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ABSTRACT: A chiral N-heterocyclic carbene (NHC)-catalyzed formal [4+2] annulation of 

β-methyl substituted enals with isatins was developed to construct six-membered spirolactones 

bearing highly congested quaternary carbon stereocentersin good yields and high 

enantioselectivities. The strategy realized a challenging remote γ-carbon addition of enals and 

chiral control of β-methyl substituted enals in the presence of the NHC catalyst only. 
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Introduction 

Spiroheterocycles have become attractive targets in organic synthesis because of their 

widespread distribution in biologically active pharmaceuticals and natural products, and their 

increasing use in a range of vital chemical and technological processes, such as asymmetric 

synthesis and organic optoelectronics.
1
 Therefore, the development of novel methods to 

construct spirocyclic frameworks is of great importance, particularly when these methods lead to 

the enantioselective formation of a quaternary stereocenter, which itself is considered a 

meaningful transformation.
2,3
 Spirolactone is an intriguing spiroheterocyclic compound 

involving a tetra substituted quaternary stereocenters. Several methods, including alkylation,
4
 

transition-metal-based approaches,
5
 rearrangement-based approaches,

6
 ring-expansion method,

7
 

ring-contraction methods,
8
 photochemical approaches,

9
 ring closure of geminally disubstituted 

compounds,
10
 the Diels-Alder [4+2] approach,

11
 ring-closing-metathesis

12
 and other methods, 

have been employed successfully to construct these pharmacologically intriguing scaffolds. 

However, the construction of their quaternary stereocenters,
13,14,15

 especially the single-step 

assembly of compounds with congested tetra substituted carbon stereocenters, still remains a 

serious challenge. The obstacle to forming such centers is rooted in the inherent huge space 

imposed by the four non-hydrogen substituents. Recently, N-heterocyclic carbene (NHC) 

organocatalysis
16
 has been studied widely because of its special ability to deteriorate the natural 

reactivity of a functional group, which offers unconventional access to a set of umpolung 

reactions.
17
 However, the activation of the γ-carbon of enals

18
 still remains a significant 

challenge: it is very difficult to obtain good chemoselectivity and enantioselectivity because of 

the occurrence of competitive homoenolate, enolate or acyl anion intermediates and the fact that 

chiral auxiliaries are more remote from the γ-carbon than α- or β-carbons of carbonyl 
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compounds.
19
 In our previous work, we successfully developed three highly efficient 

organocatalyzed methods for the asymmetric synthesis of spiro-oxindoles as part of the 

construction of a natural product-like library for further bioactivity screening,
20,21

 and we also 

successfully achieved γ-carbon activation of carbonyl compounds to enantioselectively assemble 

δ-lactams with NHC/Brønsted acids cooperative catalysis.
22
 

 

Scheme 1. Activation of γ-disubstituted enals by NHC catalysis. 

Recently, Glorius et al. developed an elegant a3-d3 umpolung reactivity of the β, 

β-disubstituted enals to aid construction of five-membered spirolactones bearing two highly 

contiguous quaternary stereocenters through a β-carbon activation of enals.
23
 To continue our 

exploration of γ-carbon activation of carbonyl compounds and the intriguing spiroheterocycles, 

we herein attempted to employ β-methyl substituted enals as substrates to achieve their γ-carbon 

activation via NHC catalysis, and to construct novel intriguing six-membered spirolactone 

compounds (Scheme 1). 
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Results and Discussion 

Initially, we explored the reaction of isatin derivative 1a and β-methyl-saturated 

cinnamaldehyde 2a in the presence of four different triazolium NHC pre-catalysts in THF 

solvent using Cs2CO3 as the base. The key results of our experiments are summarized in Table 1. 

Surprisingly, the process could deliver the desired six-membered spirolactone with a moderate 

yield of 80% and a high enantioselectivity of 81% ee in the presence of the NHC pre-catalyst B 

(Table 1, entries 1-4). This proof-of-principle result clearly indicated that activation of the 

γ-carbon of enal as a nucleophile using the NHC organocatalyst is feasible. Accordingly, a 

variety of alternative solvents were investigated. Although desirable products could be observed 

when MTBE, toluene, Et2O, CH2Cl2, EA, DMF and DMSO were used as the solvent, better 

results were not obtained (Table 1, entries 5-11). We further explored the influences of different 

bases, including inorganic and organic bases, and good yields could be obtained; however, only 

moderate enantioselectivity are detected (Table 1, entries 12-16).  

