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An efficient Lewis acid enabled ketones phosphonylation to synthesis vinylphosphonates has been developed. This method relays on 
ketone hydrophosphonylation/α-hydroxy phosphonates unimolecular elimination (E1) dehydration cascade reaction sequence. Vari-
ous of C-P bond formation product were obtained in moderate to excellent yields with the water as the only byproduct in the reaction. 
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Background and Originality Content 

Organophosphonate compounds and their derivatives 
play important role in medicinal and material chemistry due 
to their unique biological and chemical activities.[1] In partic-
ular, dialkyl phosphonates exhibit a broad spectrum of signif-
icant biological activities (Figure 1).[2] In addition, phospho-
nates have also wide application in synthetic chemistry, for 
example, as key reagent in the stereoselective olefination 
process via Horner-Wadsworth-Emmons reactions, or serve 
as chiral auxiliaries to provide enantioselective control in the 
reaction.[3] Among them, vinylphosphonate compounds have 
shown exceptional application: they can be easily converted 
into chiral phosphonates by well developed asymmetric hy-
drogenation;[4] they are crucial building blocks and important 
synthetic intermediates in the construction of functional-
phosphorus compounds,[5] such as aminophosphonic 
acids[5a-d] and poly(vinylphosphonates);[5e] As a result, the 
development of efficient methods toward vinylphosphonates 
compounds have gained significant attention.[6]  
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Figure 1 Phosphonate antibiotics. 

The most widely used approach in the area is met-
al-catalyzed coupling of P(O)H compounds with activated 
vinyl substrates, including vinyl boronophosphonates,[7] hal-
ogen,[8] sulfonate,[9] phosphite ester[6i] or α-stannylated vi-
nylphosphonates,[10] and others[11] (Scheme 1). However, 
these materials were neither easily available nor environ-
mentally friendly. Recently, Han’s group developed a highly 
efficient route to synthesize vinylphosphonate compounds 
via palladium-catalyzed addition reaction of P(O)H com-
pounds to alkynes reaction (Scheme 1).[6d, 12] However, only 
moderate efficiency was achieved in regio- and ste-
reo-selectivity control from their study. Feng’s 
group[13]developed a highly efficient synthesis of α-hydroxy  

Scheme 1 Synthesis of vinylphosphonates compounds. 
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phosphonates via Lewis acid-catalyzed hydrophosphonylation of 
ketones with dimethyl phosphonate, which method was highly 
tolerable for functionalized ketones (Scheme 1). Herein, we dis-
close a general and efficient method for the synthesis of vi-
nylphosphonate compounds from ketones with dialkyl phosphate, 
via ketone hydrophosphonylation/α-hydroxy phosphonates uni-
molecular elimination (E1) dehydration cascade reaction sequence. 
The method benefits from using cheap and easily available mate-
rials, and rea lized in an environmentally friendly and atomic 
economy way with the water as the only by-product (Scheme 1). 

Results and Discussion 

Table 1 Optimization of the reaction conditions 

Entry Catalyst Additive Solvent Yield(%)a, b 

1 AgOTf  DCE 50% 

2 AgTFA  DCE trace 

3 AgNO3  DCE trace 

4 AgOTf  CH3CN NR 

5 AgOTf  CH3Ph 32% 

6 AgOTf  THF trace 

7 AgOTf HOAc DCE 40% 

8 AgOTf PivOH DCE 41% 

9 AgOTf TsOH DCE 15% 

10 AgOTf CF3COOH DCE 32% 

11 AgOTf Tf2O DCE 70% 

12 AgOTf HOTf DCE 84% 

13c  AgOTf HOTf DCE 60% 

14d AgOTf HOTf DCE 73% 

15 Ni(OTf)2 HOTf DCE 50% 

16 Al(OTf)3 HOTf DCE 52% 

17 Fe(OTf)2 HOTf DCE 53% 

18 Mg(OTf)2 HOTf DCE 51% 

19 Ti(OiPr)4 HOTf DCE 64% 

20e AgOTf HOTf DCE 80% 

21  HOTf DCE 37% 
a Reaction conditions: 1a (0.1 mmol), dimethyl phosphonate (2.5 equiv), 
catalyst (0.1 equiv), additive (1 equiv), solvent (1 mL) , 110 oC, air, 15 h. b 
Isolated yield by column chromatography. c HOTf (0.5 equiv). d HOTf (1.5 
equiv). e argon conditions 

