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ABSTRACT: While gold-catalyzed homopropargyl alco-
hol cyclization is a known process, a triazole-gold catalyst 
prevented the intramolecular cyclization in the presence of 
terminal alkynes.  As a result, an intermolecular addition to 
an alkyne was achieved.  A sequential 1,6-enyne cycloi-
somerization gave the unusual 2,3-dihydrooxepine, which 
revealed another new reaction path.  Diels-Alder reaction 
of oxepine followed by a 1,3-alkoxyl shift gave hydrobezo-
furan derivatives in high yields. Diasterioselective reaction 
of homopropargyl alcohol to final product enabled one-step 
formation of five stereogenic centers with excellent enanti-
omeric selectivity. 

Gold-catalyzed reactions developed very fast during the last 
decade.1 The enyne cycloisomerization is a fundamentally im-
portant process in chemistry research due to its ability to open 
access to complex architectures through simple steps2  and its 
mechanisms that often reveal new chemistry insights.3 Homoge-
neous gold(I) catalysts have been employed in promoting enyne 
cycloisomerization with pioneering works reported by Echavar-
ren,4 Fürstner,5 Toste6 and others.7 Implementation of enyne cy-
cloisomerization for synthesizing complex building blocks and its 
mechanistic insight is advancing rapidly.8  In most of the gold-
catalyzed enyne cycloisomerization examples, formation of gold 
carbene intermediates was proposed.9  As shown in Scheme 1A, 
depending on the endo or exo cyclization paths, various functional 
cyclic skeletons can be synthesized. 

Our interest in enyne cycoisomerization was initiated from 
our recent success in synthesizing vinyl ethers through triazole 
gold-catalyzed intermolecular alcohol addition to alkyne.10  As 
shown in Scheme 1B, cycloisomerization of 1,6-enyne bearing 
vinyl ether moiety has not been reported in the past.  The attrac-
tive synthetic utility and mechanistic novelty ensured urgency and 
significance of investigating cycloisomerization of this special 
type of 1,6-enyne.  Compared with other reported 1,6-enyne sub-
strates, the vinyl ether substrate 1 will give the oxonium interme-
diate instead of simple carbocation.  Hence, thermodynamic sta-
bility of the oxonium cation 5 versus gold carbene 6 will play an 
important role in this equilibrium.  Thus, different reactivity is 
expected.  Hypothetically, protodeauration of intermediate 5 could 

lead to seven-membered diene intermediate of 1,6-enyne cycliza-
tion, which was never trapped before (Scheme 1C).  Herein, we 
report the first successful example of homopropargyl vinyl ether 
cyclization in forming dihydrooxepine as unprecedented product.  
The cycloaddition/isomerization of the dihydrooxepine (with the 
presence of dienophile) gave highly functional tricyclic skeletons 
with excellent stereoselectivity (Scheme 1C). 
Scheme 1. Gold-catalyzed enyne cycloisomerizations 

 
We began our study with homopropargyl vinyl ether 1a.  In 

fact, reaction of 1a with typical [L-Au]+ catalysts gave rapid gold 
decomposition associated with the formation of very complex 
mixtures (Figure 1). Even, loading 20% XPhosAuNTf2 gave only 
less than 50% conversion of 1a.  During the last several years, our 
group has been working on developing new transition metal cata-
lysts using 1,2,3-triazole as ligand.11  Those efforts led to the dis-
covery of triazole-gold (TA-Au) with significantly improved cata-
lyst stability.12  We charged enyne 1a with [XPhosAu(TA)]OTf, 
which gave much slower catalyst decomposition (>80% TA-Au 
remaining after 24h). 

R1

OH

A) Gold catalyzed enyne cycloisomerization

[Au]
Z

Au

Z

Z

[Au]

Z

Au

Au
R

Z

Au

Z

Au

Z

R R R

RR R

ab

a

b

R
Z

1,5-enyne
Z = C, O; ref 6

endo

exo

B) Systems that have been studied

R

1,4-enyne
ref 5

PivO
Z

R

1,6-enyne
Z = C, O, N; ref 4

O

R

no example reported yet

Au
?

C) This work:  Homo propargyl alcohol addition followed by 1,6-enyne cycloisomerization

+
5% TA-Au

R2

single isomer

versatile approach in complex skeleton construction

 [Au]

O
R1 messy rxn

mixtures

intermolecular

intramolecular

one pot, 
up to 85%

+

+

+

O

Au R1

R2

5

O

Au
R1

6

O

R1

R2

R2 O
R2

R17
new pathwaynot observed

DA

2

3

4

1

A
O

O

R1
R2

O

O
H

1,3-alkoxy 
shift

Page 1 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Although TA-Au alone could not activate 1a, it offered a po-
tential solution to promote enyne cycloisomerization with bal-
anced catalyst reactivity-stability (developing more reactive TA-
Au).  Additionally, synthesis of vinyl ethers are not straightfor-
ward since their synthesis needs almost stoichiometric amount of 
Hg(OAc)2 in ethyl vinyl ether (as solvent), giving only 50% yield 
of product.13   
 
Figure 1. Challenges for vinyl ether reaction: gold decomposition 

 
 

With all these concerns, we proposed the intermolecular re-
action between homopropargyl alcohol and terminal alkyne to 
form vinyl ether 1 (1,6-enyne) in situ.14  This design, although is 
challenging, will deliver an efficient method to synthesize oxygen 
containing seven membered rings 7 (oxepane derivatives), which 
can be further used as a building block in complex cyclic structure 
synthesis.  To evaluate this hypothesis, various gold catalysts 
were applied to react with homopropargyl alkyne 2a and terminal 
alkyne 3a.  The results are summarized in Table 1.  

