

CHEMISTRY A European Journal

Accepted Article

Title: Rhodium-Catalyzed Asymmetric [2+2+2] Cycloaddition of 1,6-Enynes with Racemic Secondary Allylic Alcohols through Kinetic Resolution

Authors: Shunsuke Suzuki, Yu Shibata, and Ken Tanaka

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.202000010

Link to VoR: http://dx.doi.org/10.1002/chem.202000010

Supported by ACES

WILEY-VCH

Rhodium-Catalyzed Asymmetric [2+2+2] Cycloaddition of 1,6-Enynes with Racemic Secondary Allylic Alcohols through Kinetic Resolution

Shunsuke Suzuki, Yu Shibata, and Ken Tanaka*

Abstract: It has been established that a cationic rhodium(I)/P-phos complex catalyzes the asymmetric [2+2+2] cycloaddition of 1,6-enynes with racemic secondary allylic alcohols to produce the corresponding chiral bicyclic cyclohexenes, possessing three stereogenic centers, as a single diastereomer with excellent *ee* values. Mechanistic experiments revealed that the present cycloaddition proceeds through the kinetic resolution of the racemic secondary allylic alcohols, in which one enantiomer preferentially reacts with the 1,6-enyne.

The transition-metal-catalyzed asymmetric [2+2+2] cycloaddition of 1,6-enynes with alkenes is a useful method for the construction of bicyclic cyclohexene frameworks.^[1] For this asymmetric transformation, cationic rhodium(I)/axially chiral biaryl bisphosphine complexes show high catalytic activity and selectivity.^[2] For example, our research group reported that a cationic rhodium(I)/H₈-binap complex is capable of catalyzing the regio-, diastereo-, and enantioselective [2+2+2] cycloaddition of 1,6-enynes^[3,4] with acrylamides^[5] giving chiral bicyclic cyclohexenes, possessing two stereogenic centers (Scheme 1a).^[6] Not only acrylamides but also enamides^[7] and oxabenzonorborna-dienes^[8] could be employed in the rhodiumcatalyzed asymmetric [2+2+2] cycloaddition with 1,6-enynes. In the reactions using acrylamides and enamides, the coordination of the amide carbonyl into rhodium induce high reactivity and selectivity, and suppress the undesired β -hydrogen elimination giving diene products.^[6,7a,9]

In 2016, Roglans and Pla-Quintana reported that racemic secondary allylic alcohols^[10] react with 1,6-diynes through the kinetic resolution^[11] in the presence of a cationic rhodium(I)/binap complex to give bicyclic cyclohexadienes (Scheme 1b).^[12] This reaction can construct contiguous two stereogenic centers as a single diastereomer with high ee values, while the substrate scope was somewhat limited (methoxycarbonyl- and aryl-substituted allylic alcohols, and sulfonamide-linked and dimethyl-substituted 1,6-diynes). In this Communication, we have established that a cationic rhodium(I)/P-phos complex is capable of catalyzing the regio-, diastereo-, and enantioselective [2+2+2] cycloaddition of 1,6-

[*] S. Suzuki, Dr. Y. Shibata, Prof. Dr. K. Tanaka Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8550 (Japan) E-mail: ktanaka@apc.titech.ac.jp http://www.apc.titech.ac.jp/~ktanaka/

Supporting information for this article is given via a link at the end of the document

envnes with racemic secondary allylic alcohols through the kinetic resolution at room temperature giving chiral bicyclic cyclohexenes, possessing three stereogenic centers (Scheme 1c). This newly developed asymmetric catalysis shows a broad substrate scope concerning both 1,6-enves and allylic alcohols.

Scheme 1. Research background. Ts = *p*-toluenesulfonyl. Ns = *o*-nitrobenzenesulfonyl. MW = microwave.

