

Organic Preparations and Procedures International

The New Journal for Organic Synthesis

ISSN: 0030-4948 (Print) 1945-5453 (Online) Journal homepage: https://www.tandfonline.com/loi/uopp20

An Effective and Environmentally Friendly Synthesis of 1,3-Keto-alcohols

Tülay Yıldız, Hacer Can & Ayşe S. Yusufoğlu

To cite this article: Tülay Yıldız, Hacer Can & Ayşe S. Yusufoğlu (2020): An Effective and Environmentally Friendly Synthesis of 1,3-Keto-alcohols, Organic Preparations and Procedures International, DOI: 10.1080/00304948.2019.1693239

To link to this article: https://doi.org/10.1080/00304948.2019.1693239

Published online: 13 Jan 2020.

🕼 Submit your article to this journal 🗗

View related articles

則 🛛 View Crossmark data 🗹

EXPERIMENTAL PAPER

Check for updates

An Effective and Environmentally Friendly Synthesis of 1,3-Keto-alcohols

Tülay Yıldız (), Hacer Can, and Ayşe S. Yusufoğlu

Department of Chemistry, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey

ARTICLE HISTORY Received 22 January 2019; Accepted 31 August 2019

The 1,3-hydroxycarbonyl group is an essential synthon for natural products and bioactive organic molecules. In order to obtain this structure, a number of reaction methods have been developed and, among them, the aldol reaction is one of the most popular and effective.¹⁻⁶ Green chemistry methods have contributed greatly to the progress of aldol reactions in recent years. Harmful effects are reduced by solvent-free catalytic aldol reactions^{7,8} or catalytic aldol reactions in water,⁹ supercritical fluids¹⁰⁻¹² or ionic liquids.^{13,14} The use of catalysts can be made more effective by using heterogeneous catalysis,¹⁵ synthetic chiral catalysts,¹⁶ biocatalysts^{17,18} and biomimetic catalysts.^{19,20}

Dimethyl sulfoxide (DMSO), in the presence of a little water, can be used as a polar aprotic solvent in organocatalyzed asymmetric aldol reactions.^{21–27} According to the U.S. Environmental Protection Agency (EPA), DMSO has also been classified as a non-toxic solvent that poses no human health hazard.²⁸

In this study, our aim was to synthesize new tetralone- and indanone-derived 1,3-keto-alcohols, which can be used as important prochiral intermediates. In the past, these 1,3-keto-alcohols were only synthesized by the Mukaiyama aldol reaction using silyl enol ethers instead of ketones.^{29–33} In contrast, because of the reversibility and the difficulty of controlling the enolate geometry, acid- or base-promoted classical aldol reaction is used to obtain tetralone or indanone-derived 1,3-keto-alcohols, α - β -unsaturated ketone derivatives generally occur.

When we tried to prepare the ketones with the classic aldol procedure³⁴ and reagents we always saw the formation of alkene derivatives. Because of high conjugation, tetralone-derived α - β -unsaturated ketones are very stable, so in the typical classic strongly acidic or basic environment, the keto-alcohol immediately turns into an alkene by dehydration (Scheme 1).

We thus found a new method by testing different conditions (Table 1).

As seen in Table 1, when NaOH was used as the base, there was no keto-alcohol product **3a** and only the α , β -unsaturated ketone occurred at 25 °C (Entry 1). On the other hand, when K₂CO₃ was used as the base at room temperature, we observed **3a** as

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uopp. © 2020 Taylor & Francis Group, LLC

Scheme 1. Dehydration of the 1,3-keto-alcohol and highly conjugated product.

Scheme 2. The oxidation reaction of keto alcohols.

		0 + (1a	0 2a	Base Solvent	O OH Ja	+ Jalkene	
Entry	Base	Solvent	T (°C)	Time (h)	Yield (%) ^b (3a)	<i>dr(anti/syn)</i> ^c (3a)	Yield (%) ^b (3 _{alkene})
1	NaOH	MeOH	25	5	0	-	98
2	NaOH	MeOH	0	5	25	52:48	71
3	NaOH	MeOH	-10	2	55	62:38	34
4	NaOH	DMSO	-10	2	50	67:33	25
5	KOH	MeOH	-10	2	10	63:37	75
6	Na_2CO_3	MeOH	25	48	52	65:35	0
7	K ₂ CO ₃	MeOH	25	48	75	76:24	0
8	K ₂ CO ₃	DMSO	25	48	80	70:30	0
9	K ₂ CO ₃	H ₂ O	25	48	10	58:42	0
10	K ₂ CO ₃	DMSO-H ₂ O (8:2) 25	24	95	85:15	0

Table 1. Aldol reaction conditions.^a

^aConditions: **1a** (10 mmol), **2a** (7.5 mmol), and base (10 eq %) in solvent (2.5 mL) were stirred at the corresponding temperature.

^bYield of isolated product. ^c The *dr* values were determined by HPLC analysis using a chiral column.

the only product with good yield. The solvent mixture DMSO-H₂O (8:2) showed the best result with 95% yield in 24 hours (Entry 10). Also very good diastereoselectivity was achieved with diasteromeric ratio (dr) 85:15 using K₂CO₃ and DMSO-H₂O (8:2) in the aldol reaction.

We tried some Lewis acids (FeCl₃, CoCl₂, ZnCl₂ and MnCl₂) and organic Brønsted acids (benzoic acid, trifluoroacetic acid (TFA) and *N*-triflylphosphoramide (NTPA)) as catalysts in this reaction and compared these acids with K_2CO_3 . The results are summarized in Table 2 and as seen clearly the other catalysts are not better than K_2CO_3 .

With the best conditions in hand, we prepared 1,3-keto-alcohols using tetralone and different aldehydes. The new 1,3-keto-alcohols and their yields are given in Table 3. A number of these compounds are novel, but several have been synthesized before using the Mukaiyama procedure, including 3a,^{31–33} 3c,³⁵ 3d,³⁶ and 3e.²⁹

Table 3 shows that the yields change according to the substituents and their positions. Yields increased with electron-withdrawing groups such as $-NO_2$ (Entry 4). With strong electron-donating groups such as -MeO the yields were reduced (Entries 5 and 6). When the aldehydes were substituted with weak electron-donating groups such as Me, the yields were good (Entries 2 and 3). While good yields were obtained with phenyl

		OCatal DMSO-H	yst 20 (8:2) 3a	
Entry	Catalyst	Time (h)	Yield (%) ^c (3a)	<i>dr(anti/syn)</i> ^d (3a)
1	FeCl ₃	48	35	59:41
2	CoCl ₂	48	0	_
3	$ZnCl_{2}$	48	0	-
4	MnCl ₂	48	0	-
5	Benzoic acid	48	0	-
6	TFA	48	0	-
7	NTPA	48	5	75:25

Table 2. The effect of different Lewis acid or Brønsted acid in Aldol reaction with tetralone and benzaldehyde.^{a,b}

^aConditions: **1a** (10 mmol), **2a** (7.5 mmol), and acid (10 eq %) in solvent (2.5 mL) were stirred at 25 °C. ${}^{b}3_{alkene}$ was not observed in these experiments.