Table 1. Optimization of the reaction conditions.
a 

 

Entry Cat
 

Solvent Base ee (%) Yield (%) 

1 A THF Cs2CO3 32 42 

2 B THF Cs2CO3 81 80 

3 C THF Cs2CO3 60 32 

4 D THF Cs2CO3 / 26 

5 B MTBE Cs2CO3 72 63 
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 5

6 B Toluene Cs2CO3 62 53 

7 B Et2O Cs2CO3 83 32 

8 B CH2Cl2 Cs2CO3 40 48 

9 B EA Cs2CO3 75 58 

10 B DMF Cs2CO3 64 48 

11 B DMSO Cs2CO3 47 42 

12 B THF K2CO3 74 69 

13 B THF KOH 74 42 

14 B THF tBuOK 73 58 

15 B THF DBU 70 53 

16 B THF Et3N 78 48 

a
 1a (0.125 mmol) and catalyst (0.1 eq) in the specified solvent (2 mL) were reacted in a sealed 

vial under argon atmosphere at rt for 12 h. The Oxidant is 3,3',5,5'-tetra-tert-butyl-[1,1'- 

bi(cyclohexylidene)]-2,2',5,5'-tetraen-4-one. 

 

With the optimized catalysis conditions identified (Table 1, entry 2), we further investigated 

the substrate scope of the annulation process. As shown in Table 2, a variety of β-substituted 

butenals were investigated as potential substrates (Table 2, entries 3a-3i), and the results 

demonstrated that different substituents, including electron-donating, electron-withdrawing and 

halogen groups substituted phenyls, heterocyclic aryl, and alkyl groups at β-position of butenals 

were well tolerated, affording the desired annulation products in good yields (56-82%) with good 

enantioselectivities (66-86%). Simultaneously, we introduced Cl, Br and OCH3 into the 

6-position of isatin to explore the reactivities of the strategy (Table 2, entries 3j-3q), which give 

good results, especially when treating of 4-Cl, 6-Cl and 6-Br substituted isatins with β-(4- 
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Table 2. Enantioselective synthesis of target compounds.
a
 

 

 
a 
1 (0.125 mmol) and catalyst (0.1 eq) in the specified solvent (2 mL) were reacted in a sealed vial under argon 

atmosphere at rt for 12 h. The Oxidant is 

3,3',5,5'-tetra-tert-butyl-[1,1'-bi(cyclohexylidene)]-2,2',5,5'-tetraen-4-one. 
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methoxylphenyl)-butenal, producing excellent enantioselectivities at 97%, 98%, >99% ee, (Table 

2, entries 3k, 3p and 3t). We further investigated the tolerance of the process by varying the R1 

group at other positions (Table 2, entries 3q-3v). The diversified substrates also produced 

annulation products with good yields (46%-62%) and high enantioselectivities (58%-86%). We 

further explored the reactivity of the N-phenyl isatin and obtained both a good yield and 

enantioselectivity (compound 3w). The absolute configuration of compound 3f (Tables 2, entry 

3f) was determined by X-ray analysis (see Figure S1 in the Supporting Information). 
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Scheme 2. The plausible mechanism. 

A plausible mechanism for the reaction is illustrated in Scheme 2. Addition of the NHC 

catalyst to the enal delivers the intermediate I, which is further oxidized and deprotonated to 

form the vinyl enolate intermediate III.
24
 Vinyl enolate III then undergoes nucleophilic addition 
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to isatins 1a to give the adduct V, after which intra molecular alkoxide attacks at the carbonyl 

group, leading to the production of  the desired spirolactone 3a. 

Conclusion 

In summary, we developed a chiral NHC-catalyzed formal [4+2] annulation of β-methyl 

substituted enals with isatins to prepare six-membered spirolactones with good yields and high 

enantioselectivities. The biggest challenge was to realize remote activation and chiral control of 

γ-carbon of enals using only an NHC catalyst. The mild reaction conditions, good 

enantioselectivities and wide reaction scope make this γ-carbon activation strategy potentially 

useful for the synthesis of biologically active molecules or natural product analogs. The 

mechanistic details, the further activation and chiral control of remote carbons of enals for the 

asymmetric synthesis of diversified spirohetercylcles are under study in our laboratory. 

 

Supporting Information. General experimental methods, 
1
H- and 

13
C-NMR spectrum of all 

products, optical data, X-ray, as well as chiral HPLC spectrum. The supporting information is 

available free of charge via the Internet at http://pubs.acs.org.  
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