We first examined the reaction of tosylamide-linked 1,6envne 1a and phenyl-substituted racemic secondary allylic alcohol 2a (3 equiv) in the presence of the cationic rhodium(I)/(R)-binap catalyst (20 mol %). The desired [2+2+2] cycloaddition proceeded at room temperature to give bicyclic cyclohexene 3aa with high ee value, but the yield of 3aa was low due to the formation of the undesired β-hydrogen elimination product 4aa (Table 1, entry 1). Increasing the steric bulk on the phosphorus significantly decreased the yields of both 3aa and 4aa (entry 2). Thus, axially chiral biaryl bisphosphine ligands with various biaryl backbones^[13] were surveyed (entries 3–6). This survey revealed that the use of (R)-segphos, possessing the smallest dihedral angle, shows the highest ratio of 3aa/4aa with retaining the high ee value of **3aa** (entry 6), on the contrary, the use of (R)-H₈-binap, possessing the largest dihedral angle, shows the lowest ratio of 3aa/4aa (entry 3). We anticipated that the use of electron-deficient segphos-type ligands (entries 7-9) would facilitate the reductive elimination and increase the yield of 3aa and decrease the yield of 4aa. Pleasingly, the use of Pphos increased the yield of 3aa to 57% and decreased the yield

of **4aa** to 5% (entry 9). Increasing the amount of **2a** to 5 equiv further increased the yield of **3aa** to 64% (entry 10), but the further increase of **2a** to 10 equiv did not increase the yield of **3aa** (entry 11). Finally, the catalyst loading could be reduced to 10 mol %, with only a slight erosion of the yield of **3aa** (entry 12).

Table 1. Optimization of reaction conditions.^[a]

Entry	Ligand	(±)- 2a	Catalyst	(+)- 3aa	(+)- 4aa
		(equiv)	(mol %)	% yield ^[b]	% yield ^[b]
				(% ee)	(% ee)
1	(R)-binap	3	20	39 (98)	24 (94)
2	(R)-tol-binap	3	20	18 (98)	13 (98)
3	(R)-H ₈ -binap	3	20	17 (97)	30 (99)
4	(R)-synphos	3	20	27 (98)	13 (89)
5	(R)-MeO-biphep	3	20	35 (99)	15 (92)
6	(R)-segphos	3	20	36 (98)	12 (90)
7	(R)-CI-MeO-	3	20	46 (98)	22 (95)
	biphep				
8	(S)-difluorphos	3	20	55 (96 ^[c])	<5 (59 ^[c])
9	(R)-P-phos	3	20	57 (98)	5 (75)
10	(R)-P-phos	5	20	64 (98)	6
11	(R)-P-phos	10	20	64 (98)	6
12	(R)-P-phos	5	10	60 (98)	5

[a] $[Rh(cod)_2]BF_2$ (0.0050–0.020 mmol), ligand (0.0050–0.020 mmol), **1a** (0.10 mmol), **2a** (0.30–1.00 mmol), and CH_2Cl_2 (2.0 mL) were used. [b] Isolated yield. cod = 1,5-cyclooctadiene.

With the optimized reaction conditions in hand, we examined the substrate scope of this reaction by using (R)-P-phos as a ligand (Scheme 2). With regard to allylic alcohols, 1-phenylprop-2-en-1-ol derivatives 2a-e with electronically and sterically diverse substituents on the benzene ring reacted with 1,6-enyne 1a to give the corresponding cyclohexenes 3aa-ae with good yields and high ee values. Naphthyl- and heteroaryl-substituted allylic alcohols 2f and 2g could participate in this reaction as well. Not only aryl but also primary, secondary, and tertiary alkylsubstituted allylic alcohols 2h-k were suitable substrates for this However, tertiary allylic alcohol 21 process. and methoxycarbonyl-substituted secondary allylic alcohol 2m failed to react with 1a. The scope of 1,6-envnes was also examined. Interestingly, the improved product (3ba, 3bj, and 3cj) yields were observed in the reactions of 1,6-enynes 1b and 1c, possessing the bulkier substituent than the methyl group at the

alkyne terminus. Also, the improved product (**3da**, **3dj**, and **3dk**) yields and/or *ee* values were observed in the reactions of 1,6enyne **1d**, possessing 1,1-disubstituted alkene moiety. Not only tosylamide- (**1a–d**) but also malonate- (**1e**,**f**) and ether (**1g**)linked 1,6-enynes could be employed for this reaction. Importantly, in all cases, the cyclohexene products **3** were obtained as a single diastereomer with high *ee* values of 90– >99%. The relative and absolute configurations of (+)-**3aa** were determined to be (*R*)-(5*S*,7a*R*) by an X-ray crystallographic analysis.^[14]

Scheme 2. Substrate scope. $[Rh(cod)_2]BF_2$ (0.015 mmol), ligand (0.015 mmol), 1 (0.15 mmol), **2** (0.75 mmol), and CH_2CI_2 (2.0 mL) were used. The cited yields were of isolated products. [a] Determined by ¹H NMR using dimethyl sulfone as an internal standard.

