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ABSTRACT: We report a newly prepared cationic cobalt(III) complex
as a general and efficient chiral solvating agent that discriminates
carbonyl compounds including esters, amides, ketones, and aldehydes.
This cobalt(III) complex was further utilized to directly analyze both the
conversion and the enantiomeric excess at once in the asymmetric
fluorination.

The great importance of optically active (chiral) com-
pounds in synthetic, medicinal, and biological chemistry

continues to advance the search for rapid and facile methods to
determine the identity, concentration, and relative ratio of
chiral molecules.1 Such chiral analysis has been successfully
performed with conventional chromatographic methods using
high-performance liquid chromatography (HPLC) or gas
chromatography (GC).2 However, the utilization of 1H nuclear
magnetic resonance (1H NMR) spectroscopy with chiral
solvating agents (CSAs) has gained continuous attention as a
complementary analytical technique.3,4 In principle, the CSAs
provide distinctive 1H NMR signals obtained from two in-situ-
formed diastereomeric adducts between the enantiopure CSA
and the two enantiomers of the analyte of interest through
noncovalent interactions, such as ion pairing, H bonding, or
dipole−dipole interactions.3 Over the last few decades, several
classes of CSAs such as (1) small- to medium-sized organic-
based reagents,4b,d,5 (2) lanthanides or unsaturated transition-
metal complexes,6 and (3) host compounds, such as
cyclodextrins, crown ethers,7 and synthetic macrocycles,8

have been developed. Many of them are practically optimized
and commercialized, but the analyte scope is mainly limited to
amines or carboxylic acids, which can establish relatively strong
intermolecular interactions. It has been a great challenge to
develop CSAs effectively working for other types of analytes.
Because 1H NMR spectroscopy is a fundamental analytical
technique, CSAs with a wide range of analyte scope and
functional group compatibility should promote the routine
application of 1H NMR chiral analysis.
Chiral carbonyl compounds are ubiquitous and widely

utilized as pharmaceuticals.9 Besides, they have been a
common substrate platform for asymmetric synthesis, as
exemplified by the carbonyl α-substitution reactions.10,11

However, to the best of our knowledge, there are no CSAs

that are broadly applicable for carbonyl compounds, probably
due to the weak intermolecular interactions between CSA and
carbonyl analytes. The dirhodium complex and modified
Kagan’s amide were used as CSAs for amides or esters with
limited examples.12 We have reported anionic chiral octahedral
Al complexes as general and efficient CSAs for amines and
carboxylic acids (Figure 1a).13 With the optimized pKa value,
the anionic Ga complex was successfully used for the 1H NMR
chiral analysis of alcohols at room temperature (Figure 1a).4c

These anionic CSAs employ strong intermolecular interactions
such as ion pairing or charged H-bonding interactions with
analytes. However, our anionic CSAs were not active toward
carbonyl analytes because they can only form weak
intermolecular interactions. (See the Supporting Information.)
In 2018, Gladysz and coworkers reported a Werner-type
octahedral Co complex, [Co(dpen)3]

3+, as an efficient CSA for
various chiral analytes, including a few carbonyl compounds.14

This tricationic Co complex could establish a cationic ion−
dipole interaction with carbonyl compounds, found to be
suitable for 1H NMR chiral analysis. Inspired by this seminal
work, we here designed cationic octahedral Co complexes by
combining N2O2 ligands (L1−L2) and 1,2-diphenylethylenedi-
amine (1). In the formation of the metal-centered chirality,
Werner complexes with chiral diamines showed a moderate
selectivity (83:17) at room temperature.15 In comparison with
this, our Co complexes were readily synthesized by the
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assembly of the metal and the two ligands with excellent
stereoselectivity (>50:1). Further experimental and computa-
tional analysis of the Co complexes enabled us to develop a
highly efficient CSA for esters, amides, ketones, and aldehydes.
This analytical method allows the real-time measurement and

the direct analysis of both the conversion and the enantiomeric
excess at once in asymmetric reactions.
Chiral cobalt complexes were prepared by combining

tetradentate N2O2 ligands (L1 and L2) and chiral 1,2-
diphenylethylenediamine (1), which provide diamagnetic
octahedral d6-Co(III) complexes compatible for 1H NMR
measurement (Scheme 1a). The tetradentate N2O2 ligands (L1
and L2) were readily synthesized from (R,R)-1,2-diamines (R1
and R2) and 2,2′-dihydroxybenzophenone (3). Octahedral
cobalt complexes were then prepared by the reaction of the
N2O2 ligand (L1 and L2), Co(acac)2, and (R,R)- or (S,S)-1,2-
diphenylethylenediamine (R1 or S1) to yield neutral Co(II)
complexes that were further oxidized to cationic Co(III)
complexes in the presence of KPF6 under aerobic conditions
(Scheme 1a). The reaction sequence was completed to provide
four Co(III) complexes in 66−87% isolated yields.
The tetradentate N2O2 ligands (L1 and L2) are crucial for