^cYield of isolated product.

^dThe *dr* values were determined by HPLC analysis using a chiral column.

		+ Ar H		O OH Ar	
	1a	2a-2i	(8:2)	∽	
Entry	Ar	Aldehyde	Product	Yield (%) ^b	dr(anti/syn) [⊂]
1	C ₆ H₅	2a	3a	95	85:15
2	3-MeC ₆ H ₄	2b	3b	96	81:19
3	2-MeC ₆ H ₄	2c	3с	70	73:27
4	$4-NO_2C_6H_4$	2d	3d	95	76:24
5	4-MeOC ₆ H ₄	2e	3e	60	62:38
6	2-MeOC ₆ H ₄	2f	3f	66	81:19
7	2-Naphthyl	2g	3q	80	55:45
8	2-Furyl	2ĥ	3ĥ	55	80:10
9	2-Thienyl	2i	3i	68	65:35
10	$2-FC_6H_4$	2j	3j	94	81:19
11	2-BrC ₆ H ₄	2k	3k	91	79:21

Table 3. Scope of aldehydes for the aldol reaction method with tetralone.^a

^aConditions: **1a** (10 mmol), **2a-2i** (7.5 mmol), and K_2CO_3 (10 eq %) in DMSO-H₂O (8:2) (2.5 mL) were stirred at room temperature.

^bYield of isolated product.

^cdr values were determined by HPLC analysis using a chiral column.

and naphthyl as aryl groups (Entries 1 and 7), moderate yields were obtained with the substrates containing heteroaryl groups such as furyl and thienyl (Entries 8 and 9); that is, alkene derivatives were also formed in these reactions.

We have also used indanone for our aldol reaction method. The results are shown in Table 4. The yields are between 45-86%. The best yield was obtained with benzaldehyde and 4-nitrobenzaldehyde with 87 and 86% yield respectively in the reaction of indanone. With the exceptions of 4a, ³³ 4d³⁶ and 4e, ³⁰ the other indanone derivatives are novel.

We also tried the aldol reaction method with 2-heptanone as an aliphatic ketone (Tables 5 and 6). Compound $5a^{37}$ was previously known, and 5d was synthesized for the first time in this study.

Table 4	Table 4. Scope of aldenydes for the aldor reaction method with indahone.								
		+ Ar H 2a-2i	K ₂ CO ₃ DMSO-H ₂ O (8:2)	O OH Ar 4a-4i					
Entry	Ar	Aldehyde	Product	Yield (%) ^b	dr(anti/syn) ^c				
1	C ₆ H ₅	2a	4a	87	81:19				
2	3-MeC ₆ H ₄	2b	4b	75	82:18				
3	$2-MeC_6H_4$	2c	4c	69	75:25				
4	$4-NO_2C_6H_4$	2d	4d	86	78:22				
5	4-MeOC ₆ H ₄	2e	4e	60	65:35				
6	2-MeOC ₆ H ₄	2f	4f	45	61:39				
7	2-Naphthyl	2g	4g	83	83:17				
8	2-Furyl	2ĥ	4ĥ	45	77:13				
9	2-Thienyl	2i	4i	62	69:31				
10	$2-FC_6H_4$	2j	4j	86	78:22				
11	$2-BrC_6H_4$	2k	4k	75	76:24				

Table 4. Scope of aldehydes for the aldol reaction method with indanone.^a

^aConditions: **1b** (10 mmol), **2a-2i** (7.5 mmol), and K_2CO_3 (10 eq %) in DMSO-H₂O (8:2) (2.5 mL) were stirred at room temperature.

^bYield of isolated product.

^cdr values were determined by HPLC analysis using a chiral column.

Table 5. Aldol reaction conditions for 2-heptanone and benzaldehyde.^a

	C ₅ H ₁₁ + [1c	O ⊢ 2a	C 5H ₁₁ ک	o OH	C ₅ H ₁₁ 5 _{alkene}	
Entry	Base	Solvent	T(°C)	Time (h)	Yield (%) ^b (5a)	Yield (%) ^b (5 _{alkene})
1	K ₂ CO ₃ (5 eq %)	DMSO-H ₂ O (8:2)	25	48	5	25
2	K_2CO_3 (5 eq %)	DMSO-H ₂ O (8:2)	50	4	25	45
3	K_2CO_3 (10 eq %)	DMSO-H ₂ O (8:2)	50	24	45	50
4	Na ₂ CO ₃ (10 eq %)	DMSO-H ₂ O (8:2)	50	24	25	66
5	ag. NaOH (40%, 5 mL)	MeOH	25	24	0	84
6	aq. NaOH (40%, 5 mL)	MeOH	-10	5	0	20
7	aq.NaOH (40%, 0.1 mL)	MeOH	-18	2	15	75

^aConditions: 1c (10 mmol), 2a (7.5 mmol), and base in solvent (2.5 mL) were stirred at the corresponding temperature. ^bYield of isolated product.

Table 6. Aldol reaction of 2-heptanone with aromatic aldehydes.^a

	C ₅ H ₁₁	O O O O O O O O O O O O O O O O O O O	K ₂ CO ₃	C_5H_{11} Ar	+ C ₅ H ₁₁ Ar	
	1c	2a, 2d	50°C, 24	h 5a, 5d	5a _{alkene} ,5d _{alkene}	
Entry	Ar	Aldehyde	Product	Yield (%) ^b Alcohol pr	oduct Yield (%) ^t	Alkene product
1	C ₆ H ₅	2a	5a	45		50
2	$4-NO_2C_6H_4$	2d	5d	75		23

^aConditions: **1c** (10 mmol), **2a**, **2d** (7.5 mmol), and K_2CO_3 (10% equiv.) in DMSO-H₂O (8:2) (2.5 mL) were stirred at 50 °C. ^bYield of isolated product.

We further showed our 1,3-keto-alcohols can be oxidized to the related 1,3-diketones.^{38,39} Compounds **3b** and **3d** were converted to the corresponding diketones **6b** and **6d** with K_2CO_3/I_2 (Scheme 2).⁴⁰ Compound **6b**⁴¹ was obtained previously by Claisen condensation of tetralone and the appropriate aryl methyl ester. The diketone **6d** is new.

In summary, we have prepared some new 1,3-keto-alcohols, using a method that is consistent with green principles. These materials can be useful as prochiral intermediates. We hope that their preparation may stimulate further research in the synthesis of chiral compounds or chiral catalysts.