The present asymmetric [2+2+2] cycloaddition was scalable and thus the reaction using 1 mmol of **1b** proceeded by using reduced amounts of **2j** (4 equiv) and the Rh catalyst (5 mol %) to give cyclohexene product **3bj** with almost the same isolated yield and *ee* value comparing with the small scale reaction (Scheme 3a). Synthetic transformations of the cyclohexene products were also examined. Epoxide **5**, possessing five consecutive stereogenic centers, was isolated as a single diastereomer by oxidation of **3af** with *m*CPBA (Scheme 3b). Cyclohexane **6**, possessing five consecutive stereogenic centers, was also obtained as a single diastereomer by hydrogenation of **3cj** (Scheme 3c).

a) Preparative scale reaction

b) Oxidative transformation

Scheme 3. Synthetic applications. mCPBA = m-chloroperoxybenzoic acid.

To gain mechanistic insight into the present cycloaddition accompanied by the kinetic resolution, the following experiments were conducted. The reaction of homoallylic alcohol $\mathbf{7}^{[15]}$ and allyl ether 10 with 1a under the same reaction conditions as Scheme 2 afforded dienes 9 and 12 without the formation of cyclohexenes 8 and 11 (Schemes 4a and 4b). These results suggest that the strong bidentate coordination of the allylic alcohol into rhodium might deter the β -hydrogen elimination giving the diene product and promote reductive elimination giving the cyclohexene product. The rapid consumption of racemic allylic alcohol (±)-2f was observed at room temperature in the presence of a small amount (1 mol %) of the cationic rhodium(I)/(R)-P-phos complex to give unreacted allylic alcohol (R)-2f with low yield and ee value (Scheme 4c).^[16] This result suggests that the major pathway of the kinetic resolution is not the reaction of allylic alcohol itself but that with the 1,6-enyne.^[17]

Thus, the reactions of chiral allylic alcohol (*S*)-**2b** (er = 98:2) with **1a** were examined by using (*R*)- and (*S*)-axially chiral biaryl bisphosphine ligands (Scheme 4d). The use of (*S*)-P-phos and (*S*)-H₈-binap afforded (–)-**3ab** and (–)-**4ab**, respectively, in good yields with high ee values along with small amounts of (–)-**4ab** and (–)-**3ab**, respectively. The use of (*R*)-P-phos and (*R*)-H₈-binap did not afford (–)-**3ab** and (–)-**4ab**, and afforded trace amounts of (+)-**3ab**, and (+)-**3ab**/(+)-**4ab**, respectively. These results suggest that one enantiomer of the racemic allylic alcohol preferentially reacts with the 1,6-enyne to give both the cyclohexene and diene products. The selectivity between reductive elimination giving the cyclohexene and β-hydrogen elimination giving the diene is determined by the ligand used.

b) Reaction of allyl ether

c) Kinetic resolution of racemic allylic alcohol

d) Reactions of chiral allylic alcohol

Scheme 4. Mechanistic experiments.

Proposed reaction mechanism is shown in Scheme 5a. 1,6-Enyne **1** reacts with rhodium to generate rhodacyclopentene **A**. Bidentate coordination of racemic allylic alcohol (±)-**2** to rhodium would generate four diastereomeric intermediates **B1–B4**. In intermediates **B2–B4**, there is steric repulsion between the equatorial phenyl group and R¹, and/or between the rhodacyclopentene moiety and R³. On the contrary, no steric repulsion exists in intermediate **B1**. Thus, insertion of **2** predominantly proceeds in **B1** to generate rhodacycloheptene **C**, and the subsequent reductive elimination affords cyclohexene **3** as a single diastereomer with high ee value without the formation of cyclohexenes **3'**, **3''**, and **3'''**. The ligand-controlled β -hydrogen elimination^[18] also proceeds in **C** to give diene **4** through intermediate **D**.

