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Sequential C‒H and C‒C Bond Cleavage: Divergent Constructions of 
Fused N-Heterocycles via Tunable Cascade
Xianwei Li,* Jianhang Rao, Wensen Ouyang, Qian Chen, Ning Cai, Yu-Jing Lu, Yanping Huo

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.

ABSTRACT: Streamlining generation of diverse highly functionalized molecules from abundant feedstocks, holds great synthetic 
promises and challenges in pharmaceutical and material discovery. Herein, we report a tunable selectivity in multiple cascade 
reactions for the divergent assembly of fused N-heterocycles, comprising sequential activation of C-H and C-C bonds. Isolatable 
indene type intermediates might be responsible for the generation of densely substituted fused pyridines, azepines and 
azafluorenones products. The tolerance of strongly coordinating N-heterocycles and readily applicable for the late-stage 
modifications of pharmaceuticals and material molecules precursors, further demonstrated the synthetic robustness of this 
transformation. 

KEYWORDS: multiple oxidative cascade • C-H and C-C cleavage • tunable selectivity • traceless directing group • fused 
N-heterocycles. 

In pursuing green processes for the rapid construction of 
target molecules via economically and environmentally benign 
routes, catalytic cascade reaction has emerged as a powerful 
strategy.1 Fruitful results in the cascade transformations have 
been achieved, however, the exploration of C-H activation 
initiated multiple cascade,2 especially for the precise control of 
the selectivity in cascade reactions that involved the cleavage 
and reconstruction of multiple chemical bonds, is still elusive. 
Moreover, sequential activation of inert C-H and C-C bonds 
triggered multiple cascade for the divergent constructions of 
complex molecules, remained underexplored.

 Selective transformations of inert C-C bonds3 have 
enriched the synthetic arsenal for the constructions of complex 
skeletons, while typical strategies relied on the use of strained 
structures or directing groups. In this context, the use of 
unstrained substrates and traceless directing moiety to 
facilitate C-C activation cascade, enabling the diversity-
oriented synthesis (DOS)4, would be extremely attractive. 
Herein, we reported a sequential C-H and C-C cleavage 
cascade with switchable selectivity, affording to divergent 
delivery of fused N-heterocycles (Scheme 1-2). Significantly, 
selective C-H and C-C bond activation of acyclic system in 
this transformation could be well tuned, by the choice of 
oxidant or solvent.

Fused N-heterocycles such as pyridines, azepines and 
azafluorenones,5-6 serve as important structural motifs that 
occurred widely in natural products, pharmaceuticals and 
functional materials (Scheme 1-3).7 Notable strategies toward 
their efficient assembly included condensation of carbonyls 
with amine precursors and cycloaddition of C-C unsaturated 
bonds with nitrogen functionalities. However, certain 
limitations such as multiple steps and troublesome selectivity, 
were often suffered. Thus, expedient methodologies to 
efficiently access to these valuable molecular architectures are 
highly desirable.
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Scheme 1. Sequential activation of C-H and C-C bonds 
strategy for Fused N-heterocycles Synthesis.

We commenced our study by choosing imidate 1a and 
allylic alcohols 2a as the model substrates under metal 
catalysis (Table 1).8,9 After extensive screen of catalytic 

Page 1 of 9

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



parameters, we found that with [Cp*RhCl2]2
10 and AgNTf2 as 

the catalyst, NaOAc as the additive, Cu(OAc)2•H2O and 
molecular oxygen as the terminal oxidant, sequential C-H and 
C-C bond activation to afford fused pyridine 3a in good 
yield.11,12 No desired product 3a was obtained in the absence 
of Rh(III) complex, while Pd(II) and Ir(III) complexes showed 
no catalytic efficiency, [Ru(p-cymene)Cl2]2 showed relatively 
lower efficiency. Cu(OAc)2•H2O played a critical role, since 
low conversion of substrate 1a was observed with AgOAc 
instead. Moreover, DTBP oxidant totally shut down this 
reaction. Inferior results were obtained in the absence of either 
Cu(OAc)2•H2O or NaOAc. Additional base or acid exhibited 
no significant effect to this oxidative cascade. The use of HFIP 
or t-Amyl-OH as the solvent led to moderated yields of the 
desired product 3a.

