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ABSTRACT: An efficient method for the synthesis of tetrasubstituted furans was developed by utilizing the [1,2]-phospha-Brook
rearrangement under Brønsted base catalysis. The two-step one-pot formal [3 + 2] cycloaddition involves the nucleophilic addition
of a propargyl anion, which is catalytically generated through the [1,2]-phospha-Brook rearrangement, to an aldehyde and the
subsequent intramolecular cyclization mediated by N-iodosuccinimide to provide 2,4,5-trisubstituted-3-iodofurans. The present
method with readily available substrates provides new access to a wide range of well-organized tetrasubstituted furans.

Densely functionalized furans are important five-mem-
bered heteroaromatic compounds found in numerous

biologically active natural products, synthetic pharmaceuticals,
and agrochemicals.1 In addition, they can be employed as a
useful building block in synthetic organic chemistry2 as well as
a potential skeleton in material science.3 Therefore, the
development of general and efficient methods for the synthesis
of functionalized furans is an important subject, and massive
efforts have been undertaken over the years.4 One of the
straightforward approaches for the synthesis of functionalized
furans is the direct functionalization of existing furans.5

However, challenges remain in its reaction scope and efficiency
particularly for the synthesis of densely functionalized furans
including tetrasubstituted furans. The intramolecular cycliza-
tion of acyclic compounds is also a well-established approach.6

In that approach, the multistep synthesis of densely function-
alized precursors is required, which hinders efficient access to
diverse tetrasubstituted furans. Thus, in recent years, the
construction of tetrasubstituted furan rings through the
cycloaddition of multiple components has been intensively
studied.7,8 Although various types of reactions have been
developed, methods that provide efficient access to a wide
range of tetrasubstituted furans from readily available starting
compounds are still limited.
The [3 + 2] cycloaddition is a powerful strategy for the

construction of the five-membered heteroaromatic frameworks.
Indeed, several efficient approaches have been established in
the synthesis of multisubstituted pyrroles because various types
of nitrogen-containing subunits, such as imines, enamides, and
azomethyne ylides, and their reaction partners are easily
available.9 In this regard, we have recently established a
method for the synthesis of polysubstituted pyrroles, which is

based on the [3 + 2] cycloaddition strategy utilizing the [1,2]-
phospha-Brook rearrangement under Brønsted base catalysis
(Scheme 1a).10 The formal [3 + 2] cycloaddition involves the
construction of a pyrrole ring from propargyl alcohols 1 as a
C3 subunit containing the requisite umpolung and imines as a
two-atom subunit containing nitrogen, providing a diverse
array of well-organized polysubstituted pyrroles.
In contrast to the efficient synthesis of multisubstituted

pyrroles based on the [3 + 2] cycloaddition strategy, the
reactions for the synthesis of multisubstituted furans are still
underdeveloped because of the limited scope of subunits for
the construction of a furan ring. We, hence, envisioned that our
methodology for the formal [3 + 2] cycloaddition would be
further applicable to the synthesis of tetrasubstituted furans.
The use of propargyl alcohols 1 as a C3 subunit and aldehydes
2 as a two-atom subunit containing oxygen would markedly
extend the usability of the [3 + 2] cycloaddition strategy and
potentially lead to a significant broadening of the accessible
tetrasubstituted furans. Specifically, the proposed two-step
formal [3 + 2] cycloaddition of propargyl alcohols 1 to
aldehydes 2 provides 2,4,5-trisubstituted-3-iodofurans 4 as
shown in Scheme 1b. The first step of the formal [3 + 2]
cycloaddition is the addition of propargyl alcohols 1 to
aldehydes 2 under the influence of a Brønsted base catalyst.
Treatment of 1 and 2 with a Brønsted base catalyst would
result in the deprotonation of 1 followed by the [1,2]-phospha-
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Brook rearrangement,11,12 which is the migration of the
dimethoxyphosphoryl moiety from carbon to oxygen, to
generate α-oxygenated propargyl anion B. The addition of B
to the aldehyde at the γ-position and the subsequent
protonation by the conjugated acid of the Brønsted base or
1 would provide allenyl alcohol 3 along with regeneration of
the Brønsted base catalyst or alkoxide A. The second step is
the intramolecular cyclization. Based on our previous study,10

the electrophilic activation of the allene moiety of 3 by N-
iodosuccinimide (NIS) would cause the intramolecular
addition of the alcohol to the allene moiety, and the
aromatization would occur through the following elimination
of dimethyl phosphate to provide 3-iodofuran 4. Considering
that propargyl alcohols 1 are easily prepared from the
corresponding alkynyl ketones with a secondary phosphite by
treating with an appropriate Brønsted base,13 the method
could be regarded as the construction of a furan ring from two
readily available carbonyl compounds under mild reaction
conditions. Particularly, a variety of aldehydes, including
aromatic, aliphatic, and even densely functionalized ones, are
available, which is a substantial advantage compared to
conventional furan synthesis. Furthermore, the iodide moiety
on the furan ring would potentially function as a handle for
manipulation by various methods. Therefore, the method
would provide new efficient access to a wide range of well-
organized tetrasubstituted furans. Herein we report a two-step
one-pot formal [3 + 2] cycloaddition that provides 2,4,5-
trisubsituted-3-iodofurans. Further transformations of the
iodide moiety into various carbon-based substituents are also
described.
We commenced our investigation by screening the reaction