To confirm this mechanism, the reaction of sterically less demanding 1,6-enyne **1h** ($R^1 = R^2 = H$, Z = NTs in **1** of Scheme 5a) and racemic allylic alcohol (±)-**2h** ($R^3 = Me$ in **2** of Scheme 5a) was examined. In this reaction, the steric repulsion between the equatorial phenyl group and R^1 can be minimized, and that between the rhodacyclopentene ring and R^3 would be small. Thus, a mixture of diastereomers was generated, and

diastereomers **3hh** and **3hh'**, which are generated from sterically less demanding intermediates **B1** and **B2**, respectively,

as major products (Scheme 5b).^[19]

Scheme 5. Proposed reaction mechanism.

In conclusion, we have established that a cationic rhodium(I) complex bearing the P-phos ligand, which is electron-deficient and possesses a small dihedral angle, catalyzes the asymmetric [2+2+2] cycloaddition of 1,6-enynes with racemic secondary allylic alcohols to produce the corresponding chiral bicyclic cyclohexenes, possessing three stereogenic centers, as a single diastereomer with excellent *ee* values. The strong bidentate coordination of the allylic alcohol into rhodium might deter the β -hydrogen elimination, and facilitate reductive elimination to give the cyclohexene product. The present cycloaddition proceeds through the kinetic resolution of the racemic secondary allylic alcohols, in which one enantiomer preferentially reacts with the 1,6-enyne. Future works will focus on the further development of the rhodium-catalyzed asymmetric [2+2+2] cycloaddition involving the kinetic resolution.

Acknowledgements

This research was supported partly by a Grant-in-Aid for Scientific Research (JP26102004) from JSPS (Japan). We thank prof. Ken Ohmori for high-field ¹H NMR measurements (600 MHz), Dr. Koji Masutomi for his preliminary experiments, Takasago for the gift of tol-binap, H₈-binap, and segphos, and Solvias and Umicore for generous support in supplying CI-MeO-biphep and the rhodium complex, respectively.

Keywords: allylic alcohols • enynes • kinetic resolution • rhodium • asymmetric [2+2+2] cycloaddition

- For selected recent reviews, see: a) G. Domínguez and J. Pérez-Castellsa, *Chem. Eur. J.* 2016, 22, 6720; b) M. Amatore, C. Aubert, *Eur. J. Org. Chem.* 2015, 265; c) N. Weding, M. Hapke, *Chem. Soc. Rev.* 2011, 40, 4525; d) G. Domínguez, J. Pérez-Castells, *Chem. Soc. Rev.* 2011, 40, 3430; e) N. Saito, D. Tanaka, M. Mori, Y. Sato, *Chem. Rec.* 2011, 11, 186; f) D. Leboeuf, V. Gandon, M. Malacria in Handbook of Cyclization Reactions, Vol. 1 (Ed.: S. Ma), Wiley-VCH, Weinheim, 2010, p. 367.
- [2] For recent reviews of the rhodium-catalyzed [2+2+2] cycloaddition, see:
 a) Y. Shibata, K. Tanaka, Rhodium(I)-Catalyzed [2+2+2] and [4+2] Cycloadditions, in *Rhodium Catalysis in Organic Synthesis: Methods and Reactions* (Ed.: K. Tanaka), Wiley-VCH, Weinheim, **2019**, p. 183; b) K. Tanaka, *Bull. Chem. Soc. Jpn.* **2018**, *91*, 187; c) K. Tanaka, *TCI Mail* **2018**, *179*, 3; d) K. Tanaka, Y. Kimura, K. Murayama, *Bull. Chem. Soc. Jpn.* **2015**, *88*, 375; e) Y. Shibata, K. Tanaka, *Synthesis* **2012**, *44*, 323; f) K. Tanaka, *Heterocycles* **2012**, *85*, 1017; g) K. Tanaka, *Chem. Asian J.* **2009**, *4*, 508; h) K. Tanaka, *Synlett* **2007**, 1977.
- [3] For pioneering works on the rhodium-catalyzed asymmetric [2+2+2] cycloaddition of 1,6-enynes with alkynes, see: a) P. A. Evans, K. W. Lai, J. R. Sawyer, J. Am. Chem. Soc. 2005, 127, 12466; b) T. Shibata, Y. Arai, Y. Tahara, Org. Lett. 2005, 7, 4955.
- [4] The transition-metal-catalyzed intramolecular [2+2+2] cycloaddition of dienynes has been reported. See: a) T. Shibata, Y. Tahara, J. Am. Chem. Soc. 2006, 128, 11766; b) K. Tanaka, G. Nishida, H. Sagae, M. Hirano, Synlett 2007, 1426; c) D. Tanaka, Y. Sato, M. Mori, J. Am.