Experimental section

Chemicals were commercially available from Merck, Acros or Aldrich. All novel pruducts were purified by crystallization or column chromatography and were characterized by IR, ¹H-NMR, ¹³C-NMR, elemental analysis and GC-MS. The reactions were monitored by TLC using silica gel plates and the products were purified by flash column chromatography on silica gel (Merck; 230–400 mesh), eluted with hexane-ethyl acetate (v/v 9:1). NMR spectra were recorded at 500 MHz for ¹H and 125 MHz for ¹³C using Me₄Si as the internal standard in CDCl₃. GC-MS spectra were recorded on Shimadzu/ QP2010 Plus. IR spectra were recorded on a Bruker Vertex 70 IR spectrometer. Melting points were determined with Büchi Melting Point B-540 and are uncorrected. For determination of *dr* values, HPLC was performed on a Shimadzu/DGU-20A₅ HPLC apparatus fitted with a 25 cm Chiralcel OD, Chiralcel OD-H, Chiralcel OJ-H and Chiralpac AD-H chiral columns.

General experimental procedure for aldol reaction

Aromatic aldehyde (7.5 mmol), ketone (10 mmol), K_2CO_3 (10% equiv.) and 2.5 mL of DMSO:H₂O (8:2) were added to a flask then the mixture was stirred at room temperature for 1-2 days, as specified by TLC. The reaction was extracted with dichloromethane (3 X 10 mL). Then the combined extracts were washed with saturated brine and dried over anhydrous Na₂SO₄; after filtration the solvents were removed under reduced pressure. Reactions were monitored by thin layer chromatography and visualized by using UV light. For determination of the isolated yield, flash chromatography was performed on silica gel (Merck; 230–400 mesh) with hexane-ethyl acetate (v/v 9:1) as the mobile phase.

General procedure for oxidation of keto alcohols

Diketones were synthesized by oxidation of their corresponding 1,3- keto alcohols using I_2/K_2CO_3 in t-BuOH, according to this procedure: keto-alcohol (0.1 mmol), iodine (0.2 mmol), K_2CO_3 (0.2 mmol) and 4 mL of *t*-BuOH are added to a flask and the mixture refluxed at 100° C for 16 hours. When the reaction was finished (TLC, hexane-ethyl acetate (v/v 9:1)), an excess of saturated sodium bisulfite solution was added. Then the mixture was stirred at room temperature until the color of iodine was gone. Extraction was then carried out with dichloromethane. The products were purified by column chromatography on silica gel with hexane-ethyl acetate (v/v 9:1).

2-(Hydroxy-phenyl-methyl)-3,4-dihydro-2H-naphthalen-1-one (3a)

Colorless oil. IR (neat, cm⁻¹): 3577, 3459, 3024, 2903, 1664, 1655, 1595, 1451, 1223, 1048, 745, 705 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.90-1.95 (m, 1H), 2.08-2.17 (m, 1H), 2.81-2.85 (m, 1H), 2.89-2.91 (m, 1H), 2.92-2.95 (m, 1H), 4.98 (s, 1H), 5.72 (s, 1H), 7.22-7.24 (d, 1H, J = 8.1 Hz), 7.33-7.42 (m, 6H), 7.47-7.54 (m, 1H), 8.08-8.11 (m, 1H). ¹³C-NMR (CDCl₃): δ 22.2, 28.9, 54.7, 71.6, 125.9–133.7 (9C), 141.1–144.4 (3C), 200.0. MS m/z: 253 (M + 1), 233, 202, 115, 91.

Anal. Calcd. for C17H16O2: C, 80.93; H, 6.39. Found: C, 80.75; H, 6.51.

2-(Hydroxy-m-tolyl-methyl)-3,4-dihydro-2H-naphthalen-1-one (3b)

Pale orange solid, mp 89.0-90.0 °C. IR (neat, cm⁻¹): 3479, 2963, 2888, 1664, 1598, 1460, 1445, 1367, 1313, 1290, 1232, 1154, 1059, 1013, 803, 760, 728 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.80–2.06 (m, 2H), 2.27 (s, 3H), 2.66–2.85 (m, 3H), 4.82–4.84 (d, 1H, J=8.5 Hz), 5.57 (d, 1H J=2.5 Hz), 6.98-7.41 (m, 7H), 7.96-7.99 (dd, 1H, J_1 =8.0, J_2 =1.5 Hz). ¹³C-NMR (CDCl₃): δ 20.5, 21.2, 27.9, 53.7, 70.5, 123.9–143.3 (12C), 198.9. MS *m/z*: 265 (M-1), 233, 247, 202, 128.

Anal. Calcd. for C₁₈H₁₈O₂: C, 81.17; H, 6.81. Found: C, 80.88; H, 6.96.

2-(Hydroxy-o-tolyl-methyl)-3,4-dihydro-2H-naphthalen-1-one (3c)

Pale orange solid, mp 113-114 °C. IR (neat, cm⁻¹): 3525, 3064, 2957, 2920, 2859, 1676, 1598, 1454, 1364, 1290, 1223, 1085, 762, 742 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.82-1.87 (m, 1H), 2.10–2.19 (dd, 1H, J_1 = 5.0 Hz, J_2 = 10.0 Hz), 2.23 (s, 3H), 2.44 (d, 1H, J = 3.9 Hz), 2.59–2.63 (ddd, 1H, J_1 = 13.3, J_2 = 2.0, J_3 = 6.7 Hz), 2.75-2.90 (m, 2H), 5.92 (d, 1H, J = 6.0 Hz), 7.07–7.25 (m, 5H), 7.38-7.44 (m, 1H), 7.50 (d, 1H, J = 7.6 Hz), 8.00 (m, 1H). ¹³C-NMR (CDCl₃): δ 17.9, 20.7, 27.9, 51.3, 66.8, 124.7–138.9 (11C), 143.4, 198.7. MS *m/z*: 265 (M-1), 278, 262, 232, 202, 128, 115, 90.

Anal. Calcd. for C₁₈H₁₈O₂: C, 81.17; H, 6.81. Found: C, 80.95; H, 7.05.

2-[Hydroxy-(4-nitro-phenyl)-methyl]-3,4-dihydro-2H-naphthalen-1-one (3d)

Pale brown solid, mp 140.9–141.8 °C. IR (neat, cm⁻¹): 3580, 3447, 3113, 3081, 2931, 1670, 1595, 1511, 1344, 1223, 1065, 1013, 858, 748, 705 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.68–1.73 (m, 1H), 1.99-2.08 (m, 1H), 2.76-3.01 (m, 3H), 5,04 (d, 1H, J=8.0 Hz), 5.72 (s, 1H), 7.16–7.31 (m, 2H), 7.40–7.53 (m, 3H), 7.97 (d, 1H, J=7.5 Hz), 8.14–8.16 (m, 2H). ¹³C-NMR (CDCl₃): δ 22.1, 28.8, 54.5, 70.9, 123.5–134.3 (10C), 144.2, 149.5, 199.3. MS m/z: 279 (M-H₂O), 278, 262, 248, 232, 202, 115, 90.

Anal. Calcd. for $C_{17}H_{15}NO_4$: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.83; H, 5.25, N, 4.52.

