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ABSTRACT: Development of meta-C-H functionalization reactions at room temperature continues to be a tough challenge. Use
of phosphonate linkage allowed a Pd (II)-catalyzed meta-C-H functionalization at room temperature while incorporating a
cyanophenol based directing moiety. Successful implementation of sequential di-meta-olefination led to the synthesis of tri-
alkenyl arene having applications in organic electronics and optoelectronics. Under robust conditions, C-O bond formation has
been discovered for the meta-hydroxylation and meta-acetoxylation.
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Palladium.

Organophosphonates have played important role in bio-
organic chemistry and pharmaceuticals." These are powerful
synthons for a number of useful synthetic transformations
including the preparation of alkenyl derivatives via Horner-
Wadsworth-Emmons reactions.” Recently, directed C-H
functionalizations of phosphonates have also been studied.

Although transition metal catalyzed ortho-C-H
functionalization reactions are well explored,* related meta-

C-H activation poses a significant challenge.” Regardless of

the functionalization, a successful meta-C-H bond activation
relies on the perfect design of the directing group (DG)
linkage, coordinating site and the choice of metals.
Overcoming these significant difficulties, DG assisted
oxidative meta-selective functionalization of arene has been
pioneered by Yu.® In this context, we have demonstrated the
potential of commercially available, simple 2-cyanophenol
moiety as the directing scaffold for meta-C-H
functionalization reactions.”

4
R DG - N
- B —

1,3,5-trialkenyl arene =~

R?

3-hydroxy olefin

o

FG This Work @ Commercially available directing group

® meta-C-H olefination at room temparature

@Excellent meta-selectivity

®Easily removable phosphonate linker
meta-selective C-C & v P P

C-0 bond formation ® Wide synthetic applicability

x P
ref 3 Thls Work
=H, OEt RZ=DG

Scheme 1. Overview of the present work

Despite these recent developments, meta-C-H activation

methods still require elevated temperature. Further, the lack

of selectivity for mono-meta- vs. bis-meta-functionalization
encouraged us to ponder for a mild reaction condition that
would allow a complete mono-selective  meta-
functionalization of arenes.®

We report herein the first example of Pd(II)-catalyzed
meta-C-H olefination of arene at room temperature (Scheme
1). Using a benzylic phosphonate ester, complete mono-

selectivity was achieved for the meta-olefination reaction.
Furthermore, meta-selective C-O bond formation reactions
can be promoted by using this scaffold. Direct hydroxylation
has been achieved under mild oxidizing condition using
PhI(TFA), as the hydroxylating agent followed by its in-situ
hydrolysis.
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Scheme 2. Meta-selective mono-olefination
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While changing PhI(TFA), with PhI(OAc),, the meta-
acetoxylated product was generated. Removal of
phosphonate linker can generate di- or tri-alkenyl arene, a
distinct m-conjugated organic materials, which have been
spurred on by an interest in their applications in organic
electronics and optoelectronics.’

Present studies towards developing a mild meta-C-H
functionalization began by investigating olefination reaction.
The meta-functionalization of benzylicphosphonates is
expected to be challenging due to the presence of both ortho-
directing [P(O)(OEt)] and meta-directing cyanophenol
motifs in the present scaffold (Scheme 1). Reaction
conditions were optimized with 2-cyanophenyl ethylben-
zylphosphonate (1a) and ethyl acrylate as the model
substrates. After extensive experimentation,” the desired
olefinated product (2a) was obtained in 84% isolated yield
with excellent meta-selectivity(=20:1) in presence of
Pd(OAc), (10%), N-acetyl phenylalanine (Ac-Phe-OH, 20%)
in HFIP solvent at room temperature.

Subsequently, we examined scope of the protocol with
variousolefins as well as benzylicphosphonates. Most
importantly, this protocol allows mono-olefination without
formation of any di-olefinated product. Different acrylates
and methyl vinyl ketone (MVK) produced desired mono-
olefinated products in good yields (2a-2d, Scheme 2). Olefins
with phosphonate and sulfone moiety resulted meta-
selective products as well (2e-z2h, Scheme 2). Interestingly,
di-substituted olefin and cyclic tri-substituted olefin were
successfully employed (2i and 2j).

Styrene derivatives such as 4-acetoxy and 3-nitro styrene
were effective with this protocol (2k and 21). Different para-
substituted  benzylic phosphonate esters promoted
olefination in synthetically useful yields (2m-2q). However,
para-tertbutyl phosphonate ester gave only 15% olefinated
product 20. Similarly, 2,5-difluoro arene can be incorporated
under the optimized reaction condition (2r).
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Scheme 3. Meta-selective homo and hetero di-
olefination

As expected, ortho- and meta- substituted (bromo and
methyl) esters also underwent alkenylation at meta position
(2s-2v). Finally, 3-bromo-4-fluoro substituted esters afforded
the desired products in good yields (2w)."

We subsequently explored homo di-olefination and hetero
di-olefination at the meta position by using Pd(OAc), (10 %),
N-acetyl glycene (Ac-Gly-OH, 20%) in HFIP solvent at 8o °C.
A range of acrylates, MVK and cyclic olefins produced di-
alkenylated products in high yield (3a-3d, Scheme 3).
Furthermore, hetero diolefinated products (3e-3h) were
obtained via incorporation of another olefin into the mono-
olefinated product 2a.”