Table 1. Variation of standard conditions.a

[Cp*RhCl2]2 (2 mol%)
AgNTf2 (4 mol%)

NaOAc (10 mol%)

O2 (1 atm), DCE, 120 oC, 18 h

NH

OEt N
H

1a 2a 3a

OH

2a
H2O (30 mol%)Cu(OAc)2

OH
HCO2

-

Entry Variation of standard condition Yieldb (%)

1 None 90

2 PdCl2 or [IrCp*Cl2]2 instead of [RhCp*Cl2]2 n.r.

3 [Ru(p-cymene)2Cl2]2 instead of [RhCp*Cl2]2 72

4 AgOAc or  tBuOOtBu  instead of Cu(OAc)2 
.H2O < 10 or n.r. 

5 Without Cu(OAc)2 
.H2O 22

6 Without NaOAc 37

7 Addition of Cs2CO3 or PivOH (30 mol%) 88, 76

8 HFIP or  tAmyl-OH as the solvent 81, 77

a Standard conditions: 1a (0.20 mmol), 2a (0.50 mmol), [Cp*RhCl2]2 (2 mol%), 
AgNTf2 (4 mol%), NaOAc (10 mol%), Cu(OAc)2 

.H2O (30 mol%), DCE (1 mL) 
under air for 18 h. b Isolated yield.

In order to obtain insight into this multiple cascade, some 
control experiments were conducted (Scheme 2), and the 
results revealed that: 1) With addition of MeI to this reaction 
under standard condition, methyl benzoate product was 
obtained, which might derive from C-C bond cleavage of 
allylic alcohol moiety; 2) Oxidative Heck product A and A’ 
were isolated within 30 minutes with 1a and 1,2-disubstituted 
olefins 2d, and further addition of 2a into this catalytic system 
led to densely substituted fused pyridines in high yields in 
one-pot manner. This observation indicated that indene might 
serve as the key intermediate in this multiple cascade.

With the optimal condition, we next explored the synthetic 
generality of this C-H/C-C activation cascade, broad substrate 
scope with great functional group tolerance was observed 
(Scheme 3). (Pseudo)halides including F (3b), Cl (3c), Br 
(3d), I (3e), CF3 (3g), OTs (3i) and OTf (3k) could be well 
tolerated, providing new opportunities for the further 
diversification. Readily transformable functionality including 
nitro (3h), benzylic chloride (3l), ester (3m), phenolic 
hydroxyl (3j), amine (3n) and ethers (3o-3p) were compatible. 
Methyl (3q-3t), ethyl (3zc), phenyl (3u-3x) and heterocycles 
including furan (3zd) and thiophene (3ze) derived allylic 

alcohols could also serve as suitable substrates in this cascade 
reaction. However, pyridine and thiozole-derived allyl 
alcohols delivered moderate yield of the corresponding fused 
pyridine products. The structure of the obtained fused pyridine 
was unambiguously confirmed by X-ray analysis (3x). 
Notably, regioselective C-H functionalization took place at 
steric hindered position (3y-3z), probably due to the directing 
effect of the fluoro and OMe groups.13 Further investigation 
revealed that the use of meta-Cl benzimidate ester under 
standard Rh(III) catalysis led to 1:1 regioisomers of fused 
pyridines; while the reaction took place at less steric hindered 
C-H position with the use of meta-CF3 benzimidate ester. This 
sequential C-H and C-C activation cascade could be applied to 
imidates with two different allylic alcohols (3zf-3zo), indene 
intermediates might be generated with the addition of 1,2-
disubstituted allylic alcohols first, and subsequently added 
mono-substituted allylic alcohols to the reaction systems, 
various fused pyridines could be obtained.
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Scheme 2. Preliminary mechanism studies.