2-[Hydroxy-(4-methoxy-phenyl)-methyl]-3,4-dihydro-2H-naphthalen-1-one (3e)

Pale yellow solid, Mp 124.0–125.0 °C. IR (neat, cm⁻¹): 3441, 2966, 2911, 2842, 1678, 1598, 1511, 1457, 1304, 1246, 1220, 1171, 1085, 1030, 797, 768, 742, 662 cm⁻¹. ¹H-NMR (CDCl₃):

δ 1.93-1.98 (m, 1H), 2.05–2.14 (m, 1H), 2.79-2.84 (m, 1H), 2.91–2.96 (m, 2H), 3.83 (s, 3H), 5.62 (s, 1H), 6.91-6.94 (m, 2H), 7.23–7.24 (d, 1H, *J* = 7.6 Hz), 7.28–7.36 (m, 4H), 7.43–7.52 (m, 1H), 8.07–8.09 (m, 1H). ¹³C-NMR (CDCl₃): δ 22.5, 29.0, 54.6, 55.2, 71.5, 113.6-134.0 (10C), 144.4, 158.71, 200.26. MS *m/z*: 282 (M), 281, 263, 249, 233, 121, 90.

Anal. Calcd. for C₁₈H₁₈O₃: C, 76.57; H, 6.43. Found: C, 76.73; H, 6.24.

2-[Hydroxy-(2-methoxy-phenyl)-methyl]-3,4-dihydro-2H-naphthalen-1-one (3f)

Beige solid, mp 162–163 °C. IR (neat, cm⁻¹): 3482, 3070, 3032, 2978, 2937, 2865, 2839, 1676, 1598, 1488, 1454, 1439, 1362, 1290, 1223, 1051, 1025, 1002, 970, 742, 725, 656 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.73–2.09 (m, 2H), 2.75–2.87 (m, 3H), 2.88–2.92 (dd, 1H, $J_1 = 15.0$ Hz, $J_2 = 10.0$ Hz), 3.70 (s, 3H), 5.90 (s, 1H), 6.77–7.45 (m, 7H), 8.1 (d, 1H, J = 10.0 Hz). ¹³C-NMR (CDCl₃): δ 21.2, 27.9, 51.1, 54.1, 65.6, 108.9, 119.3, 125.4–132.3 (8C), 143.4, 154.4, 199.3. MS *m/z*: 282 (M), 233, 202, 115, 90.

Anal. Calcd. for C₁₈H₁₈O₃: C, 76.57; H, 6.43. Found: C, 76.82; H, 6.36.

2-(Hydroxy-naphthalen-2-yl-methyl)-3,4-dihydro-2H-naphthalen-1-one (3g)

Yellow solid, mp 146–148 °C. IR (neat, cm⁻¹): 3490, 2960, 2920, 1661, 1601, 1454, 1359, 1264, 1226, 1091, 1016, 869, 803, 751, 734, 676, 656 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.52–2.07 (m, 2H), 2.71-2.79 (m, 3H), 4.94 (s, 1H), 5.04 (d, 1H, *J* = 8.5 Hz), 7.07 (d, 1H, *J* = 7.5 Hz), 7.18–7.24 (m, 1H), 7.32–7.39 (m, 4H), 7.71–7.78 (m, 4H), 7.99 (d, 1H, *J* = 8.0 Hz). ¹³C-NMR (CDCl₃): δ 25.2, 27.9, 52.8, 74.6, 123.0–133.0 (16C), 201.3. MS *m/z*: 284 (M-H₂O), 267, 252, 239, 141, 128, 90.

Anal. Calcd. for C21H18O2: C, 83.42; H, 6.00. Found: C, 83.63; H, 6.25.

2-(Furan-2-yl-hydroxy-methyl)-3,4-dihydro-2H-naphthalen-1-one (3h)

Brown oil. IR (neat, cm⁻¹): 3430, 3122, 2937, 2900, 2877, 1670, 1601, 1511, 1454, 1362, 1324, 1295, 1226, 1148, 1123, 1099, 1062, 1007, 955, 918, 809, 774, 739, 665 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.64–1.70 (m, 1H), 1.95-2.01 (m, 1H), 2.85–2.99 (m, 3H), 3.54 (br s, 1H), 5.33 (d, 1H, J=2.5 Hz), 6.22–6.27 (m, 2H), 7.13–7.26 (m, 3H), 7.33–7.43 (m, 1H), 7.96 (d, 1H, J=8.0 Hz). ¹³C-NMR (CDCl₃): δ 23.9, 28.9, 51.9, 67.8, 106.9, 110.3, 126.6–134.1 (5C), 141.6, 144.3, 155.08, 199.7. MS *m*/*z*: 224 (M-H₂O), 206, 195, 170, 165, 152, 128, 118, 90, 81, 63, 51.

Anal. Calcd. for C₁₅H₁₄O₃: C, 74.36; H, 5.82. Found: C, 74.56; H, 6.14.

2-(Hydroxy-thiophen-2-yl-methyl)-3,4-dihydro-2H-naphthalen-1-one (3i)

Green oil. IR (neat, cm⁻¹): 3433, 3067, 2929, 2871, 1667, 1601, 1454, 1356, 1226, 1157, 1030, 912, 826, 702 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.61–1.79 (m, 1H), 1.95–2.03 (m, 1H), 2.68–2.91 (m, 3H), 4.93 (s, 1H), 5.2 (s, 1H), 6.88–6.93 (m, 2H), 7.13–7.26 (m, 3H), 7.38–7.43 (m, 1H), 7.98 (d, 1H, J=8.0 Hz). ¹³C-NMR (CDCl₃): δ 25.0, 27.7, 53.4, 70.4, 123.3–133.0 (9C), 143.4, 200.5. MS *m/z*: 256 (M-2), 207, 193, 147, 118, 103, 90, 82, 43, 41.

Anal. Calcd. for C₁₅H₁₄O₂S: C, 69.74; H, 5.46; S, 12.41. Found: C, 69.88; H, 5.57; S, 12.23.

2-[(2-Fluoro-phenyl)-hydroxy-methyl]-3,4-dihydro-2H-naphthalen-1-one (3j)

Beige solid, mp 98.4-99.8 °C. IR (neat, cm⁻¹): 3442, 3057, 2949, 2914, 1672, 1598, 1481, 1369, 1224, 1174, 1055, 871, 794, 767, 659 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.88–1.91 (m, 1H), 2.04–2.18 (m, 1H), 2.92–3.00 (m, 4H), 5.98 (d, 1H, J=4.0 Hz), 7.00–7.07 (m, 1H), 7.16–7.35 (m, 4H), 7.48 (ddd, 1H, $J_1 = J_2 = 12.0$ Hz, $J_3 = 2.0$ Hz), 7.62 (ddd, 1H, $J_1 = J_2 = 13.0$ Hz, $J_3 = 3.5$ Hz), 8.07 (dd, 1H, $J_1 = 13.0$ Hz, $J_2 = 2.0$ Hz). ¹³C-NMR (CDCl₃): δ 22.4, 28.9, 52.9, 66.0, 114.8, 115.1, 124.0-133.6 (7C), 144.3, 157.4, 160.7, 199.8. MS *m/z*: 269 (M-1), 234, 208, 193, 147, 118, 103, 90, 82, 43, 41.

