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Rhodium-Catalyzed Asymmetric [2+2+2] Cycloaddition of 1,6-
Enynes with Racemic Secondary Allylic Alcohols through Kinetic 
Resolution 
Shunsuke Suzuki, Yu Shibata, and Ken Tanaka* 

 

Abstract: It has been established that a cationic rhodium(I)/P-phos 
complex catalyzes the asymmetric [2+2+2] cycloaddition of 1,6-
enynes with racemic secondary allylic alcohols to produce the 
corresponding chiral bicyclic cyclohexenes, possessing three 
stereogenic centers, as a single diastereomer with excellent ee 
values. Mechanistic experiments revealed that the present 
cycloaddition proceeds through the kinetic resolution of the racemic 
secondary allylic alcohols, in which one enantiomer preferentially 
reacts with the 1,6-enyne. 

The transition-metal-catalyzed asymmetric [2+2+2] 
cycloaddition of 1,6-enynes with alkenes is a useful method for 
the construction of bicyclic cyclohexene frameworks.[1] For this 
asymmetric transformation, cationic rhodium(I)/axially chiral 
biaryl bisphosphine complexes show high catalytic activity and 
selectivity.[2] For example, our research group reported that a 
cationic rhodium(I)/H8-binap complex is capable of catalyzing the 
regio-, diastereo-, and enantioselective [2+2+2] cycloaddition of 
1,6-enynes[3,4] with acrylamides[5] giving chiral bicyclic 
cyclohexenes, possessing two stereogenic centers (Scheme 
1a).[6] Not only acrylamides but also enamides[7] and 
oxabenzonorborna-dienes[8] could be employed in the rhodium-
catalyzed asymmetric [2+2+2] cycloaddition with 1,6-enynes. In 
the reactions using acrylamides and enamides, the coordination 
of the amide carbonyl into rhodium induce high reactivity and 
selectivity, and suppress the undesired β-hydrogen elimination 
giving diene products.[6,7a,9] 

In 2016, Roglans and Pla-Quintana reported that racemic 
secondary allylic alcohols[10] react with 1,6-diynes through the 
kinetic resolution[11] in the presence of a cationic 
rhodium(I)/binap complex to give bicyclic cyclohexadienes 
(Scheme 1b).[12] This reaction can construct contiguous two 
stereogenic centers as a single diastereomer with high ee 
values, while the substrate scope was somewhat limited 
(methoxycarbonyl- and aryl-substituted allylic alcohols, and 
sulfonamide-linked and dimethyl-substituted 1,6-diynes). In this 
Communication, we have established that a cationic 
rhodium(I)/P-phos complex is capable of catalyzing the regio-, 
diastereo-, and enantioselective [2+2+2] cycloaddition of 1,6-

enynes with racemic secondary allylic alcohols through the 
kinetic resolution at room temperature giving chiral bicyclic 
cyclohexenes, possessing three stereogenic centers (Scheme 
1c). This newly developed asymmetric catalysis shows a broad 
substrate scope concerning both 1,6-enyes and allylic alcohols. 
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Scheme 1. Research background. Ts = p-toluenesulfonyl. Ns = o-
nitrobenzenesulfonyl. MW = microwave. 

We first examined the reaction of tosylamide-linked 1,6-
enyne 1a and phenyl-substituted racemic secondary allylic 
alcohol 2a (3 equiv) in the presence of the cationic 
rhodium(I)/(R)-binap catalyst (20 mol %). The desired [2+2+2] 
cycloaddition proceeded at room temperature to give bicyclic 
cyclohexene 3aa with high ee value, but the yield of 3aa was low 
due to the formation of the undesired β-hydrogen elimination 
product 4aa (Table 1, entry 1). Increasing the steric bulk on the 
phosphorus significantly decreased the yields of both 3aa and 
4aa (entry 2). Thus, axially chiral biaryl bisphosphine ligands 
with various biaryl backbones[13] were surveyed (entries 3–6). 
This survey revealed that the use of (R)-segphos, possessing 
the smallest dihedral angle, shows the highest ratio of 3aa/4aa 
with retaining the high ee value of 3aa (entry 6), on the contrary, 
the use of (R)-H8-binap, possessing the largest dihedral angle, 
shows the lowest ratio of 3aa/4aa (entry 3). We anticipated that 
the use of electron-deficient segphos-type ligands (entries 7–9) 
would facilitate the reductive elimination and increase the yield 
of 3aa and decrease the yield of 4aa. Pleasingly, the use of P-
phos increased the yield of 3aa to 57% and decreased the yield 
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of 4aa to 5% (entry 9). Increasing the amount of 2a to 5 equiv 
further increased the yield of 3aa to 64% (entry 10), but the 
further increase of 2a to 10 equiv did not increase the yield of 
3aa (entry 11). Finally, the catalyst loading could be reduced to 
10 mol %, with only a slight erosion of the yield of 3aa (entry 12). 

