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ABSTRACT: We report the development of a multifunctional 
reagent for the direct conversion of pyridines to Boc-protected 2-
aminopyridines with exquisite site- and chemoselectivity. The 
novel reagent was prepared on 200 gram-scale in a single step, 
reacts in the title reaction under mild conditions without 
precautions towards air or moisture, and is tolerant of nearly all 
common functionality. Experimental and in-situ spectroscopic 
monitoring techniques provide detailed insights and unexpected 
findings for the unique reaction mechanism. 

Pyridines are privileged heterocycles as key components of 
hundreds of pharmaceuticals and agrochemicals, and thousands of 
natural products.1 As such, several methods for the modification of 
pyridines have been developed that have expanded access to 
pyridine-containing compounds and their derivatives.2 For 
example, Minisci-type radical addition reactions are commonplace 
for the introduction of carbon-bound fragments,3,4 and numerous 
methods have been developed for installing carbon- or heteroatom-
based fragments from pyridine N-oxides or related N-activated 
pyridinium species.5,6 However, to avoid the strong oxidants and 
activating agents in pyridine N-oxide chemistry, and override 
inherent site-selectivity in radical reactions, we sought to develop 
a new approach for site-selective functionalization of pyridines. 

Among the extensive pyridine-containing biologically active 
compounds known, 2-aminopyridines play a central role as 
privileged pharmacophores found in compounds across all 
therapeutic areas.7a In fact, of the small-molecule-based therapetics 
that were approved by the FDA in 2019, 8 of 32 (25%) contained a 
2-aminopyridine (5 of 32) or 2-aminodiazine (3 of 32) motif (for 
examples, see Figure 1).7b Thus, given the importance of 2-
aminopyridines, the challenges associated with pyridine N-oxide 
and related chemistry,8 and the extreme conditions and narrow 
utility of the Chichibabin reaction,9 we aimed to develop conditions 
for the direct conversion of pyridines to 2-aminopyridines that 
would be applicable towards the functionalization of drug-like 
molecules. Specifically, the target reaction would need to occur 
with exquisite site-selectivity, work directly on pyridines without 
pre-activation, be tolerant of the protic and Lewis-basic 
functionalities found in drug-like molecules, be able to be 
conducted on the benchtop without special precautions towards air 
or moisture, generate minimal waste, allow for simple purification, 
and employ only simple and readily available reagents.10  
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Figure 1. Selected Examples of Pharmaceuticals Containing 2-
Aminopyridine Motifs that were Approved by the FDA in 2019.

With the above considerations in mind, we set out to develop a 
general method for the conversion of pyridines to 2-
aminopyridines. Initially, we investigated reactions with our 
recently reported bifunctional reagent, 1.11 The bifunctional reagent 
acts as both an activator for the pyridine ring and as a mild two-
electron oxidant through N-O bond cleavage. Though hundreds of 
reaction conditions were investigated with a diverse set of nitrogen-
based nucleophiles and a library of bifunctional reagents, the 
targeted products were not detected in any instance. In general, 
attack of the nucleophile at the oxime carbon and/or ring-opening 
of putative aminal intermediates occurred (Figure 2A).12 To 
circumvent these undesired pathways, we designed and tested 
several new reagents that would i) react with pyridine to form a 
reactive pyridinium salt, ii) provide intramolecular delivery of a 
nitrogen nucleophile, thereby iii) directing functionality 
exclusively to C-2, iv) prevent ring opening, and ultimately v) 
promote 2-electron oxidation/rearomatization through N-O bond 
cleavage. 
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Figure 2. Pyridine Functionalization Strategies with 
Multifunctional Reagents

Several reagents based on the original bifunctional reagent 
design were prepared and tested (Figure 2B), but were either 
unstable, due to the presence of a nucleophile and electrophile in 
the same molecule, or did not promote the desired reaction. Finally, 
we evolved the design by changing the activating group from an 
oximoyl chloride to an electron-deficient chloropyrazine, and 
transposing the 2-electron oxidant to the nucleophilic nitrogen, 
ultimately leading to reagent 2 (Figure 2C).13 The tentative 
mechanism that guided the reagent design and reaction 
development is shown in Figure 2D, consisting of pyridine 
activation, intramolecular delivery of the nitrogen nucleophile, 
rearomatization through N-O bond cleavage and tautomerization, 
and eventual cleavage of the pyrazine fragment. 