Anal. Calcd. for C17H15FO2: C, 75.54; H, 5.59. Found: C, 75.79; H, 5.52.

2-[(2-Bromo-phenyl)-hydroxy-methyl]-3,4-dihydro-2H-naphthalen-1-one (3k)

White solid, mp 138.2–141.9 °C. IR (neat, cm⁻¹): 3446, 3057, 2951, 2914, 1674, 1598, 1454, 1363, 1222, 1128, 1089, 923, 748, 732, 655 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.75–1.83 (m, 1H), 2.11–2.25 (m, 1H), 2.70 (br s, 1H), 2.90-2.95 (m, 2H), 3.05-3.11 (ddd, 1H, $J_1 = 23.0$ Hz, $J_2 = 7.0$ Hz, $J_3 = 4.0$ Hz), 6.06 (d, 1H, J = 3.5 Hz), 7.15–7.51 (m, 5H), 7.55 (dd, 1H, $J_1 = 13.5$ Hz, $J_2 = 2.0$ Hz), 7.65 (dd, 1H, $J_1 = 13.0$ Hz, $J_2 = 3.0$ Hz), 8.10 (dd, 1H, $J_1 = 13.0$ Hz, $J_2 = 1.0$ Hz). ¹³C-NMR (CDCl₃): δ 25.9, 28.9, 51.6, 70.2, 121.1, 126.6–136.9 (9C), 140.7, 144.3, 199.5. MS *m/z*: 329 (M-1), 236, 207, 193, 147, 118, 103, 90, 82, 43, 41.

Anal. Calcd. for C₁₇H₁₅BrO₂: C, 61.65; H, 4.56. Found: C, 61.72; H, 4.67.

2-(Hydroxy-phenyl-methyl)-indan-1-one (4a)

Beige solid, mp 156–157 °C. IR (neat, cm⁻¹): 3064, 3029, 2906, 1699, 1604, 1462, 1275, 1203, 1094, 999, 843, 751, 711 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.63 (br s, 1H), 2.93 (dd, 1H, $J_1 = 4.0$, $J_2 = 17.0$ Hz), 3.38 (dd, 1H, $J_1 = 8.0$, $J_2 = 17.0$ Hz), 3.68 (ddd, 1H, $J_1 = 4.0$, $J_2 = J_3 = 8.0$ Hz), 5.32 (d, 1H, J = 8.0 Hz), 7.19–7.39 (m, 7H), 7.50–7.56 (m, 1H), 7.71 (d, 1H, J = 7.5 Hz). ¹³C-NMR (CDCl₃): δ 31.0, 48.8, 70.1, 123.8–141.3 (11C), 153.4, 207.4. MS m/z: 220 (M-H₂O), 191, 165, 132, 155, 104, 91, 77.

Anal. Calcd. for C₁₆H₁₄O₂: C, 80.65; H, 5.92. Found: C, 80.45; H, 6.16.

2-(Hydroxy-m-tolyl-methyl)-indan-1-one (4b)

White solid, mp 117–118 ⁰C. IR (neat, cm⁻¹): 2920, 2850, 1696, 1626, 1603, 1473, 1301, 1268, 1238, 1091, 964, 930, 892, 777, 737, 690, 673 cm⁻¹. ¹H-NMR (CDCl₃): δ 3.25 (s, 1H), 4.36 (s, 5H), 4.86–4.95 (m, 1H), 5.24-5.28 (m, 1H), 9.07–9.79 (m, 8H). ¹³C-NMR (CDCl₃): δ 20.5, 25.6, 53.8, 70.8, 121.5–141.7 (11C), 153.8, 206.3. MS *m/z*: 253 (M + 1), 233, 219, 191, 165, 115, 89.

Anal. Calcd. for C₁₇H₁₆O₂: C, 80.93; H, 6.39. Found: C, 81.12; H, 6.47.

2-(Hydroxy-o-tolyl-methyl)-indan-1-one (4c)

Beige solid, mp 205.3–206.4 ^oC. IR (neat, cm⁻¹): 3523, 2920, 2851, 1699, 1604, 1468, 1261, 1099, 1016, 803, 748, 667 cm⁻¹. ¹H-NMR (CDCl₃): δ 2.27 (s, 3H), 2.57 (d, 1H, J = 5.5 Hz), 2.78–2.87 (m, 1H), 2.91–2.98 (m, 1H), 3.18 (dd, 1H, $J_I = 17.0$ Hz, $J_2 = 4.5$ Hz), 5.46 (br s, 1H), 7.01 (d, 1H, J = 7.0 Hz), 7.11–7.34 (m, 5H), 7.45–7.52 (m, 1H), 7.65 (d, 1H, J = 8.0 Hz). ¹³C-NMR (CDCl₃): δ 25.6, 28.9, 53.8, 70.8, 121.5–141.7 (11C), 153.8, 206.3. MS m/z: 252 (M), 244, 132, 103, 77.

Anal. Calcd. for C₁₇H₁₆O₂: C, 80.93; H, 6.39. Found: C, 81.18; H, 6.43.

2-[Hydroxy-(4-nitro-phenyl)-methyl]-indan-1-one (4d)

Orange solid, mp 175–176 °C. IR (neat, cm⁻¹): 3375, 3110, 3078, 2880, 1693, 1601, 1509, 1341, 1290, 1206, 1088, 797, 754, 705, 673 cm⁻¹. ¹H-NMR (CDCl₃): δ 2.61 (d, 1H, J = 4.5 Hz), 2.78 (dd, 1H, $J_1 = 8.0$ Hz, $J_2 = 17.0$ Hz), 2.98–3.01 (m, 1H), 3.09 (dd, 1H, $J_1 = 4.5$ Hz, $J_2 = 17$ Hz), 4.02 (d, 1H, J = 1.5 Hz), 5.63 (t, 1H, J = 3.5 Hz), 7.28–7.41 (m, 2H), 7.68 (d, 1H, J = 8.5 Hz), 7.73 (d, 1H, J = 8.5 Hz), 8.16 (d, 2H, J = 8.5 Hz), 8.23 (d, 1H, J = 8.5 Hz). ¹³C-NMR (CDCl₃): δ 31.3, 53.5, 54.2, 70.1, 122.6–146.3 (6C), 146.7, 148.3, 148.9, 153.3, 192.6, 205.3. MS m/z: 282 (M-1), 281, 264, 248, 218, 189, 178, 165, 115, 89, 82, 63, 51.

Anal. Calcd. for C₁₆H₁₃NO₄: C, 67.84; H, 4.63; N, 4.94. Found: C, 67.64; H, 4.75, N, 4.71.