determining the metal-centered chirality of the Co complexes
(Scheme 1b). In principle, two diastereomeric Δ and Λ
complexes can be prepared in the formation of the octahedral
complexes with chiral N2O2 ligand (L1 and L2) and 1,2-
diamine (1). Interestingly, only the Λ form of Co complexes
was isolated to a detectable extent in the 1H NMR spectra
(>50:1). The density functional theory (DFT) computation
indicates that the Λ-form is more stable than the Δ form by
∼5.8 kcal/mol, in agreement with the experimental results.
(See the Supporting Information.) This energy value translates
to an equilibrium constant of ∼1.8 × 105. The steric repulsion
due to the torsional strain appears to be responsible for the
energy difference of the two diastereomers: The torsion angle
C−N−C−C is found to be 37 and 71° for the Δ and Λ
complexes, respectively (Scheme 1b). A severe torsional strain
makes the minor Δ form highly unstable compared with the
major Λ form. In addition, the chirality of the 1,2-diamine (1)
did not affect the metal-centered chirality of the Co(III)
complexes, as shown in Figure 2.
All cationic Co(III) complexes were initially prepared and

isolated with a PF6 anion. However, they were insoluble or
only partially soluble in CH2Cl2, CHCl3, or C6H6, which limits
the solvent usage and prevents a broad application for 1H

Figure 1. 1H NMR chiral analysis with (a) anionic Al and Ga
complexes and (b) cationic Co complex.

Scheme 1. (a) Synthetic Procedure for Cationic Cobalt
Complexes and (b) Stereoselective Assembly of [Co-L2-
S1]PF6

Figure 2. Crystal structures of (a) [Co-L2-R1]PF6 and (b) [Co-L2-
S1]PF6 (thermal ellipsoids at 50% probability).

Figure 3. Chiral solvation and binding constant of 1-phenylethyl
acetate (4) with (a) [Co-L1-R1]BArF and (b) [Co-L1-S1]BArF.
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NMR chiral analysis. To increase their solubility, we changed
the counteranion to tetrakis(3,5-bis(trifluoromethyl)phenyl)-
borate (BArF) by the addition of an equimolar amount of
NaBArF. The BArF salts of all cobalt metal complexes showed
excellent solubility in organic solvents such as CH2Cl2, CHCl3,
and C6H6. They were even soluble in diethyl ether and partially
soluble in n-hexane.
With several chiral Co(III) complexes, we first tested the 1H

NMR chiral solvation of 1-phenylethyl acetate (4) in CDCl3.
When an equimolar amount of [Co-L1-R1]BArF or [Co-L1-
S1]BArF was mixed with rac-4 in CDCl3 (20 mM), we were
pleased to find that both complexes could give rise to a
baseline separation of the methyl peak of rac-4 in the 1H NMR
spectra (Figure 3). Interestingly, [Co-L1-S1]BArF was more
efficient than [Co-L1-R1]BArF, with ΔΔδ (ΔΔδ = |ΔδR −
Δδs|) values of 0.087 and 0.042 ppm, respectively. Both [Co-
L1-S1]BArF and [Co-L1-R1]BArF with the metal-centered
chirality of the Λ form showed the same sense of peak
resolution, where the methyl signal of (S)-4 is more low-
frequency-shifted than that of (R)-4. It is quite evident that the
metal-centered chirality of the Co complexes plays a significant

role in resolving the 1H NMR signals of the analytes. However,
the resolution ability was more enhanced with opposite (S,S)-
1,2-diamine chirality in combination with the (R,R)-chirality of
N2O2 ligand in [Co-L1-S1]BArF. Compared with the Werner-
type ML3 chiral complexes synthesized with the same absolute
configuration of the ligands,14 our chiral Co(III) complex was
optimized to improve the chiral solvation ability by the
combination of (R,R)- and (S,S)-diamine-based ligands.
We tested the chiral solvation of rac-1-phenylethyl acetate

(4) with [Co-L1-S1]BArF in various deuterated solvents. We
were pleased to find that our cationic cobalt complex [Co-L1-
S1]BArF was effective toward the carbonyl compound 4,
giving a clean baseline 1H NMR peak separation in CD2Cl2,
CDCl3, C6D6, and toluene-d8. (See the Supporting Informa-
tion.) In polar organic solvents, CD3CN, acetone-d6, DMSO-
d6, and CD3OD, we could not achieve the peak separation. It is
evident that the polar solvent molecules prevent the formation
of diastereomeric mixtures between the Co complex and the
carbonyl analyte. In this regard, we have chosen CDCl3 as the
optimal NMR solvent because it gave the most significant peak
separation and it is also economically beneficial.