In the initial study, we used the 1-(4-methoxyphenyl)ethanone 
1a and dimethyl phosphonate 2a as the model substrates and 
firstly tested different silver salts as the Lewis acid catalyst in reac-
tion (Table 1, entries 1-3, see supporting information for details). 
To our delight, the desired vinylphosphonate product 3aa was 
obtained in 50% yield by using AgOTf as catalyst (Table 1, entry 1). 
Meanwhile, different solvents screening indicated that DCE was 
the best choice (Table 1, entries 4-6). Next, we believed that the 
acid additives should play a key role in the reaction, so we further 
screening acid additives. It was found that HOTf was the best 
choice, affording the desired product 3aa in 84% yield (Table 1, 
entries 7-12). When the reaction temperature was increased to 
120 oC or decreased to 100 oC, the yield of 3aa decreased to some 
extent (Table 1, entries 13-14). We also applied other Lewis acid in 
the reaction, Although all of them can catalyzed the reaction, 
AgOTf was still the better catalyst under the condition (Table 1, 
entries 15-19). Running the reaction under the argon atmosphere 
provided no enhancement to the reaction (Table 1, entry 20). 
Finally, the control experiment showed a very low efficient were 
achieved in the absence of AgOTf catalyst (Table 1, entry 21). Thus, 
the standard reaction conditions was obtained: AgOTf (10 mol%) 
as the catalyst, 1.0 equiv HOTf as additive, in 2.0 mL DCE for 0.3 
mmol 1-(4-methoxyphenyl)ethanone 1a with 2.5 equiv dimethyl 
phosphonate 2a, at 110 oC under an air atmosphere. 

With the optimal reaction conditions in hand, we then 
examined the substrate scope of the reaction. The summary of 
1-(4-methoxyphenyl)ethanone 1a reacted with different P-sources 
as shown in Scheme 2. The catalytic system worked well with 
hydrogen phosphonates such as dimethyl phosphonate, diethyl 
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phosphonate, dibutyl phosphonate and 
bis(2,2,2-trifluoroethyl)phosphonate (2aa-2ad), ethyl 
phenylphosphinate 2e to give the desired products in moderate 
yield. Clearly, dialkyl phosphonate substrates showed a significant 
higher activity compared with the diphenyl phosphate and 
phosphine oxides substrates under standard condition (3ag-3ah). 
The other reason may be that the electrophilic phosphorus species 
formed by diphenylphosphine oxide in the presence of Tf2O or 
HOTf, which was inhibited the reaction.[14] 

Scheme 2 Substrate scope of P-sources a,b 
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a Reaction conditions: 1 (0.3 mmol), 2 (2.5 equiv), AgOTf (10 mol%), and 
HOTf (1.0 equiv) was stirred in DCE (3 mL) at 110°C under air for 15 h. b 
Yield of the isolated product. c Tf2O (2.5 equiv), 80 °C. d 24 h. e 24 h. 