2-[Hydroxy-(4-methoxy-phenyl)-methyl]-indan-1-one (4e)

Yellow oil. IR (neat, cm⁻¹): 3433, 2917, 2839, 1690, 1604, 1514, 1468, 1246, 1171, 1030, 832, 751 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.63 (br s, 1H), 2.96 (dd, 1H, $J_1 = 17.0$, Hz, $J_2 = 17.0$ Hz), 3.04–3.09 (m, 1H), 3.84 (s, 3H), 4.76 (d, 1H, J = 10.0 Hz), 5.55 (s, 1H), 6.93 (dd, 2H, $J_1 = 3.0$, Hz, $J_2 = 8.5$ Hz), 7.36–7.46 (m, 4H), 7.57–7.63 (m, 1H), 7.80 (dd, 1H, $J_1 = 11.0$, Hz, $J_2 = 11.0$ Hz). ¹³C-NMR (CDCl₃): δ 30.0, 54.7, 55.3, 71.9, 113.8, 113.9, 123.8–135.4 (8C), 154.7, 158.9, 209.8. MS m/z: 267 (M-1), 250, 235, 219, 207, 178, 152, 89, 76, 63, 51.

Anal. Calcd. for C₁₇H₁₆O₃: C, 76.10; H, 6.01. Found: C, 76.27; H, 6.18.

2-[Hydroxy-(2-methoxy-phenyl)-methyl]-indan-1-one (4f)

Beige solid, mp 150.4–151.7 °C. IR (neat, cm⁻¹): 3548, 2929, 2911, 2839, 1704, 1687, 1598, 1460, 1241, 1148, 1085, 1022, 964, 751 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.50 (br s, 1H), 2.74–2.84 (m, 1H), 3.15–3.20 (m, 2H), 3.79 (s, 3H), 5.75 (s, 1H), 6.82 (d, 1H, J=8.5 Hz), 6.95 (dd, 1H, J_1 = J_2 = 7.5 Hz), 7.19-7.36 (m, 3H), 7.43-7.50 (m, 2H), 7.71 (d, 1H, J=8.0). ¹³C-NMR (CDCl₃): δ 26.1, 51.2, 54.2, 66.9, 109.1, 119.5–136.3 (9C), 153.8, 154.8, 206.5. MS m/z: 267 (M-1), 282, 253, 249, 207, 193, 147, 119, 103, 96, 73, 59, 45.

Anal. Calcd. for C₁₇H₁₆O₃: C, 76.10; H, 6.01. Found: C, 76.34; H, 6.22.

2-(Hydroxy-naphthalen-2-yl-methyl)-indan-1-one (4g)

Orange solid, mp 40.0–40.5 °C. IR (neat, cm⁻¹): 3587, 3052, 2923, 1701, 1606, 1468, 1278, 1059, 909, 817, 754, 662 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.57 (s, 1H), 2.70–2.79 (m, 2H), 5.03 (d, 1H, J = 8.8 Hz), 5.76 (s, 1H), 7.07 (d, 1H, J = 7.5 Hz), 7.18–7.24 (m, 1H), 7.32–7.39 (m, 4H), 7.71–7.78 (m, 4H), 7.99 (dd, 1H, $J_1 = J_2 = 7.5$ Hz). ¹³C-NMR (CDCl₃): δ 27.7, 52.8, 74.6, 123.0–138.4 (15C), 143.3, 201.3. MS *m/z*: 270 (M-H₂O), 252, 239, 226, 215, 207, 195, 177, 120, 82, 65, 50, 40.

Anal. Calcd. for C₂₀H₁₆O₂: C, 83.31; H, 5.59. Found: C, 83.26; H, 5.61.

2-(Furan-2-yl-hydroxy-methyl)-indan-1-one (4h)

Brown oil. IR (neat, cm⁻¹): 3625, 2955, 2920, 2851, 1704, 1627, 1606, 1471, 1385, 1258, 1108, 1022, 737 cm⁻¹. ¹H-NMR (CDCl₃): δ 2.88–2.98 (m, 3H), 3.54 (br s, 1H), 5.33 (d, 1H, *J*=2.5 Hz), 6.22 (d, 1H, *J*=3.5 Hz), 6.24-6.27 (m, 1H), 7.15 (d, 1H, *J*=7.5 Hz), 7.21–7.26 (m, 2H), 7.38–7.42 (m, 1H), 7.97 (dd, 1H, *J*₁=8.0 Hz, *J*₂=1.0 Hz). ¹³C-NMR (CDCl₃): δ 29.9, 51.9, 67.8, 106.9, 110.2, 126.6–144.3 (7C), 155. 0, 199.7. MS *m/z*: 210 (M-H₂O), 284, 253, 210, 192, 148, 133, 119, 105, 92, 78, 64, 42.

Anal. Calcd. for C14H12O3: C, 73.67; H, 5.30. Found: C, 73.86; H, 5.14.

2-(Hydroxy-thiophen-2-yl-methyl)-indan-1-one (4i)

Green oil, IR (neat, cm⁻¹): 3389, 3070, 2920, 2851, 1687, 1604, 1471, 1428, 1295, 1203, 1151, 1097, 1019, 958, 938, 754, 713, 656 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.67 (br s, 1H), 3.10–3.19 (m, 3H), 3.36 (dd, 1H, J_1 =12.5 Hz, J_2 = 9.0 Hz), 5.79 (d, 1H, J=4.5 Hz), 6.98-7.06 (m, 2H), 7.27 (dd, 1H, J_1 =1.0 Hz, J_2 = 5.5 Hz), 7.36–7.64 (m, 2H), 7.78 (d, 1H, J=7.5 Hz). ¹³C-NMR (CDCl₃): δ 27.4, 54.4, 69.2, 123.8–127.4 (6C), 135.1, 136.9, 146.4, 154.7, 206.8. MS m/z: 226 (M-H₂O), 197, 165, 152, 89, 76, 63, 51.

Anal. Calcd. for C₁₄H₁₂O₂S: C, 68.83; H, 4.95; S, 13.12. Found: C, 68.97; H, 5.16; S, 13.08.

2-[(2-Fluoro-phenyl)-hydroxy-methyl]-indan-1-one (4j)

Beige solid, mp 149.5–151.5 °C. IR (neat, cm⁻¹): 3456, 3056, 2943, 1689, 1620, 1483, 1454, 1228, 1101, 1055, 977, 748, 732, 678 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.80 (br s, 1H), 4.07–4.21 (m, 1H), 4.96 (d, 1H, J=2.0 Hz), 5.08 (d, 1H, J=7.5 Hz), 5.50 (d, 1H, J=8.0 Hz), 7.10-7.21 (m, 2H), 7.27–7.49 (m, 4H), 7.70–7.83 (m, 1H), 7.98–7.92 (m, 1H). ¹³C-NMR (CDCl₃): δ 30.7, 47.5, 67.5, 111.4, 111.5, 123.9-139.0 (7C), 148.4, 159.7, 161.0, 193.5. MS *m/z*: 238 (M-H₂O), 222, 197, 165, 152, 89, 76, 63,51.

Anal. Calcd. for C₁₆H₁₃FO₂: C, 74.99; H, 5.11. Found: C, 74.77; H, 5.35.