Table 1. Optimization of reaction conditions.[a] 
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Entry Ligand (±)-2a 

(equiv) 

Catalyst 

(mol %) 

(+)-3aa 
% yield[b] 

(% ee) 

(+)-4aa 
% yield[b] 

(% ee) 

1 (R)-binap 3 20 39 (98) 24 (94) 

2 (R)-tol-binap 3 20 18 (98) 13 (98) 

3 (R)-H8-binap 3 20 17 (97) 30 (99) 

4 (R)-synphos 3 20 27 (98) 13 (89) 

5 (R)-MeO-biphep 3 20 35 (99) 15 (92) 

6 (R)-segphos 3 20 36 (98) 12 (90) 

7 (R)-Cl-MeO-

biphep 

3 20 46 (98) 22 (95) 

8 (S)-difluorphos 3 20 55 (96[c]) <5 (59[c]) 

9 (R)-P-phos 3 20 57 (98) 5 (75) 

10 (R)-P-phos 5 20 64 (98) 6 

11 (R)-P-phos 10 20 64 (98) 6 

12 (R)-P-phos 5 10 60 (98) 5 

[a] [Rh(cod)2]BF2 (0.0050–0.020 mmol), ligand (0.0050–0.020 mmol), 1a (0.10 
mmol), 2a (0.30–1.00 mmol), and CH2Cl2 (2.0 mL) were used. [b] Isolated 
yield. cod = 1,5-cyclooctadiene. 

With the optimized reaction conditions in hand, we examined 
the substrate scope of this reaction by using (R)-P-phos as a 
ligand (Scheme 2). With regard to allylic alcohols, 1-phenylprop-
2-en-1-ol derivatives 2a–e with electronically and sterically 
diverse substituents on the benzene ring reacted with 1,6-enyne 
1a to give the corresponding cyclohexenes 3aa–ae with good 
yields and high ee values. Naphthyl- and heteroaryl-substituted 
allylic alcohols 2f and 2g could participate in this reaction as well. 
Not only aryl but also primary, secondary, and tertiary alkyl-
substituted allylic alcohols 2h–k were suitable substrates for this 
process. However, tertiary allylic alcohol 2l and 
methoxycarbonyl-substituted secondary allylic alcohol 2m failed 
to react with 1a. The scope of 1,6-enynes was also examined. 
Interestingly, the improved product (3ba, 3bj, and 3cj) yields 
were observed in the reactions of 1,6-enynes 1b and 1c, 
possessing the bulkier substituent than the methyl group at the 

alkyne terminus. Also, the improved product (3da, 3dj, and 3dk) 
yields and/or ee values were observed in the reactions of 1,6-
enyne 1d, possessing 1,1-disubstituted alkene moiety. Not only 
tosylamide- (1a–d) but also malonate- (1e,f) and ether (1g)-
linked 1,6-enynes could be employed for this reaction. 
Importantly, in all cases, the cyclohexene products 3 were 
obtained as a single diastereomer with high ee values of 90–
>99%. The relative and absolute configurations of (+)-3aa were 
determined to be (R)-(5S,7aR) by an X-ray crystallographic 
analysis.[14] 
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Scheme 2. Substrate scope. [Rh(cod)2]BF2 (0.015 mmol), ligand (0.015 mmol), 
1 (0.15 mmol), 2 (0.75 mmol), and CH2Cl2 (2.0 mL) were used. The cited 
yields were of isolated products. [a] Determined by 1H NMR using dimethyl 
sulfone as an internal standard. 
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The present asymmetric [2+2+2] cycloaddition was scalable 
and thus the reaction using 1 mmol of 1b proceeded by using 
reduced amounts of 2j (4 equiv) and the Rh catalyst (5 mol %) to 
give cyclohexene product 3bj with almost the same isolated 
yield and ee value comparing with the small scale reaction 
(Scheme 3a). Synthetic transformations of the cyclohexene 
products were also examined. Epoxide 5, possessing five 
consecutive stereogenic centers, was isolated as a single 
diastereomer by oxidation of 3af with mCPBA (Scheme 3b). 
Cyclohexane 6, possessing five consecutive stereogenic centers, 
was also obtained as a single diastereomer by hydrogenation of 
3cj (Scheme 3c). 
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Scheme 3. Synthetic applications. mCPBA = m-chloroperoxybenzoic acid. 