Chem. Soc. **2007**, *129*, 7730; d) T. Shibata, Y. Tahara, K. Tamura, K. Endo, *J. Am. Chem. Soc.* **2008**, *130*, 3451; e) H. Sagae, K. Noguchi, M. Hirano, K. Tanaka, *Chem. Commun.* **2008**, 3804; f) T. Shibata, M. Otomo, K. Endo, *Synlett* **2010**, *8*, 1235.

- [5] For the rhodium-catalyzed asymmetric [2+2+2] cycloaddition using acrylamides, see: a) M. Kobayashi, T. Suda, K. Noguchi, K. Tanaka, *Angew. Chem. Int. Ed.* 2011, 50, 1664; *Angew. Chem.* 2011, 123, 1702; b) J. Hara, M. Ishida, M. Kobayashi, K. Noguchi, K. Tanaka, *Angew. Chem. Int. Ed.* 2014, 53, 2956; *Angew. Chem.* 2014, 126, 3000; c) T. Yoshida, Y. Tajima, M. Kobayashi, K. Masutomi, K. Noguchi, K. Tanaka, *Angew. Chem. Int. Ed.* 2015, 54, 8241; *Angew. Chem.* 2015, 127, 8359; d) S. Yoshizaki, Y. Nakamura, K. Masutomi, T. Yoshida, K. Noguchi, Y. Shibata, K. Tanaka, *Org. Lett.* 2016, 18, 388.
- [6] K. Masutomi, N. Sakiyama, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed. 2012, 51, 13031; Angew. Chem. 2012, 124, 13208.
- a) K. Masutomi, H. Sugiyama, H. Uekusa, Y. Shibata, K. Tanaka, Angew. Chem. Int. Ed. 2016, 55, 15373; Angew. Chem. 2016, 128, 15599. For other examples of the rhodium-catalyzed asymmetric [2+2+2] cycloaddition using enamides, see: b) K. Tanaka, M. Takahashi, H. Imase, T. Osaka, K. Noguchi, M. Hirano, Tetrahedron 2008, 64, 6289; c) M. Kobayashi, T. Suda, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed. 2011, 50, 1664; Angew. Chem. 2011, 123, 1702.
- [8] J. Ni, J. Chen, Y. Zhou, G. Wang, S. Li, Z. He, W. Sun, B. Fan, Adv. Synth. Cat. 2019, 361, 3543.
- [9] Alternatively, in the nickel-catalyzed [2+2+2] cycloaddition, the use of enones effectively suppresses the undesired β-hydrogen elimination. See: a) J. Seo, H. M. P. Chui, M. J. Heeg, J. Montgomery, *J. Am. Chem. Soc.* **1999**, *121*, 476; b) S. Ogoshi, A. Nishimura, M. Ohashi, *Org. Lett.* **2010**, *12*, 3450; c) R. Kumar, H. Tokura, A. Nishimura, T. Mori, Y. Hoshimoto, M. Ohashi, S. Ogoshi. *Org. Lett.* **2015**, 17, 6018.
- [10] The rhodium(I)-catalyzed asymmetric cycloisomerization of 1,6-enynes, possessing a racemic secondary alcohol moiety, to produce chiral ketones was reported. See: Y. Oonishi, S. Masusaki, S. Sakamoto, Y. Sato, Angew. Chem. Int. Ed. 2019, 58, 8736; Angew. Chem. 2019, 131, 8828.
- [11] For the transition-metal-catalyzed C-C bond forming reactions involving the kinetic resolution of allylic alcohols, see: a) Y. Wang, X. Feng, H. Du, Org. Lett. 2011, 13, 4954. b) F. Wang, S. Li, M. Qu, M.-X. Zhao, L.-J. Liu, M. Shi, Chem. Commun. 2011, 47, 12813. c) S.-B. Tang, X. Zhang, H.-F. Tu, S.-L. You, J. Am. Chem. Soc. 2018, 140, 7737.