2-[(2-Bromo-phenyl)-hydroxy-methyl]-indan-1-one (4k)

Pale yellow solid, mp 180.1–182.7 °C. IR (neat, cm⁻¹): 3396, 3086, 2951, 1687, 1645, 1465, 1307, 1298, 1249, 1095, 1058, 1022, 970, 748, 734 cm⁻¹. ¹H-NMR (CDCl₃): δ 4.85 (br s, 1H), 5.16 (d, 1H, J=4.0 Hz), 5.29 (d, 1H, J=3.0 Hz), 5.37 (d, 1H, J=3.0 Hz),

6.16 (d, 1H, J = 12.5 Hz), 7.02–7.74 (m, 7H), 7.92-7.96 (m, 1H). ¹³C-NMR (CDCl₃): δ 45.2, 72.2, 75.3, 121.0–136.5 (10C), 148.2, 151.2, 193.7. MS *m/z*: 298 (M-H₂O), 222, 197, 165, 152, 89, 76, 63, 51.

Anal. Calcd. for C₁₆H₁₃BrO₂: C, 60.59; H, 4.13. Found: C, 60.71; H, 4.22.

1-Hydroxy-1-phenyl-octan-3-one (5a)

Colorless oil. IR (neat, cm⁻¹): 3470, 2933, 2885, 1699, 1607, 1451, 1307, 1235, 763, 742 cm⁻¹. ¹H-NMR (CDCl₃): δ 0.80 (t, 3H, J=7.0 Hz), 1.13-1.27 (m, 5H), 1.46–1.52 (m, 2H), 2.33 (t, 2H, J=7.5 Hz), 2.67 (dd, 1H, J_1 =3.0 Hz, J_2 =14.0 Hz), 2.77 (dd, 1H, J_1 =9.0 Hz, J_2 =17.5 Hz), 5.05 (dd, 1H, J_1 =3.0 Hz, J_2 =9.5 Hz), 7.16–7.20 (m, 1H), 7.25–7.26 (m, 4H). ¹³C-NMR (CDCl₃): δ 14.0, 22.9, 25.4, 30.8, 42.6, 51.7, 73.7, 126.7, 126.7, 128.2, 128.2, 128.3, 143.8, 209.7. MS m/z: (M) 220, 202, 187, 173, 149, 131, 105, 77, 58.

Anal. Calcd. for C₁₄H₂₀O₂: C, 76.33; H, 9.15. Found: C, 76.54; H, 9.25.

1-Hydroxy-1-(4-nitro-phenyl)-octan-3-one (5d)

Pale yellow oil. IR (neat, cm⁻¹): 3338, 2923, 2853, 1615, 1515, 1469, 1384, 1307, 1253, 1176, 1038, 969, 746 cm⁻¹. ¹H-NMR (CDCl₃): δ 0.82 (t, 3H, *J*=7.0 Hz), 1.15–1.25 (m, 4H), 1.49–1.55 (m, 2H), 2.37 (t, 2H, *J*=7.0 Hz), 2.73–2.76 (m, 2H), 3.56 (brs, 1H), 5.19 (dd, 1H, *J*₁ = 4.0 Hz, *J*₂ = 8.5 Hz), 7.46 (d, 2H, *J*=8.5 Hz), 8.14 (d, 2H, *J*=9.0 Hz). ¹³C-NMR (CDCl₃): δ 14.0, 22.5, 23.4, 31.4, 43.8, 50.4, 69.2, 123.8, 124.0, 126.5, 126.7, 147.5, 150.3, 211.3. MS *m/z*: (M-1) 254, 247, 208, 195, 153, 141, 127, 113, 101, 87, 77, 63, 51.

Anal. Calcd. for C₁₄H₁₉NO₄: C, 63.38; H, 7.22; N, 5.28. Found: C, 63.51; H, 7.36; N, 5.09.

2-(3-Methyl-benzoyl)-3,4-dihydro-2H-naphthalen-1-one (6b)

Pale orange oil. IR (neat, cm⁻¹): 2985, 2930, 2861, 1726, 1682, 1608, 1528, 1469, 1313, 1208, 1116, 865, 753, 718, 683, 627 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.89 (ddd, 1H, $J_1 = 13.5$ Hz, $J_2 = 8.5$ Hz, $J_3 = 4.5$ Hz), 2.49-2.43 (m, 1H), 2.39 (s, 2H), 2.84 (dd, 2H, $J_1 = 3.5$ Hz, $J_2 = 1.5$ Hz), 4.34 (t, 1H, J = 1.5 Hz), 7.18-7.21 (m, 3H), 7.24–7.31 (m, 2H), 7.37 (dd, 1H, $J_1 = J_2 = 8.5$ Hz), 7.52 (ddd, 1H, $J_1 = 7.5$ Hz, $J_2 = 1.5$ Hz), 8.13 (dd, 2H, $J_1 = 8.0$ Hz, $J_2 = 1.5$ Hz). ¹³C-NMR (CDCl₃): δ 21.3, 25.3, 27.0, 64.2, 123.7, 126.9, 127.2, 128.2, 128.7, 128.8, 129.1, 132.7, 134.0, 134.2, 138.0, 143.3, 193.6, 197.9. MS *m/z*: (M) 264, 247, 233, 221, 203, 193, 178, 131, 119, 115, 103, 91, 78.

Anal. Calcd. for C₁₈H₁₆O₂: C, 81.79; H, 6.10. Found: C, 81.63; H, 6.27.

2-(4-Nitro-benzoyl)-3,4-dihydro-2H-naphthalen-1-one (6d)

Pale brown oil. IR (neat, cm⁻¹): 2955, 2920, 2854, 1727, 1696, 1601, 1517, 1462, 1347, 1301, 1232, 1108, 875, 751, 739, 713, 693, 665 cm⁻¹. ¹H-NMR (CDCl₃): δ 1.69–1.74 (m, 1H), 2.34–2.40 (m, 1H), 2.70-2.86 (m, 2H), 4.40 (t, 1H, *J*=1.0 Hz), 7.17 (d, 1H, *J*=10.0 Hz), 7.37 (t, 1H, *J*=8.5 Hz), 7.46–7.51 (m, 3H), 8,04 (d, 1H, *J*=9.5 Hz), 8.19 (d,

12 🕢 T. YILDIZ ET AL.

2H, J = 8.5 Hz). ¹³C-NMR (CDCl₃): δ 25.2, 28.0, 29.3, 123.9, 123.9, 127.2, 128.8–129.0 (4C), 134.5, 135.7, 141.6, 142.7, 149.3, 191.9, 196.7. MS *m/z*: 295 (M), 269, 265, 208, 192, 178, 145, 131, 115, 103, 90, 63, 51.

Anal. Calcd. for C₁₇H₁₃NO₄: C, 69.15; H, 4.44; N, 7.74. Found: C, 69.36; H, 4.52; N, 7.56.

Acknowledgments

This study was supported in a Turkey Scientific and Technological Research Center Project (TÜBİTAK) with project number 214Z234. Also we thank DEVA Holding A.Ş. company for some NMR and IR analysis.