 
Table 1. Optimization of the reaction conditiona,b 

 

Entry cat Time convn 
(%) 

4a+4a’ 
(%) 

7a 
 (%) 

1 PPh3AuNTf2 (5%) 10 h 56 46 0 
2 XPhosAuNTf2 (5%) 15 h 90 40 33 
3 XPhosAu(TA)OTf (5%) 30 h 72 16 37 
4 XPhosAu(TA)OTf (5%), Cu(OTf)2 (1%) 24 h 100 11 84 
5 XPhosAuNTf2 (5%), Cu(OTf)2 (1%) 24 h 100 60 32 

6 Other cat: 10% PtCl2, 10% (COD)2RhCl, 10% 
Cu(OTf); 10% HOTf; 20% AgOTf etc 24 h up to 

100 <20 <5 
a Conditions: 2a (1 mmol), 3a (3 mmol), gold cat. (5 mol %), copper (1 mol %), 
solvent (10 mL). b 1H-NMR yields using 1,3,5-trimethoxybenzene as internal stand-
ard. 

Using PPh3AuNTf2 catalyst, significant amount of intramo-
lecular cyclization product 4a and its derivative 4a’ was obtained, 
along with rapid catalyst decomposition.  Interestingly, with 5% 
XPhosAuNTf2, diene 7a was observed by crude NMR, though in 
low yield.  Notably, clear gold decomposition was observed over 
long reaction time.  Switching XPhosAuNTf2 to XPho-
sAu(TA)OTf (TA-Au) not only helped preventing gold catalyst 
decomposition, but also significantly reduced the formation of 4a.  
As reported in our previous works, application of Lewis acid as 
co-catalyst with TA-Au will help triazole dissociation of gold, 
giving more reactive catalyst while maintaining good stability.15  
Moreover, Lewis acid can reactivate the poisoned decomposed 
catalyst.16 Using Cu(OTf)2 (1%) as co-catalyst, the desired inter-
molecular condensation product 7a was observed in 84% NMR 
yield.  Other Lewis acid co-catalysts have also been evaluated 

(see detailed screening in SI) and Cu(OTf)2 gave the best result.  
Notably, product A was not observed in this new transformation.  
Other typical catalysts, including Pt, Rh, Ag and HOTf, have also 
been evaluated.  The product 7a was not observed in all other 
tested cases, which greatly highlighted the unique reactivity of 
TA-Au catalyst for this cascade transformation. 

Although, 7a was clearly observed according to the crude 
NMR and MS, its purification using column chromatography and 
concentration on roto-vap was problematic due to the gradual 
decomposition.  Theoretically, 7a as a highly reactive electron 
rich diene, which makes it a good choice for Diels-Alder reac-
tion.17  Maleic anhydride was applied to the reaction mixture of 7a 
(one-pot).  As expected, the desired product 8 was observed in 
excellent yields (Figure 2). 

Figure 2. Cascade, one-pot, three-component condensation  

 
Excellent stereoselectivity was achieved for this cascade re-

action with only endo-product obtained.  The structure was con-
firmed by X-ray crystallography (8b).  To evaluate the reaction 
scope, various homopropargyl alcohols, alkynes and dienophiles 
were tested as shown in Table 2. 

 
Table 2. Reaction scope for synthesis of Diels-Alder producta,b 

 
a General reaction conditions: a solution of 2 (1 mmol), 3 (3 mmol), gold cat. (5 
mol%), copper (1 mol%) and toluene (10 mL) stirred at rt. The mixture passed 
through a short silica pad and then dienophile (1.3 mmol) added and the mix-
ture heated on 45 oC for 24 more hours. (See details on SI). b Isolated yield. c 
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For terminal alkyne 3, aliphatic R1 groups, such as nBu (lin-
ear) and cyclohexyl (cyclic) alkynes work well, except tert-butyl-
acetylene and trimethylsilylacetylene.  This is likely due to the 
steric effect, which caused slow alcohol addition to terminal al-
kyne.  Aromatic alkynes gave complex reaction mixtures, sug-
gesting the existence of alternative reaction path due to the for-
mation of benzylic carbocation intermediate.  In contrast, the 
homopropargyl alcohol bearing aromatic alkynes gave good re-
sults (8f–8h).  Complex reaction mixtures were obtained with 
aliphatic group at R2 positions.  Potentially, 6-exo cyclization can 
occur on those cases, which caused the undesired side reactions.  
Other dienophiles were also tested.  Both N-methylmaleimide and 
tetra-cyanoethylene worked as efficient as maleic anhydride.  
Mono-EWG activated alkene, including α,β-unsaturated ester and 
nitroalkene, could not give good yield of the desired product un-
der optimal conditions due to their lower reactivity.  