With pyridine as a model substrate, conditions were investigated 
for C-2 amination by carrying out reactions of 2 in the presence of 
HCl scavengers. While typical inorganic or organic bases led to the 
decomposition of 2, N,O-bis(trimethylsilyl)acetamide (BSA) 
promoted the desired reaction by scavenging HCl through the 
generation of TMSCl. Reactions of pyridine with 1.5 equiv of 2 and 
3 equiv of BSA in dioxane at 80°C formed the presumed (vide 
infra) pyrazine-bound product in nearly quantitative yield after 3 h. 
An extensive set of experiments were carried out to investigate 
cleavage of the adducts to reveal the 2-aminopyridine product. 
Initially, SNAr reactions with a diverse set of nucleophiles were 
investigated, but were generally low-yielding. Acid-mediated 
hydrolysis could cleave the adducts with removal of the Boc group 
under forcing condition (6M HCl, reflux), but the harsh conditions 
were deemed impractical. Finally, we discovered that mild 
reducing conditions (Zn + AcOH) promote the cleavage at ambient 
temperature to reveal the 2-NHBoc pyridine product in high yield 
(eq 1). 
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Having demonstrated the ability of reagent 2 to convert pyridine 
to 2-NHBoc pyridine, 200 grams of the reagent were prepared in a 
single step (eq 2) from commercially available 5,6-
dichloropyrazine-2,3-dicarbonitrile ($1.35/mmol) and N-Boc 
hydroxylamine ($0.05/mmol).14 Purified 2 is crystalline, 
indefinitely stable in air, not shock-sensitive, and is thermally 
stable in the solid state to 126 °C based on DSC analysis.15 
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With bulk quantities of reagent 2, the substrate scope was 
investigated with respect to the electronic properties of the 
substrates and the tolerance of common functional groups (Scheme 
1). The reaction sequence allows for the direct functionalization of 
pyridines spanning a range of electronically disparate substrates. 
The functional group tolerance encompasses protic and 
nucleophilic functionality such as alcohols, carboxylic acids, N-H 
bearing sulfonamides, amides and indoles, and unprotected 
phenols. This is significant, as such functional groups are reactive 
towards activating agents used in many pyridine functionalization 
methods. The tolerance of such functional groups in this work may 
be attributed, in part, to the capping action of the BSA, masking the 
functionality as inert silyl derivatives. By design, as a relatively 
inert N-O bond is used as the terminal oxidant, the reaction is 
tolerant of thioethers and aldehydes, functional groups that are 
reactive towards the oxidants used in pyridine N-oxide chemistry. 
Scheme 1. Representative Substrate Scope with 
Multifunctional Reagent 2a 
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aIsolated yields shown for reactions carried out with 0.5 mmol 
of 3 unless otherwise noted. Ratios in brackets refer to the ratio of 
the major product (drawn) and the minor isomeric product at the 
end of the reaction. bThe yield was determined with a UPLC 
instrument calibrated against authentic standards. cThe ketone 
group of 3 was reduced to the secondary alcohol in quantitative 
yield in the second step. 

During the investigation of the scope for the pyridine amination 
reaction with 2, some limitations became evident that we would 
like to disclose. First, 2-substituted pyridines reacted in low yield 
due to their significantly reduced nucleophilicity compared to 
analogous 3- or 4-substituted pyridines. Similarly, diazine 
substrates reacted to form less than 10% of the target products; 
attempts to force the reaction were unsuccessful. While the mild 
reducing conditions used to cleave the pyrazine-containing product 
adducts generally showed broad generality and tolerated aldehyde, 
aryl iodide, and 1,2,4-oxadiazole groups, the diaryl ketone in 
substrate 4l was reduced to the secondary alcohol in quantitative 
yield during the reduction step. 

Reactions carried out with 3-substituted pyridines revealed that 
functionalization can occur with selectivity to form either the 2,3- 
or 2,5-disubstituted products. Pyridine substrates bearing 3-fluoro, 
3-bromo, or 3-methoxy substituents formed the 2,3-disubsituted 
products preferentially. Larger functional groups such as 
(hetero)aryl, methoxycarbonyl, and trifluoromethyl directed 
functionalization primarily to the less-hindered carbon. Quinoline 

reacted to form 1-NHBoc quinoline exclusively. These selectivity 
trends are analogous to known pyridine C-2 functionalization 
reactions, including those with pyridine N-oxides,3 cyanation 
reactions with 1,11 and fluorination with AgF2.16 Contrasteric 
reactions that form the more hindered product may be rationalized 
by the increased reactivity of the C-2 carbon relative to the C-6 
carbon from inductive or resonance effects, and the relief of 
eclipsing interactions during rehybridization in the nucleophilic 
addition step.