ORCID

Tülay Yıldız (b) http://orcid.org/0000-0001-5857-2480

References

- 1. M. B. Smith and J. March, "Advanced Organic Chemistry," 5th ed., p. 1218, Wiley-Interscience, New York, 2001.
- 2. F. A. Carey and R. J. Sundberg, "Advanced Organic Chemistry Part B," 4th ed., p. 57, Kluwer Academic/PlenumPress, NewYork, 2000.
- 3. J. H. Furhopp and G. Li, "Organic Synthesis," 3rd ed., p. 44, Wiley-VCH, Weinheim, 2003.
- 4. A. T. Nielsen and W. J. Houlihan, "Org. React.," Vol. 16, p. 1, John Wiley, New York, 1968.
- 5. H. B. Mekelburger and C. S. Wilcox, "Comprehensive Organic Synthesis," Vol. 2, eds. B. M. Trost and I. Fleming, p. 99, Pergamon Press, 1991.
- 6. M. M. Green and H. A. Wittcoff, "Organic Chemistry Principles and Industrial Practice," 1st. Ed., passim, Wiley-VCH, Weinheim, 2003.
- 7. P. T. Anastas and J. C. Warner, "Green Chemistry: Theory and Practice," p. 29, Oxford University Press, Oxford, 1998.
- 8. N. Winterton, Green Chem., 3, G73, (2001).
- 9. A. D. Curzons, D. J. C. Constable, D. N. Mortimer and V. L. Cunningham, *Green Chem.*, 3, 1 (2001). doi:10.1039/b007871i
- M. Eissen, J. O. Metzger, E. Schmidt and U. Schneidewind, Angew. Chem. Int. Edit., 41, 414 (2002). doi:10.1002/1521-3773(20020201)41:3 < 414::AID-ANIE414 > 3.0.CO;2-N
- 11. M. Eissen and J. O. Metzger, *Chem.-Eur. J.*, **8**, 3580 (2002). doi:10.1002/1521-3765(20020816)8:16 < 3580::AID-CHEM3580 > 3.0.CO;2-J
- M. Eissen, R. Mazur, H. G. Quebbemann and K. H. Pennemann, *Helv. Chim. Acta*, 87, 524 (2004). doi:10.1002/hlca.200490050
- 13. M. Lancaster, "Green Chemistry," p. 69, RSC, Cambridge, 2002.
- 14. M. Lancaster, "Handbook of Green Chemistry and Technology," eds. J. Clark and D. Macquarrie, p. 10, Blackwell, Oxford, 2002.
- 15. R. J. Lewis, Sr., "*Hazardous Chemical Desk Reference*," 5th ed., passim, Wiley-Interscience, New York, 2002.
- 16. J. P. Guthrie, J. Am. Chem. Soc., 113, 7249 (1991). doi:10.1021/ja00019a024
- 17. J. B. Conant and N. Tuttle, "Organic Syntheses Coll.", Vol. 1, p. 199, John Wiley, New York, 1941.
- T. Yildiz, H. Yasa, B. Hasdemir and A. S. Yusufoglu, Monatsh. Chem., 148, 1445 (2017). doi: 10.1007/s00706-017-1967-z
- 19. T. Mukaiyama and K. Narasaka, J. Syn. Org. Chem. Jpn., 40, 1002 (1982). doi:10.5059/yukigo-seikyokaishi.40.1002

- 20. T. Mukaiyama, Org. Reactions, 28, 203 (1982).
- 21. A. Cordova, W. Notz and C. F. Barbas, Chem. Commun., 3024 (2002). doi:10.1039/B207664K
- 22. P. Dziedzic, W. B. Zou, J. Hafren and A. Cordova, Org. Biomol. Chem., 4, 38 (2006). doi:10. 1039/B515880J
- 23. A. Cordova, W. B. Zou, I. Ibrahem, E. Reyes, M. Engqvist and W. W. Liao, *Chem. Commun.*, 3586 (2005). doi:10.1039/b507968n
- 24. A. Cordova, W. B. Zou, P. Dziedzic, I. Ibrahem, E. Reyes and Y. M. Xu, *Chem.-Eur. J.*, **12**, 5383 (2006). doi:10.1002/chem.200501639
- 25. Y. Hayashi, T. Itoh, N. Nagae, M. Ohkubo and H. Ishikawa, Synlett, 1565 (2008). doi:10. 1055/s-2008-1077789
- 26. M. Penhoat, D. Barbry and C. Rolando, *Tetrahedron Lett.*, **52**, 159 (2011). doi:10.1016/j.tetlet. 2010.11.014
- 27. Z. Wang, S. M. Richter, J. R. Bellettini, Y. M. Pu and D. R. Hill, Org. Process. Res. Dev., 18, 1836 (2014). doi:10.1021/op500260n
- 28. Dimethyl Sulfoxide Producer Association, US Environmental Protection Agency. IUCLID Data Set; Leesburg, VA, September 8, 2003, report number 201-14721A.
- 29. A. Yanagisawa, T. Ichikawa and T. Arai, J. Organomet. Chem., 692, 550 (2007). doi:10.1016/j. jorganchem.2006.08.048
- 30. Y. Orito, S. Hashimoto, T. Ishizuka and M. Nakajima, *Tetrahedron*, **62**, 390 (2006). doi:10. 1016/j.tet.2005.09.074
- 31. T. Ooi, K. Doda and K. Maruoka, Org. Lett., 3, 1273 (2001). doi:10.1021/ol000382d
- 32. R. Sudha and S. Sankararaman, J. Chem. Soc. Perk. T. 1, 383 (1999). doi:10.1039/a900095j
- 33. C. H. Cheon and H. Yamamoto, Tetrahedron, 66, 4257 (2010). doi:10.1016/j.tet.2010.03.120
- 34. D. Acetti, E. Brenna, C. Fuganti, F. G. Gatti and S. Serra, *Eur. J. Org. Chem.*, 142 (2010). doi: 10.1002/ejoc.200901006
- 35. T. Mukaiyama, T. Takuwa, K. Yamane and S. Imachi, B. Chem. Soc. Jpn., 76, 813 (2003). doi:10.1246/bcsj.76.813
- 36. R. L. Gao and C. S. Yi, ACS Catal., 1, 544 (2011). doi:10.1021/cs200087c
- 37. D. X. Yang, J. F. Huang and B. Liu, Eur. J. Org. Chem., 4185 (2010). doi:10.1002/ejoc. 201000484
- 38. A. V. Kel'in and A. Maioli, Curr. Org. Chem., 7, 1855 (2003). doi:10.2174/1385272033486134
- 39. A. V. Kel'in, Curr. Org. Chem., 7, 1691 (2003). doi:10.2174/1385272033486233
- 40. N. Mori and H. Togo, Tetrahedron, 61, 5915 (2005). doi:10.1016/j.tet.2005.03.097
- 41. Y. Wu, Z. C. Geng, J. J. Bai and Y. W. Zhang, Chinese J. Chem., 29, 1467 (2011). doi:10. 1002/cjoc.201180267