Regioselective C-H functionalization of multiple substituted 
arenes holds significant utility in the late-stage modification of 
bioactive molecules and materials. Nevertheless, the search for 
proper catalytic system for the effective discrimination of 
specific C-H bond in the complex molecules remained 
challenging. In this context, Yu, Dai, and Ackermann have 
developed efficient C-H transformations that could overcome 
the commonly encountered limitations of C-H activation with 
strongly coordinating N-heterocycles. 14 

We were also intrigued of the directing priority towards 
multiple functionalized arenes in this C-H functionalization 
initiated multiple cascade reaction. To our delight, imine 
functionality outcompete ketone (4a, 4b), carboxlic acid ester 
(4c), phenol ester OPiv (4d) and NHPiv (4e), leading to the 
desired products in a selective manner. Significantly, 
heterocycles that are widely used in materials and 
pharmaceuticals included pyridine (4f), pyrimidine (4g) and 
pyrazine (4h), could also be compatible in this transformation.

To further exploration of the synthetic utility of this 
reaction, we selected fused heterocycles that were frequently 
used in materials for the diversification. Naphthalene (5a), 
indoles (5b), benzothiophene (5c), tertiary aromatic amine 
(5d), fluorenone (5e), dibenzo[b,d]thiophene (5f), carbazole 
(5g), thiophene (3zi) derived highly fused heterocycle could 
be readily accessed, which might provide inspiration into 
organic optoelectronic materials discovery.15,16 

This transformation also enabled late-stage modification of 
bioactive molecules, including pioglitazone (5h), probenecid 
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(5i), ibuprofen (5j) and estrone (5k), demonstrating their 
synthetic potential in pharmaceutical discovery.

3y, 82%
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Intriguingly, oxidative double C-H Heck cascade reaction of 
arylimidates with allylic alcohols took place in the absence of 
Cu(II) salt under lower temperature. Further optimization 
revealed that with isolatable indenes, which were obtained 
from imidates with 1,2-disubstituted allylic alcohols  under 
Rh(III) catalysis in 30 minutes; subsequent addition of another 
mono-substituted allylic alcohol, affording to the densely 
fused azepines under 70 oC within 3 hours (Scheme 4). 
Halogens such as F (6d), Cl (6e), OTs (6h) and alkyl chloride 
(6g) could be well compatible, leading to densely substituted 
azepines. Moreover, fused azepines (6i, 6j) were also readily 
accessible from indole and naphthalene substrates, providing a 
valuable platform for the rapid construction of molecular 
libraries of azepines. The moderated efficiency that observed 

might be contributed to the insufficient directing abilities for 
the oxidative Heck reaction and partial decomposition of the 
primary amine moieties.
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Notably, with isolatable intermediate A and further addition 
of 2b in HOAc under Rh(III) catalysis, azafluorenone products 
were obtained (Scheme 5). Readily transformable functional 
groups including iodo (7c), ketone (7d), ester (7e), OTs (7f) 
and strong coordination nitrogen heterocycles (7g) could be 
compatible. Moreover, late-stage modification of 
pharmaceuticals such as Probenecid was also operational, 
demonstrating the synthetic potential of this transformation. 
Control experiments with fused pyridine 3zg under standard 
conditions in HOAc solvent revealed that the azafluorenone 
product 7a could be isolated, together with detectable amount 
of benzylic C-H oxygenated fused pyridine 7a’. We 
speculated that a benzylic C-H oxidation followed by 
dehydration to give the olefin intermediate 8, and subsequent 
oxidative cleavage of C-C double bonds might be involved.17
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Considering fused N-heterocycles that are widely existed in 
natural products and pharmaceuticals, we further demonstrate 
the synthetic application of this transformation for the concise 
delivery of onychine using our methodology. As depicted in 
Scheme 6, by using benzimidate ester 1a and terminal allylic 
alcohol 2c under Rh(III) catalysis for 30 minutes, and 
subsequent addition of the second 1,2-disubstituted allylic 
alcohol 2d in HOAc under molecular oxygen atmosphere for 
48 hours, onychine could be obtained. The observed moderate 
efficiency of the overall transformation is probably due to the 
steric hinderance of the second added 1,2-disubstituted allylic 
alcohol. 