conditions in the first step of the formal cycloaddition, that is,
the nucleophilic addition of propargyl alcohols 1 to aldehydes
2 catalyzed by a Brønsted base. As the initial substrate, 1a
having a phenyl group at the propargylic position and a butyl
group at the alkyne terminus was used. Treatment of 1a and
benzaldehyde (2a) with 10 mol % P1-tBu in DMF at −60 °C

was carried out according to the reaction conditions for our
previous pyrrole synthesis (Table 1, entry 1).10 The reaction

provided desired allenyl alcohol 3aa as the major product in
65% NMR yield along with some byproducts including
propargyl alcohol 5aa, which was formed through the addition
of the propargyl anion to 2a at the α-position followed by the
migration of the dimethoxyphosphoryl moiety, as well as
allenyl phosphate 6a and propargyl phosphate 7a, which were
formed by the direct protonation of propargyl anion at the γ-
and α-positions, respectively. Screening of Brønsted bases
including organobases having different basicities (entries 2−5)
and alkali tert-butoxides (entries 6−8) was carried out, and
potassium and sodium tert-butoxides provided 5aa in the
highest NMR yields (entries 6 and 7). Then, several solvents
were tested with potassium tert-butoxide (tBuOK) as the base
(entries 9−11). The effect of solvents was significant, and
DMF was the solvent of choice (entry 6 vs entries 9−11).
Next, the second step of the formal [3 + 2] cycloaddition

was examined. Allenyl alcohol 3aa was treated with 1.2 equiv
of NIS in DMF at room temperature to afford corresponding
3-iodofuran 4aa in high yield (eq 1).

Scheme 1. Our [3 + 2] Cycloaddition Strategies for
Construction of Heteroaromatic Frameworks

Table 1. Initial Screening of Reaction Conditionsa

yield (%)b

entry base solvent 3aa (dr)c 5aa (dr)c 6a 7a

1 P1-tBu DMF 65 (60/40) 18 (58/42) 10 1
2 P2-tBu DMF 72 (60/40) 15 (63/37) 10 3
3 P4-tBu DMF 69 (61/39) 13 (54/46) 12 1
4 DBU DMF <1 <1 <1 <1
5 TBD DMF 63 (63/37) 11 (63/37) 16 2
6 tBuOK DMF 74 (60/40) 15 (66/34) 9 2
7 tBuONa DMF 74 (62/38) 15 (59/41) 9 2
8 tBuOLi DMF 68 (61/39) 19 (57/43) 6 1
9d tBuOK CH3CN 27 (57/43) 26 (70/30) 26 11
10 tBuOK THF 31 (66/34) 38 (55/45) 18 5
11 tBuOK toluene 14 (83/17) 13 (81/19) 11 8

aConditions: 1a (0.25 mmol), 2a (0.50 mmol), base (0.025 mmol),
solvent (1.0 mL), −60 °C, 3 h. bNMR yields. cDiastereomeric ratio
was determined by 31P NMR analysis. dThe reaction was conducted
at −40 °C.
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Based on this result, the one-pot synthesis of 4aa from 1a
and 2a was attempted (Scheme 2). 1a and 2a were treated

with 10 mol % tBuOK in DMF at −60 °C for 3 h. NIS was
then added at that temperature, and the resulting mixture was
allowed to warm to room temperature and stirred for an
additional 3 h to provide 4aa in 67% yield, which is
comparable to that obtained by the two-step protocol (70%
yield in two steps). In addition, this operationally simple
method was sufficiently reliable to permit the synthesis of 4aa
in gram scale.
The substrate scope was investigated by using the one-pot

protocol. First, the scope of propargyl alcohols 1 was examined
with benzaldehyde (2a) as the partner (Table 2). In addition

to a primary alkyl group, a secondary alkyl group was
applicable as substituent R2 at the alkyne terminus (entry 1).
A variety of (hetero)aryl groups were applicable as substituents
R2 at the alkyne terminus, and the corresponding 3-iodofurans
were obtained in moderate to good yields (entries 2−6).
Among them, 1f having a sterically hindered ortho-tolyl group
provided α-adduct 5 as the major product, and thus the yield
of 4fa was moderate (entry 5). The substituent at propargylic
position R1 was screened with substrates possessing a butyl
group at the alkyne terminus (entries 7−10). The substrates
having (hetero)aryl groups underwent the reaction without any
problems, and the corresponding products were obtained in
good yields. However, no reaction occurred when propargyl
alcohol 1l possessing alkyl groups at both the propargylic

position (R1 = cC6H11) and the alkyne terminus (R2 = nBu)
was applied as the substrate (entry 11). On the other hand, in
the case of the propargyl alcohol having a phenyl group at the
alkyne terminus, an alkyl group, such as a cyclohexyl group,
could be used as a substituent at the propargylic position
(entry 12).
Next, the scope of aldehydes 2 was investigated (Scheme 3).