Figure 4. Partial 1H NMR (400 MHz, 298 K) spectra of carbonyl compounds with [Co-L1-S1]BArF in CDCl3. ΔΔδ values are shown in ppm.
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We investigated the chiral solvating ability of the optimal
cationic cobalt complex for a series of chiral carbonyl-
containing compounds 4−35 (Figure 4). When several
carbonyl analytes were mixed with a stoichiometric amount
of [Co-L1-S1]BArF in CDCl3 (20 mM), full baseline
separations were achieved. The esters bearing aromatic (4,
5) and aliphatic groups (6−8) were successfully analyzed. In
addition, α-hydroxy esters (9, 10), lactones (11−13), and β-
keto esters (14−17) gave an efficient peak separation with the
cobalt complex. Moreover, various ketones, including β-
diketone (18), aliphatic linear ketones (19−21), cyclic ketone
(22), and ketones bearing aromatic groups (23−26), were
prone to the 1H NMR chiral analysis. Furthermore, aldehydes
(27−29) and amides (30−35) were well resolved in the 1H
NMR spectra. Because there are few signals of [Co-L1-
S1]BArF with chemical shifts in the range of 0−4 ppm, there
was no overlap with the 1H NMR signals belonging to the sp3

C−H of the analytes. Given the broad analyte scope shown in
Figure 4, the chiral solvation with the cationic cobalt complex
can be a general method for the chiral analysis of carbonyl-
containing compounds.
Our cationic cobalt complex can be used for the chiral

analysis of ketoesters. To further demonstrate its utility, we
have chosen the asymmetric fluorination of ethyl-2-methyl-
acetoacetate16 (Figure 5). The enantioselective introduction of
the fluorine atom is of significant synthetic interest due to its
unique properties in drugs and agricultural agents.17 Both the
starting material (14) and the product (36) can be directly
analyzed with our cobalt complex (Figure 5). Because 14 and
36 give distinctive signals with [Co-L1-S1]BArF in CDCl3, we
can measure the conversion and the enantiomeric excess with
one measurement. Using this method, we tested the reaction
conditions with six different Lewis-acidic metals and five

different bisoxazoline ligands, a total of 30 reaction conditions,
and the resulting % conversion and % ee are summarized in
Figure 5. The crude mixture was directly analyzed in the cases
of the diamagnetic metal catalysts, whereas paramagnetic metal
salts were removed by silica-gel filtration prior to the analysis.
Enantiomeric excess with >20% conversion was measured.
(See the Supporting Information.)
As shown in Figure 5, a rapid chiral analysis of asymmetric

fluorination was successfully performed by 1H NMR with [Co-
L1-S1]BArF. We could easily identify that Cu(OTf)2 and
Sc(OTf)3 showed high conversion but low stereoselectivity,
whereas Co(acac)2 with ligand L3 gave the highest
enantioselectivity of 60% ee. Therefore, 1H NMR chiral
analysis with [Co-L1-S1]BArF can be a simple and efficient
method for determining the conversion and the enantiomeric
excess in asymmetric reactions involving chiral carbonyl
compounds.
In summary, we have demonstrated a 1H NMR chiral

analysis of carbonyl compounds with our newly prepared
cationic Co(III) complex. The Co complexes were readily
prepared by a stereoselective assembly of two ligands with
excellent stereoselectivity (>50:1). The chiral solvation ability
of the Co complexes was improved by the choice of BArF
anion and the combination of ligands with opposite diamine
chiralities. The optimal CSA, [Co-L1-S1]BArF, was success-
fully used for the 1H NMR chiral analysis of 32 carbonyl
compounds including esters, amides, ketones, and aldehydes.
Furthermore, an asymmetric fluorination of ethyl-2-methyl-
acetoacetate was readily analyzed by 1H NMR spectroscopy
with [Co-L1-S1]BArF, determining the conversion and the
enantiomeric excess in a single measurement. This cationic Co
complex can be a general and efficient CSA for various
carbonyl compounds.
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