We next surveyed the scope of ketone component with 
bis (2,2,2-trifluoroethyl) phosphonate 3d (Scheme 3). Only 
45% yeild the desired product was obtained when 
1-(4-bromophenyl)ethanone was introduced the optimized 
condition. We further screened the reaction conditions and 
found that when 1.0 equiv of HOTf was replaced by 2.5 equiv 
of Tf2O, the yield of the product increased up to 96% yeild 
and the reaction temperature was decreased to 80 oC (see 
supporting information for details). And then we 
investagated different substituent on the phenyl ring of 
acetophenone, to our delight, both electron-withdrawing or 
electron-donating groups were tolerated well under 
condition and delivered the desired product in excellent 
yields (Scheme 3, entries 3ba-3ia). At the same time, strong 
electron withdrawing groups on the phenyl ring of 
acetophenone can also obtain excellent yields, such as CF3 
and NO2 (Scheme 3, entries 3fa-3ga). Also, the steric effect of 
the substitution have a minimal effect on the outcome of the 
reaction, 3ia-3ka were obtained in a similar yield compared 
with parent substrate. In addition, 1-acetonaphthone and 
2-acetonaphthone could also provide the vinylphosphonate 
product 3la-3ma in 67%-90% yields. However, the corre-
sponding products 3ma′-3ma′′ were obtained in moderate 
yields when 1-(6-methoxynaphthalen-2-yl)ethanone was 
introduced under reaction condition. Furthermore, 
chroman-4-one was introduced to the optimization of 
reaction conditions and corresponding vinylphosphonate 3ha 
was obtained in an excellent yield (94% yield). At the same 
time, other benzene fused cyclic ketones 1o-1q could also 
reacted with bis (2,2,2-trifluoroethyl) phosphonate to deliver 
the desired product in moderate to excellent yields (Scheme 
3, entries 3oa-3qa). Moreover, we found that heteroaromatic 
ketone can be successfully converted into corresponding 
product 3ra at a much lower temperature. To our delight, 
compared with HOTf as additive, when 
1-(4-methoxyphenyl)-2-phenylethanone 1s, 1,2- diphe-
nylethanone 1t and 3,4-dihydronaphthalen-2(1H)-one 1u 
were applied under Tf2O reaction conditions, the desired 
product 3sa, 3ta and 3ua were obtained in 71%-74% yields 
with a highly chemo-selective in the system. What’s more, 
others substituted aliphatic ketones, such as cyclic ketones, 

straight chain aliphatic ketones and conjugated ketones, 
could also generate the desired product in moderate to high 
yields with highly stereo-selectivity (Scheme 3, entries 
3va-3za). However, the results show that the regioselectivity 
of the product competes with the hydrogen phosphorylation 
on C=C bond and C=O bond when cyclohex-2-enone was in-
troduced into reaction under the optimized reaction condi-
tions. Unfortunately, only trace product were obtained when 
4- phenylbut-3-yn-2-one was introduced to optimized 
reaction conditions (Scheme 3, entry 3aaa).  

Scheme 3 Substrate scope of ketones a,b 
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a Reaction conditions: 1 (0.3 mmol), 2 (2.5 equiv), AgOTf (10 mol%), and 
Tf2O (2.5 equiv) was stirred in DCE (3 mL) at 80°C under air for 15 h. b Yield 
of the isolated product. c HOTf (1.0 equiv), 110 °C. d HOTf (1.0 equiv), 60 °C. 

e Al(OTf)3 (10 mol%). 