- [12] M. Fernández, M. Parena, T. Parella, A. Lledó, J. L. Bras, J. Muzart, A. Pla-Quintana, A. Roglans, Adv. Synth. Catal. 2016, 358. 1848.
- [13] For a review, see: H. Shimizu, I. Nagasaki, T. Saito, *Tetrahedron* 2005, 61, 5405.
- [14] CCDC 1971249 [(+)-3aa] contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [15] The rhodium-catalyzed enantioselective stereoconvergent isomerization of racemic secondary homoallylic and bishomoallylic alcohols was reported. See: R.-Z. Huang, K. K. Lau, Z. Li, T.-L. Liu, Y. Zhao, J. Am. Chem. Soc. 2018, 140, 14647.
- [16] For the rhodium-catalyzed kinetic resolution of racemic secondary allylic alcohols through the olefin isomerization, see: a) K. Ohkubo, T. Ohgushi, T. Kusaga, K. Yoshinaga, *Inorg. Nucl. Chem. Lett.* **1977**, *13*, 631. b) M. Kitamura, K. Manabe, R. Noyori, H. Takaya, *Tetrahedron Lett.* **1987**, *28*, 4719. c) K. Ren, L. Zhang, B. Hu, M. Zhao, Y. Tu, X. Xie, T. Y. Zhang, Z. Zhang, *ChemCatChem* **2013**, *5*, 1317; d) K. Ren, M. Zhao, B. Hu, B. Lu, X. Xie, V. Ratovelomanana-Vidal, Z. Zhang, *J. Org. Chem.* **2015**, *80*, 12572. The rhodium-catalyzed enantioselective stereoconvergent isomerization of racemic secondary allylic alcohols was also reported. See: e) T.-L. Liu, T. W. Ng, Y. Zhao, *J. Am. Chem. Soc.* **2017**, *139*, 3643.
- [17] In the reactions shown in Scheme 2, secondary allylic alcohols, which did not react with 1,6-enynes, were converted to a complex mixture of products presumably through the olefin isomerization. Therefore, the selectivity factor could not be determined.
- [18] For examples of β-Hydride elimination from seven-membered rhodacycles, see: a) M. Ishida, Y. Shibata, K. Noguchi, K. Tanaka, *Chem. Eur. J.* **2011**, *17*, 12578; b) M. Kobayashi, K. Tanaka, *Chem.*

Eur. J. **2012**, *18*, 9225. c) H. Ueda, K. Masutomi, Y. Shibata, K. Tanaka, *Org. Lett.* **2017**, *19*, 2913.

[19] For the structural determination for diastereomers 3hh and 3hh', see the Supporting Information.

This article is protected by copyright. All rights reserved.

Entry for the Table of Contents (Please choose one layout)

COMMUNICATION

It has been established that a cationic rhodium(I)/P-phos complex catalyzes the asymmetric [2+2+2] cycloaddition of 1,6-enynes with racemic secondary allylic alcohols. Mechanistic experiments revealed that the present cycloaddition proceeds through the kinetic resolution of the racemic secondary allylic alcohols, in which one enantiomer preferentially reacts with the 1,6-enyne.

Shunsuke Suzuki, Yu Shibata, and Ken Tanaka*

Page No. – Page No.

Rhodium-Catalyzed Asymmetric [2+2+2] Cycloaddition of 1,6-Enynes with Racemic Secondary Allylic Alcohols through Kinetic Resolution