Aromatic aldehydes 2b and 2c with an electron-donating

alkoxy group at the para position afforded corresponding
products 4ab and 4ac in good yields. In contrast, when 2d and
2e having a strong electron-withdrawing group, such as a cyano
group and a nitro group, at the para position were used,
significant amounts of α-adducts 5 were formed and the yields
of 4ad and 4ae were moderate. The reactions of 2-
chlorobenzaldehyde (2f) and quinolone-2-carboxaldehyde
(2g) proceeded without any problem to provide 4af and 4ag
in good yields. In the case of furfural (2h), the amount of NIS
for the second step influenced the reaction outcome (eq 2).

The use of 0.6 equiv of NIS provided 4ah selectively. In
contrast, an excess of NIS caused the iodination of the furan
ring derived from furfural, and 4ah′ was obtained exclusively.
Aliphatic aldehydes were also examined. Secondary alkyl-
substituted 2j provided the desired product in good yield,
whereas the use of primary and tertiary alkyl-substituted 2i and
2k resulted in low yields of 4. Functionalized aldehydes, such
as N-Boc prolinal (2l) and alkynyl aldehyde 2m, were also
applicable, and 4al and 4am were obtained in good yields,
respectively.14

Two types of double cycloaddition were attempted with
substrates having two reaction sites (Scheme 4). The reaction
of 1a with terephthalaldehyde (2n) gave two furan rings at
once, providing 4an with a teraryl core structure albeit in
moderate yield (Scheme 4a). On the other hand, diol 1n

Scheme 2. One-Pot and Gram-Scale Synthesis

Table 2. Scope of Propargyl Alcoholsa

entry R1 R2 4 yield (%)b

1 Ph cC6H11 4ba 61
2 Ph Ph 4ca 53
3 Ph 4-MeOC6H4 4da 43c

4 Ph 4-ClC6H4 4ea 73
5 Ph 2-MeC6H4 4fa 32
6 Ph 2-thienyl 4ga 80
7 4-MeOC6H4 nBu 4ha 70
8 4-FC6H4 nBu 4ia 60
9 2-MeC6H4 nBu 4ja 76
10 2-thienyl nBu 4ka 70c

11 cC6H11 nBu 4la <1c

12d cC6H11 Ph 4ma 69
aConditions: 1 (0.25 mmol), 2a (0.30 mmol), tBuOK (0.025 mmol),
DMF (1.0 mL), − 60 °C, 3 h, then NIS (1.2 equiv), rt, 3 h. bIsolated
yields unless otherwise noted. cNMR yield. dReaction was conducted
with DMF (2.0 mL).

Scheme 3. Scope of Aldehydes

aReaction was conducted with NIS (1.0 equiv).
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successfully participated in the double cycloaddition to afford
4na, the structural isomer of 4an (Scheme 4b).
Finally, the derivatization of iodofuran 4aa obtained by the

two-step [3 + 2] cycloaddition was conducted (Scheme 5). As
the transformation utilizing an iodide moiety, a variety of
palladium-catalyzed reactions, such as the Sonogashira

coupling reaction, the Suzuki−Miyaura coupling reaction, the
Migita−Kosugi−Stille coupling reaction, and the Mizoroki−
Heck reaction, could be performed and corresponding
coupling products 8−11 were obtained in high yields (Scheme
5a). Furthermore, 4aa was amenable to lithiation through the
halogen−metal exchange followed by trapping with electro-
philes, such as an aldehyde and an acid chloride, providing
densely functionalized tetrasubstituted furans 12 and 13 in
good yields (Scheme 5b). As a different type of derivatization
of 4aa, the transformation of the furan ring was performed.
The Diels−Alder reaction with benzyne generated from 14 and
the subsequent deoxygenative aromatization15 provided
1,2,3,4-tetrasubstituted naphthalene 16 (Scheme 5c).
In conclusion, we have established an efficient method for

the synthesis of tetrasubstituted furans on the basis of the [3 +
2] cycloaddition strategy utilizing the [1,2]-phospha-Brook
rearrangement under Brønsted base catalysis. The two-step
one-pot formal [3 + 2] cycloaddition involves the nucleophilic
addition of an α-oxygenated propargyl anion, which is
catalytically generated through the [1,2]-phospha-Brook
rearrangement, to the aldehyde at the γ-position and the
subsequent intramolecular cyclization mediated by NIS to
furnish 2,4,5-trisubstituted-3-iodofurans possessing various
substituents in a positional selective manner. The iodofurans
obtained by the cycloaddition were applicable to a variety of
transformations, including palladium-catalyzed cross-coupling
reactions, alkylation and acylation through halogen−metal
exchange, and the Diels−Alder reaction. Therefore, the present
method with readily available substrates provides new access to
a wide range of well-organized tetrasubstituted furans.
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