Excellent stereoselectivity was obtained in all cases with on-
ly endo product observed.  Moreover, with substituted homo-
propargyl alcohol (R≠H), single isomer was isolated (8n–8q).  
This result highlighted the great advantage of this new method in 
constructing complicated multicyclic structures with high diaster-
oselectivity.  One interesting observation was the reaction of cy-
clopropylacetylene, which under the standard conditions, Diels-
Alder product 8e was not observed.  Instead, a tricyclic compound 
9e was obtained as a single isomer with 82% isolated yield (Fig-
ure 3). But for the case of 8p, the Diels-Alder product formed. 

Figure 3. Rapid 1,3-Alkoxyl-shift to substituted hydro-
benzofuran 

 

The relative configuration of each stereogenic center of 9e 
was confirmed by X-ray crystallography.  Based on the structure, 
9e was evolved from 8e through an unusual (unprecedented) 
alkoxyl 1,3-rearrangement.  Notably, no cyclopropane ring open-
ing products were observed, suggesting the concerted mechanism 
over stepwise carbocation pathway approach.  There are few ex-
amples reported in literature for concerted 1,3-O-suprafacial rear-
rangements, unlike hydrogen or alkyl 1,3-shift.18  It is possible 
that the shape of cyclopropyl group forced the structure of 8e to 
adopt a conformation that allowed the orbital rearrangement at 
relatively mild condition (45 oC).  Whereas, compound 8a (R1 = 
nBu) needed elevated temperature in order for oxygen shift to 
take place.  Conducting this reaction in a one-pot fashion (directly 
from 1a and performing second step at 75 oC, the desired substi-
tuted hydrobenzofuran 9a was obtained in 67% isolated yield 
(combining three steps).  This result is exciting since it not only 
revealed an interesting 1,3-O sigmatropic rearrangement, but also 
provided a new strategy to prepare complex hydrobezofuran de-
rivatives from simple starting materials with excellent overall 
yield and stereoselectivity.  Various homopropargyl alcohols and 

terminal alkynes were used to evaluate the reaction scope.  The 
result is shown in Table 3.19  

Table 3. Reaction scope for synthesis of the tricyclic structuresa,b 

 
a General reaction conditions: a solution of 2 (1 mmol), 3 (3 mmol), gold cat. (5 
mol%), copper (1 mol%) and toluene (10 mL) stirred at rt. The mixture passed 
through a short silica pad and then dienophile (1.3 mmol) added and the mix-
ture heated on 75 oC for 24 more hours. (See details on SI). b Isolated yield. 
 

As shown in Table 3, this 1,3-alkoxy rearangement works 
for compounds 8 derivatives from either maleic anhydride or N-
methylmaleimide.  Surprisingly, the tetracyano substituted prod-
ucts (8k-8m, 8o and 8q) demonstrated much higher stability to-
ward alkoxyl shift even with cyclopropyl group at R1 position.  
Even upon heating compound 8m at 100 oC for 48 hours, no 
alkoxyl shift observed (>95% 8m recovered).  Analyzing the crys-
tal structures of 8b and 8m revealed almost identical geometry of 
the core [3. 2. 2] structure between the two compounds.  Consid-
ering the significantly different reactivity between 8b and 8m, it is 
likely that the electronic effect is very influential for this 1,3-O-
shift. Investigations on the mechanism are currently undergoing. 

Excellent stereoselectivity was achieved with one dominat-
ing stereoisomer isolated in all cases.  Additionally, using chiral 
homo propargyl alcohol as the starting materials, the desired ben-
zofurans were obtained as a single isomer (9l–9p).  The absolute 
stereochemistry was again confirmed by X-ray crystallography 
(9m and 9p).  Based on these results, we developed protocol as 
shown in Figure 4 to synthesize single enantiomer of 9m. 

Figure 4. Diasterioselective reaction of non-racemic homopro-
pargyl alcohol with alkyne. 

 

The enantiomeric enriched homopropargyl alcohol can be 
readily prepared from alkyne addition to chiral epoxide.  Charging 
the non-racemic homopropargyl alcohol with terminal alkyne 
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under the standard protocol, the chiral hydrobenzofuran 9m was 
observed in 81% isolated yields with more than 99% ee.  Overall, 
five stereogenic centers were successfully set up through two 
simple steps.  Application of this strategy toward some challeng-
ing natural product synthesis are currently undergoing in our 
group. 

In conclusion, we report herein the first intermolecular 
homopropargyl alcohol addition to alkyne followed by intramo-
lecular enyne cycloisomerization.  Using triazole-gold catalyst, 
we effectively prevented both the homopropargyl alcohol intra-
molecular cyclization and gold decomposition caused by the vinyl 
ether intermediate.  The success in trapping diene 7 through Diels-
Alder cycloaddition and observation of unusual 1,3-O-shift high-
lighted the advantages of this new strategy for the preparation of 
complex organic molecules with high efficiency and excellent 
stereoselectivity. 
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