In order to demonstrate the utility of our reaction, firstly, we 
tested a large-scale experiment with 5 mmol 3p was used under 
the standard reaction conditions, to our delight, 1.46 g of the cor-
responding product 3pa was obtained in the reaction without 
siginificant decrease in the yield (A, Scheme 4). In addition, 3aa 
was obtained in 75% yield from 1a with trimethyl phosphate un-
der the optimal reaction conditions. Meanwhile, we also demon-
strated that the products of our system could be easily converted 
into other derivatives. For example, compound 4aa and 
3ma′′could be easily obtained in 93% yield through facile reduc-
tion of the 3aa.[9b] At the same time, inhibitor 5ma′′ is an im-
portant non-steriod anti-flammatory precursors of drug, which 
was synthesized from easily available material, 
1-(6-methoxynaphthalen-2-yl)ethanone 2m (B, Scheme 4).2f 
Moreover, α-arylphosphonates derivatives are widely used be-
cause of their interesting biological properties. It has been proven 
that Fosmidomycin analogue 5ab' could result in marked increase 
in the antimalarial activities (B, Scheme 4). We found that 3ab′ can 
be successfully converted into corresponding product Fosmido-
mycin analogue 5ab' in 92% yield.[15] 
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Scheme 4 Gram-scale reaction and application. 
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To investigate the mechanism of this transformation, the con-
trol experiments were carried out. First, when 2.0 equiv of 
2,6-di-tert-butyl-4-methylphenol (BHT) was added in standard 
reaction conditions, only 28% of the desired product 3aa was ob-
served (84 % under standard condition), this demonstrated that 
the radical process might not be involved in this system (Scheme 
5). Subsequently, when dimethyl 
(1-hydroxy-1-(4-methoxyphenyl)ethyl) phosphonate 5aa was in-
troduced under standard condition, the desired product 3aa was 
detected in 50% yield. This result suggests that dimethyl 
(1-hydroxy-1-(4-methoxyphenyl)ethyl) phosphonate 5aa may be 
the key intermediate in the reaction (Scheme 5). 

Scheme 5 Mechanism of the control experiments. 
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Scheme 6 Proposed mechanism. 
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A plausible mechanism is proposed on the basis of our control 
experiments and previous works (Scheme 6).[16] Initially, dimethyl 
phosphonate 2a to form the intermediate A under the HOTf and 

AgOTf system, which was detected by insitu HRMS (see supporting 
information),[16b, 16c] then intermediate A was added to 
1-(4-methoxyphenyl)ethanone 1a to generate intermediate B. 
Subsequently intermediate C was obtained following facile disso-
ciation in the presence of H+,[16a, 16d, 16e] which was also detected 
by insitu HRMS (see supporting information). Finally, the product 
3aa was obtained through the unimolecular elimination (E1) de-
hydration of C (Scheme 6).  

Conclusions 

In summary, we have achieved first example of synthesis of 
vinylphosphonate from ketones and dialkyl phosphite. Mechanis-
tically, the reaction goes through a Lewis acid promoted ketone 
hydrophosphonylation/α-hydroxy phosphonates unimolecular 
elimination (E1) dehydration cascade reaction sequence relying on 
the advantages of starting from cheap and easily available sub-
strates, as well as producing water as the only byproduct. A series 
of vinylphosphonate derivates were synthesized in moderate to 
excellent yields. 

Experimental 

General procedure for the synthesis of vinylphosphonates 
General procedure A: An oven-dried 10 mL screw-capped vial 

containing 1a (0.3 mmol, 1.0 equiv), AgOTf (0.03 mmol, 0.1 equiv), 
and DCE (3 mL) was added via syringe, dimethyl phosphate (0.75 
mmol, 2.5 equiv), HOTf (0.3 mmol, 1.0 equiv), and then heated to 
110 oC in an oil bath until the starting material has disappeared for 
15 hours (monitored by TLC). And then the solvent was removed 
in vacuo and residue was purified was purified by column chro-
matography on a short silica gel column using EA/PE as eluent to 
afford the desired product 3. 

General procedure B: An oven-dried 10 mL screw-capped vial 
containing 1a (0.3 mmol, 1.0 equiv), AgOTf (0.03 mmol, 0.1 equiv), 
and DCE (3 mL) was added via syringe, bis (2,2,2-trifluoroethyl) 
phosphonate (0.75 mmol, 2.5 equiv), Tf2O (0.75 mmol, 2.5 equiv), 
and then heated to 80 oC in an oil bath until the starting material 
has disappeared for 15 hours (monitored by TLC). And then the 
solvent was removed in vacuo and residue was purified was puri-
fied by column chromatography on a short silica gel column using 
EA/PE as eluent to afford the desired product 3. 
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A Lewis acid catalyzed cascade reaction of ketone phosphorylation has been developed that enables synthesis of vinylphosphonate derivates in mod-

erate to excellent yields. 
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