The versatility of this template based approach was
extended to carbon-heteroatom bond formation by
performing meta-hydroxylation and acetoxylation. Initial
attempts of hydroxylation was unsuccessful under strong
oxidizing conditions."” Thereafter, the meta-hydroxylated
compound (4a) was obtained in 70% isolated yield with
excellent meta-selectivity (>20:1) by using mild oxidizing
condition such as PhI(TFA), (4 equiv.) as the hydroxylating
agent,” followed by its in-situ hydrolysis.” The optimized
reaction condition involved N-tert-butyloxycarbonyl-alanine
(Boc-Ala-OH, 20%) as the ligand for Pd(OAc), (10 mol%) in
HFIP.” With the optimized condition, the scope of the
reaction was explored with benzylphosphonates (4a-4g,
Scheme 4; meta—selectivity >20:1).
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Boc-Ala-OH, N-tert-butyloxycarbonyl-alanine.
Scheme 4. Meta-selective hydroxylation

Interestingly, changing the acylating agent from
PhI(TFA), to PhI(OAc), led to the formation of meta-
acetoxylated compound as the sole product. This is likely due
to the reduced electrophilicity of the acetate compared to
trifluoroacetate. For meta-acetoxylation, N-acetyl-glycene
(Ac-Gly-OH) was found to be the ligand of choice.” Several
substrates with different substitution patterns underwent
meta-acetoxylation successfully to give acetoxylated
compounds in moderate to good yields and often with
excellent meta selectivity (Scheme 5, 5a-5f; meta-selectivity
>20:1).
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Scheme 5. Meta-selective acetoxylation

In consideration of the unique catalytic activity of the
Pd(II)-MPAA metal-ligand system, we studied some
preliminary mechanistic experiments of meta-selective C-C
and C-O bond formation reactions. In both these cases,
nitrile group of the substrate linearly coordinated with the
ligated palladium species. The palladium-nitrile coordination
was supported by downfield shift of ortho and para proton of
2-cyano phenol core in 'H spectra (Figure 1). We have per-
formed ESI-MS studies of stoichiometric combination of
Pd(OAc),, Ac-Phe-OH, and substrate. Interestingly, a metal-
substrate adduct [(Ac-Phe-OH)-H*)Pd"(1a)] was appeared
withdesired isotopic pattern (Figure 2).
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Figure 1.'H NMR study of Pd(OAc),, Ac-Phe-OH, and 1a

The C-H palladation step likely involves the formation of
a n1-membered palladacycle. ESI-MS studies of stoichiometric
combination of Pd(OAc),, Ac-Phe-OH, and 4-methyl
substituted phos IPhonic ester 1b, suggesteda ligand free
intermediate [Pd (1b-H")] (Figure 2). Efforts to isolate this
species remained unsuccessful till date.
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Figure 2. ESI-MS study with 1a and 1b.
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We then performed intermolecular competition
experiment between differently para-substituted (chloro and
methoxy) benzylphosphonate esters, a (1.3:1) yield ratio was
obtained for both electron-deficient and rich counterparts.
This phenomenon indicates a simple electrophilic
substitution type mechanism unlikely to be involved. In
addition intermolecular competition between [D,] and
simple undeuterated benzylphosphonate esters 1a gave the
product distribution values of 4.5 [Py/Pp], such a high value
of [Py/Pp] likely establishes C-H activation as the rate de-
termining step (Scheme 6).

a) Intermolecular competition experiment
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Scheme 6. Intermolecular competition expenments

Olefination likely followed a path (depicted as A in
Scheme 7) involving C-H activation, olefin binding, 1,2-
migratory insertion, and f-hydride elimination to generate
the product 2a. The C-O bond formation reaction might
proceed via a Pd"/Pd" cycle (path B). The palladacycle
intermediate is oxidized by PhI(OCOR), to afford a pd"
intermediate, which undergoes a reductive elimination
process to furnish the acetoxylated product 5a and liberates
the Pd" catalyst. Subsequent hydrolysis of trifluoroacetoxy,
OCOCEF,;, group provides compound 4a.
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o
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Scheme 7. Plausible pathway for meta-functionalization

Furthermore, the -P(O)(OR), tether linkage can be easily
cleaved by modified Horner-Wadsworth-Emmons reaction.”
Meta-functionalized = products  were reacted  with
benzaldehyde in the presence of potassium tert-butoxide to
afford corresponding alkenes in good yields (Scheme 8). In
addition, ester moiety of meta di-olefinated compounds can

3
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be removed to produce 1,3,5-trialkenylated arenes in good
yields (Scheme 9, 6d and 6e).

@A P‘OEt

t-BuOK*
Toluene X
70 °C O

6a, 75%, 6b, 69%, 6¢c, 64%,

~ (E/Z); 9812 E/Z 98/2 OH onIy E isomer

CO,Et

Scheme 8. Removal of phosphonates linker
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= P‘OEt
tolune, 70 °C

PhCHO
X
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1 R1

E0,C._~ o Ph MeOC N
. 6d,68% 6e, 71%

CO,Et CO,Et

Scheme 9. Synthesis of 1,3,5-trialkenyl arene

The  utility of meta-C-H functionalization was
demonstrated by attempting further extension of the
hydroxylated product (Scheme 10). Triflate 7 was easily
prepared from compound 6c¢ and then transformed to
synthetically useful molecules via arylation 7a, amination 7b

and alkynylation 7c.
PhB(OH), X-Ph
o Ph o Ph o Ph Q/:s%
Ph
Tf,0, K3PO, -
%%_.% X Ph
on toluene/H,0 PhNH,

OTf i NH
6¢c 7,85% 7c, 94%

o= |
Ar

Scheme 10. Further functionalization of 6¢

In summary, we have developed first template assisted Pd
(IT)-catalyzed direct meta-olefination at room-temperature.
The meta-functionalizationcan be further extended to
carbon-oxygen bond formation such as meta-hydroxylation
and meta-acetoxylation reactions by varying the
acetoxylating agent PhI(OCOR),. Different di- and tri-meta-
substituted alkenes were synthesized by removing the tether
phosphonates.
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