Inspired by Chang’s work on catalytic C-H amidation using 

azides as the amidation reagents,18 we investigated the 
reactivity of TsN3 in this multiple cascade reaction. 
Intriguingly, with indene intermediate that could be readily 
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accessed from imidate ester 1a with allylic alcohol 2e under 
Rh(III) catalysis, further addition of TsN3 under standard 
condition revealed that a C-H and C-C bond action for the 
amidation reaction took place, and further efforts toward the 
optimization and synthetic application of this transformation is 
in progress.

NH

OEt
Ph

OH

1a 2c

Me OH

2d
N

O Me[Cp*RhCl2]2 (2 mol%)
AgNTf2 (4 mol%)

NaOAc (30 mol%)
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DCE/HOAc = 1:4
O2 (1 atm), 120 oC, 48 h 9, onychine, 43%
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OEt
Me Me

OH
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NHTs
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AgNTf2 (4 mol%)

NaOAc (30 mol%)
Cu(OAc)2• H2O (30 mol%)

DCE, 60 oC, 12 h 10, 51%2e (1.25 equiv.) (2.5 equiv.)1a

Scheme 6. Synthetic applications: 1) concise synthesis of 
Onychine; 2) amidation reaction via C-H and C-C activation 
cascade.

Scheme 7. Possible mechanism for the sequential C-H and C-C bond activation cascade. 

According to precedent literatures and the experimental 
observations, a tentative mechanism was proposed (Scheme 
7): with the assistance of acetate ion, Rh(III) catalyzed C-H 
activation of imines 1 with alkenes 2 took place, which 
followed by β-H elimination8,19 and condensation to give key 
indene intermediates (eg. al., A or A’). Subsequent 
coordination of Rh(III) or Cu(II) to indene intermediates led to 
two pathways, which might be controlled by the temperature, 
solvent and Cu(II) salt as a Lewis acid and oxidant20 (See 
Supporting Information for details): 

1) When the reaction was conducted at 120 oC in the 
presence of Cu(OAc)2·H2O, Rh(III) intermediate b might be 
generated, which followed  by oxidative Heck reaction. 
Further condensation and C-C bond cleavage took place to 
afford the desired fused pyridines products, together with the 
release of carboxylic acid derivatives, which could be captured 
by the addition of MeI, to generate PhCO2Me (detected by 
GC-MS). We assumed that re-aromatization or retro-Claisen 
reaction,21,22 which might serve as the driving force for the C-
C bond cleavage in this process,20,23 was assisted by water and 
Cu(II) salt. 

2) When the reactions were conducted in the absence of 
Cu(II) salt under lower temperature, with the assistance of 
primary amines, regioselective aryl Csp2-H oxidative Heck 
reaction took place, which followed by condensation and 
oxidative aromatization to give the desired fused azepines 
products 6.24 

On the other hand, while under acidic conditions, oxidative 
hydroxylation of benzylic C-H bond with molecular oxygen 
led to hydroxylated fused pyridine intermediate (which was 
isolated as 7a’ when R1 = R = Me). Upon further dehydration, 
C-C double bonds were formed, which underwent oxidative 
cleavage under Rh(III)-catalyzed aerobic oxidation,17 
affording to azafluorenone products 7.

In summary, we have successfully accomplished an 
attractive strategy for the modular delivery of densely 
functionalized fused N-heterocycles via sequential C-H and C-
C bond cleavage. Significantly, tunable selectivity for the 
diverse products generation was obtained, which might be 
contributed to the retro-Claisen type reaction or re-
aromatization as the driving force. This methodology features 
broad substrate scope and great functional group tolerance, 
and enabled divergent access of building blocks that might be 
used in organic optoelectronic materials and bioactive 
molecules. This strategy might provide new insight into C-C 
bond activation, showcasing the viability of late-stage 
modification of complex molecules toward a diversity-oriented 
synthesis. 
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