In most cases, reactions were carried out with 0.5 mmol of the 
pyridine substrate. The reaction carried out with 4-phenylpyridine 
formed the product in the same yield and with the same reaction 
profile on both 0.5 and 5.0 mmol scales, in line with expectations 
for a homogeneous, air- and moisture-tolerant, thermally-driven 
reaction that forms stable products. Furthermore, variants of 
reagent 2 containing Cbz or Ts groups in place of Boc were also 
prepared on gram-scale and promoted C-2 functionalization of 
pyridine under the standard conditions in high yields (eq 3).
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To gain additional insight into the reaction mechanism, 
mechanistic and spectroscopic experiments were carried out. First, 
a competition reaction was conducted between pyridine and 4-
CO2Me pyridine. Analyzing the reaction after approximately 20% 
conversion revealed that only pyridine had reacted with 2 to form 
the pyridine-pyrazine adduct, with none of the product formed from 
4-CO2Me pyridine (eq 4). This observation is consistent with the 
fact that poorly nucleophilic pyridines react slower than more 
nucleophilic pyridines. Next, a reaction with 2-deuterio-4-
phenylpyridine was carried out under the standard conditions to 
measure the intramolecular KIE (eq 5). At the end of the reaction, 
equimolar amounts of the product resulting from C-H and C-D 
functionalization were observed.17 
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To build on the experimental results, a series of NMR 
spectroscopy experiments were carried in dioxane-d8 out to observe 
and characterize the intermediates that are formed throughout the 
reaction. First, the reaction was monitored at ambient temperature 
to observe short-lived reaction intermediates. Within the first 10 
minutes, the originally proposed dihydropyridine species 5 was 
observed as a major species in the reaction mixture (COSY, HSQC, 
HMBC), along with unreacted pyridine. The pyridinium adduct 
that results from displacement of the chloride in 2 by pyridine 
(Figure 2D) was not observed, consistent with rapid intramolecular 
attack of the pendent NHBoc group at the electrophilic C-2 position 
occurring as the pyridinium adduct forms. At room temperature, 
dihydropyridine 5 reacted further through base-mediated cleavage 
of the N-O bond, reaching full conversion after approximately 90 
minutes. The originally proposed zwitterionic structure was found 
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to be incorrect, with the actual structure (6) containing an OTMS 
group and a deprotonated N-H Boc group on the pyridine. The 
structure was unambiguously assigned through COSY, HSQC, 
HMBC, LR-HSQMBC,19 NOESY, and 1H/15N HMBC 
experiments. 

In a separate experiment, the final species formed under the 
standard reaction conditions after 3 h at 80°C was characterized and 
determined to be different than the final species, 6, formed at room 
temperature.18 LC/MS analysis of reactions carried out at room 
temperature and 80°C clearly showed that the species formed prior 
to Zn-mediated reduction were different, suggesting that 
isomerization occurs at elevated temperatures. Indeed, the species 
observed after heating at 80°C was found to be an isomer of 6 that 
results from a net displacement of the pyridine nitrogen with the 
Boc-protected nitrogen, forming 7.20 The structure was 
unambiguously assigned through COSY, HSQC, HMBC, LR-
HSQMBC,19 NOESY, and 1H/15N HMBC experiments. The 
isomerization process was unexpected, and demonstrates the value 
of detailed 2D NMR spectroscopy experiments, inculding LR-
HSQMBC19 that provided key long-range correlations of the 
proton-deficient molecules, as the structural assignments of  6 and 
7 were ambiguous based on typical 1H and 13C experiments and 
mass spectrometry. 

Finally, the reaction mixture was subjected to the Zn-mediated 
reduction step in acetic acid-d4. After reduction, the reaction 
mixture contained 4a as the only observable pyridine-derived 
compound by NMR spectroscopy.21 The structure of the pyrazine 
fragment was characterized by the above-mentiond 2D NMR 
spectroscopy experiments, including  LR-HSQMBC, and 
determined to be compound 8. 

The combination of experimental observations and 
characterization of intermediates allows for a detailed mechanism 
to be proposed. The attack of the pyridine substrates at the 
chloropyrazine is product determining (eq 4) and the adduct is 
quickly trapped by the pendent NHBoc group. The HCl that is 
formally generated in this step reacts with BSA to generate TMSCl 
and AcNHTMS (characterized in situ). Based on the results shown 
in eq 5, dihydropyridine formation is irreversible. The N-O bond 
cleavage occurs with rapid silylation of the liberated oxygen anion, 
and the initially formed species undergoes an isomerization to 
generate a more stable intermediate. The Zn-mediated reduction 
likely proceeds by donation of electrons to the electrophilic 
pyrazine, with extrusion of the Boc-protected aminopyridine as 
from a putative aminal intermediate, followed by further reduction 
to 8.
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Figure 3. Reaction Monitoring by NMR Spectroscopy

In summary, we have developed a novel, multifunctional reagent 
for the conversion of pyridines to Boc-protected 2-aminopyridines. 
A series of mechanistic and spectroscopic experiments demonstrate 
that the multifunctional reagent effects the C-2 amination of 
pyridines by activating pyridine as a pyridinium salt, directing the 
rapid intramolecular delivery of a nitrogen nucleophile, 
rearomatizing an intermediate dihydropyridine through N-O bond 
cleavage, which is then thermally isomerized to a more stable 
product before Zn-mediated reduction. Given the utility and scope 
of the reaction, the availability of the reagent in bulk quantities in 
a single step, and the straightforward reaction set-up, we are 
confident this new method will be valuable for pyridine 
functionalization. Building upon the concepts and observations 
reported here, the invention of new multifunctional reagents to 
carry-out synthetically useful reactions is the focus of several 
ongoing projects in our lab.
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