To gain mechanistic insight into the present cycloaddition 
accompanied by the kinetic resolution, the following experiments 
were conducted. The reaction of homoallylic alcohol 7[15] and 
allyl ether 10 with 1a under the same reaction conditions as 
Scheme 2 afforded dienes 9 and 12 without the formation of 
cyclohexenes 8 and 11 (Schemes 4a and 4b). These results 
suggest that the strong bidentate coordination of the allylic 
alcohol into rhodium might deter the β-hydrogen elimination 
giving the diene product and promote reductive elimination 
giving the cyclohexene product. The rapid consumption of 
racemic allylic alcohol (±)-2f was observed at room temperature 
in the presence of a small amount (1 mol %) of the cationic 
rhodium(I)/(R)-P-phos complex to give unreacted allylic alcohol 
(R)-2f with low yield and ee value (Scheme 4c).[16] This result 
suggests that the major pathway of the kinetic resolution is not 
the reaction of allylic alcohol itself but that with the 1,6-enyne.[17] 

Thus, the reactions of chiral allylic alcohol (S)-2b (er = 98:2) 
with 1a were examined by using (R)- and (S)-axially chiral biaryl 
bisphosphine ligands (Scheme 4d). The use of (S)-P-phos and 
(S)-H8-binap afforded (–)-3ab and (–)-4ab, respectively, in good 
yields with high ee values along with small amounts of (–)-4ab 
and (–)-3ab, respectively. The use of (R)-P-phos and (R)-H8-
binap did not afford (–)-3ab and (–)-4ab, and afforded trace 
amounts of (+)-3ab, and (+)-3ab/(+)-4ab, respectively. These 
results suggest that one enantiomer of the racemic allylic alcohol 
preferentially reacts with the 1,6-enyne to give both the 
cyclohexene and diene products. The selectivity between 
reductive elimination giving the cyclohexene and β-hydrogen 
elimination giving the diene is determined by the ligand used. 
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Scheme 4. Mechanistic experiments. 

Proposed reaction mechanism is shown in Scheme 5a. 1,6-
Enyne 1 reacts with rhodium to generate rhodacyclopentene A. 
Bidentate coordination of racemic allylic alcohol (±)-2 to rhodium 
would generate four diastereomeric intermediates B1–B4. In 
intermediates B2–B4, there is steric repulsion between the 
equatorial phenyl group and R1, and/or between the 
rhodacyclopentene moiety and R3. On the contrary, no steric 
repulsion exists in intermediate B1. Thus, insertion of 2 
predominantly proceeds in B1 to generate rhodacycloheptene C, 
and the subsequent reductive elimination affords cyclohexene 3 
as a single diastereomer with high ee value without the 
formation of cyclohexenes 3’, 3’’, and 3’’’. The ligand-controlled 
β-hydrogen elimination[18] also proceeds in C to give diene 4 
through intermediate D. 

To confirm this mechanism, the reaction of sterically less 
demanding 1,6-enyne 1h (R1 = R2 = H, Z = NTs in 1 of Scheme 
5a) and racemic allylic alcohol (±)-2h (R3 = Me in 2 of Scheme 
5a) was examined. In this reaction, the steric repulsion between 
the equatorial phenyl group and R1 can be minimized, and that 
between the rhodacyclopentene ring and R3 would be small. 
Thus, a mixture of diastereomers was generated, and 
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diastereomers 3hh and 3hh’, which are generated from 
sterically less demanding intermediates B1 and B2, respectively, 

as major products (Scheme 5b).[19] 

a) Proposed reaction mechanism

b) Reaction of non-substituted 1,6-enyne
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Scheme 5. Proposed reaction mechanism. 

In conclusion, we have established that a cationic rhodium(I) 
complex bearing the P-phos ligand, which is electron-deficient 
and possesses a small dihedral angle, catalyzes the asymmetric 
[2+2+2] cycloaddition of 1,6-enynes with racemic secondary 
allylic alcohols to produce the corresponding chiral bicyclic 
cyclohexenes, possessing three stereogenic centers, as a single 
diastereomer with excellent ee values. The strong bidentate 
coordination of the allylic alcohol into rhodium might deter the β-
hydrogen elimination, and facilitate reductive elimination to give 
the cyclohexene product. The present cycloaddition proceeds 
through the kinetic resolution of the racemic secondary allylic 
alcohols, in which one enantiomer preferentially reacts with the 
1,6-enyne. Future works will focus on the further development of 
the rhodium-catalyzed asymmetric [2+2+2] cycloaddition 
involving the kinetic resolution. 
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It has been established that a cationic rhodium(I)/P-phos complex catalyzes the 
asymmetric [2+2+2] cycloaddition of 1,6-enynes with racemic secondary allylic 
alcohols. Mechanistic experiments revealed that the present cycloaddition proceeds 
through the kinetic resolution of the racemic secondary allylic alcohols, in which one 
enantiomer preferentially reacts with the 1,6-enyne. 
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