heteroaryl allyl carbonates (2o and 2p) were well 
tolerated to deliver the expected products (3ao-3ap) in 65% yield 
with 85% ee and in 91% yield with 95% ee, respectively (Table 3, 
entries 14 and 15). When methyl crotyl carbonate was tested in this 
transformation, only the first allylation step occurred without 
further rearrangement probably due to the significantly reduced 
steric congestion, and the allylation product 3aq was separated in 
86% yield with 93% ee (Table 3, entry 16). 
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Table 3  Substrate scope study of allyl carbonates for sequential Ir-catalyzed allylation/2-aza-Cope rearrangement.a 
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1a
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3

entry 9: 3aj
99% yield, 90% ee

entry 11: 3al
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entry 10: 3ak
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91% yield, 95% ee

entry 1: 3ab
94% yield, 94% ee
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93% yield, 93% ee
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a Unless otherwise noted, all reactions were carried out with 0.30 mmol of 1a and 0.20 mmol of 2 in 2 mL of CH2Cl2 at room temperature within 12-16 h, 
then heated in PhMe at 110 °C for 6 h. Yields refer to the isolated products after chromatographic purification. The ee value was determined by HPLC 
analysis. b (R,R)-THQ-Phos was used instead of (S,S,S)-L.
 

In order to reveal the stereochemical outcome of the current 
sequential Ir-catalyzed asymmetric allylation/2-aza-Cope 
rearrangement, the initial branch-selective allylation intermediate 
product 3aa' was separated in 92% yield and 96% ee (Scheme 2). 
The absolute configuration of 3aa' was deduced to be S-
configuration based on the X-ray crystallography analysis of the 
corresponding tert-butyl analogue 3ca'.[15] Therefore, the 2-aza-
Cope rearrangement of (S)-3aa' occurred through six-membered 
chair-like transition state (Zimmerman-Traxler transition state[16]) 
to deliver the homoallylic amine (S)-3aa with well chirality transfer 
and excellent E/Z-geometry control. 

To demonstrate the synthetic utility of this sequential protocol, 
gram-scale reaction of 1a and 2a was conducted under the 
optimized reaction condition to afford product 3aa with 82% yield 
and 96% ee (Scheme 3, upside). Compound 3aa was easily 
transformed to primary homoallylic amine 4 by treatment with 
hydroxylamine. The enantioenriched allylation intermediate 3aa' 

obtained in the first step can be readily converted into compound 

Scheme 2.  Ir-catalyzed asymmetric allylation and proposed transition 
state for the ensuing 2-aza Cope rearrangement. 
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5 in good yield with maintained enantioselectivity (Scheme 3, 
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downside). Acetylation of 5 in the presence of pyridine furnished 
the compound 6. Subsequently, I2-promoted cyclization of 6 
provided biologically important pyrrolidine 7 in high yield and high 
diastereoselectivity without erosion of enantioselectivity (93% 
yield, 9:1 dr, 96% ee).[17] 

 
Scheme 3.  Gram-scale synthesis and synthetic transformations.  
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Conclusions 
In summary, we successfully developed a sequential Ir-

catalyzed asymmetric allylation of readily available arylidene 
aminomalonates followed by a stereospecific 2-aza-Cope 
rearrangement, and a wide range of chiral homoallylic amines and 
derivatives could be obtained in high yield with good chirality 
transfer and excellent E/Z-geometry control. The sequential 
transformations can be performed at gram scale, and the branched 
allylation intermediate is readily converted into enantioenriched 
pyrrolidine derivative. Compared with our previously reported dual 
catalytic systems, the current protocol provides a simpler and more 
practical protocol to enantioenriched homoallylic amines. 

Experimental 
A flame dried Schlenk tube was cooled to rt and filled with N2. 

To this flask were added [Ir(COD)Cl]2 (0.005 mmol, 2.5 mol %), 
phosphoramidite ligand (S,S,S)-L1 (0.01 mmol, 5 mol %), degassed 
THF (0.5 mL) and degassed n-propylamine (0.5 mL). The reaction 
mixture was heated at 50 °C for 30 min and then the volatile 

solvents were removed under vacuum to give a pale yellow solid. 
Then, DCM (2 mL), imines 1 (0.3 mmol, 1.5 equiv.), allylic 
carbonates 2 (0.2 mmol, 1 equiv.) and DBU (0.20 mmol) were added 
sequentially under N2. The mixture was then stirred at rt for 12 h-
16 h. Once allylic carbonate was consumed (monitored by TLC), the 
organic solvent was removed and the residue was purified by 
column chromatography to afford the desired allylation 
intermediate. The obtained intermediate was then dissolved in 2 
mL toluene, sealed and stirred for 6 h at 110 °C. After removal of 
the solvent, the residue was purified by silica gel flash 
chromatography to afford the desired product 3, which was then 
directly analyzed by HPLC to determine the enantiomeric excess. 
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