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ABSTRACT: The generation of pyridynes from diyne nitriles is 
reported. These cyano-containing precursors are analogs of the 
triyne substrates typically used for the hexadehydro-Diels-Alder 
(HDDA) cycloisomerization reactions that produce ring-fused 
benzynes. Hence, the new processes described represent aza-
HDDA reactions. Depending on the location of the nitrile, either 
3,4-pyridynes (from 1,3-diynes containing a tethered cyano 
group) or 2,3-pyridynes (from 1-cyanoethyne derivatives 
containing a tethered alkyne) are produced. In situ trapping of 
these reactive intermediates leads to highly substituted and 
functionalized pyridine derivatives. In several instances, 
unprecedented pyridyne trapping reactions are seen. Differences 
in reaction energetics between the aza-HDDA substrates and that 
of their analogous HDDA (triyne) substrates are discussed.  

The cycloisomerization reaction of substrates containing a 
conjugated 1,3-diyne and a remotely tethered alkyne (the 
diynophile) (cf. 1, Figure 1a) to give benzyne intermediates1 has 
proven to be quite general and fairly robust. 2  This so-called 
hexadehydro-Diels-Alder reaction, 3  when carried out in the 
presence of suitable trapping partners (T2-T1), provides a platform 
for (i) discovering new modes of reactivity, (ii) uncovering 
fundamental mechanistic details about aryne reactivity, and (iii) 
accessing complex benzenoid products (cf. 1-Ar). Notably, the core 
benzene ring is created in a de novo fashion.  

It is natural to ask what might result upon replacing the remote 
carbon atom of the monoyne or of the 1,3-diyne in 1 with a 
nitrogen atom—that is, would the nitrile analogs 2 (nitrile as 
diynophile) or 3 (nitrile as an element of a cyanoalkyne) enter into 
analogous transformations (Figure 1b) to produce highly 
substituted pyridine products such as 2-Ar or 3-Ar by way of 
pyridyne 4  intermediates? This would comprise an aza-
hexadehydro-Diels-Alder reaction (aza-HDDA). We distinguish 
these two variants, arbitrarily, as class 1 vs. class 2 processes, 
respectively (Figure 1b).  

A potentially mitigating challenge for the success of an aza-
HDDA process is the fact that thermal cycloaddition reactions of 
nitriles are much more rare than those of alkynes. In part, this stems 
from the fact that a C≡N triple bond is inherently stronger than 
that of a C≡C bond.5 Nitriles do engage in metal-catalyzed net 
cycloadditions. Notable are nitrile plus azide (3+2)-cycloadditions 
to give tetrazoles6  and nitrile + alkyne + alkyne, net [2+2+2]-
cycloisomerizations to give pyridines.7 Nitriles also can serve as a 
dienophile, either as activated species such as a sulfonylcyanide8 or 
in high-temperature hetera-Diels-Alder reactions,9 as well as with 
certain more reactive alkenylallenes10 or alkynylallenes as the 4-
atom partner in (4+2) net cycloisomerization reactions. The latter  

 
Figure 1. a), b) Trimethylene-linked cycloisomerizations to the reactive 
aryne intermediate for a) the all-carbon HDDA reaction and b) each of 
two classes of aza-HDDA reactions with a nitrogen atom at either 
terminus of the 1,3,8-nonatriyne substrate. c) Engagement of a nitrile 
with a tethered alkynylallene moiety in an aza-PDDA reaction.11  
aCalculated free energy change for the conversion of a prototypical HDDA 
substrate to its corresponding benzyne or pyridyne {DFT [M06-2X/6-
31+G(d,p) with SMD(CHCl3)]}. 

of these last two examples constitutes an aza-pentadehydro-Diels-
Alder (aza-PDDA) cyclization,11 an example of which is shown in 
the cycloaromatization of nitrile 7 to give pyridine 9 via the reactive 
intermediate 8 (Figure 1c). This previously reported process is 
mechanistically quite distinct from the aza-HDDA reactions 
described here.  
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Some of the energetic challenge posed by a potential aza-HDDA 
reaction can be discerned from the relative free energy changes 
computed for the all-carbon HDDA reaction of 1,3,8-nonatriyne (4 
to 4*, Figure 1a) vs. each of the class 1 and class 2 aza-HDDA 
cyclizations (5 to 5* and 6 to 6*, respectively; Figure 1b). The all-
carbon HDDA is substantially more exergonic than for either of the 
aza-HDDA cyclizations, suggestive of higher activation energies for 
the cyclizations of the aza-substrates. 

We first examined the feasibility of an aza-HDDA reaction with 
the nitrile-diyne 10a [from a four linear-step sequence; see 
Supporting Information (SI)]. This substrate contains a pendant 
TBS-ether, a moiety known to efficiently trap HDDA benzynes.12 
Heating nitrile 10a at 225 °C [in o-dichlorobenzene (DCB)] for 16 
hours resulted in its nearly complete consumption. The tricyclic 
pyridine derivative 11a was isolated (36%) along with its 
desilylated analog 11a-H (10%). Even though modest yielding, this 
transformation clearly established the viability of an aza-HDDA 
process, at least for a class 1 variant (nitrile as diynophile).  

We then scouted a number of related substrates, 10b-f (Figure 
2), each bearing the tethered OTBS trap but differing in the nature 
of the nitrile-to-diyne linker. Several of these substrates contain 
geminal dimethyl substituents, which likely facilitates the 
cycloaromatization step through the Thorpe–Ingold effect, 13 
although this point was not explicitly explored. Several benefit from 
the restricted rotation imposed by the alkene or arene within the 
tether, although the successful cyclization of 10a shows that this 
constraint is not an absolute requirement. Each of pyridines 11b-f 
was the predominant product in each crude product mixture. Based 
upon evaluation of a combination of the cleanliness of this mixture 
(1H NMR analysis), the isolated yield of products 11a-f, 14  the 
substrate stability (an issue with 10d), and the reaction rate, we 
elected to use analogs of 10e and 10f to study a variety 
intermolecular trapping reactions. In particular, for this purpose we 
synthesized substrates 12 and 13 (Figure 3), each bearing a simple 
methyl substituent in place of the siloxypropyl group at the diyne 
terminus.  

Nitriles 12 and 13 gave rise to the pyridynes 12* and 13* in o-
DCB at 175 °C. For comparison, the close structural analogs of 12 
in which the CN is replaced by an alkyl group (cf. ia/b to iia/b15) 
cyclize to their respective benzyne analogs via a HDDA reaction 
with a half-life of ca. 4 hours at 85 °C. Several different bimolecular 
trapping reagents were used to capture the aryne 12*, giving rise to 
products 14a-d (Figure 3). The electrophilicity of the acyl nitrile in 
12 imposed a limitation on the types of nucleophilic traps that 
could be used as trapping agents; the substrate needs, of course, to 
be compatible with the trapping agents under the thermal 
conditions required to promote the aza-HDDA cycloisomerization 
event. Furan and cyclooctane, a 4π-diene and a dihydrogen donor 
molecule,16 respectively, meet that requirement and gave rise to 
products 14a and 14b, respectively. Acetic acid was also a viable 
trapping agent, leading to adduct 14c. Now, and in contrast to 
furan and cyclooctane, the trapping event can lead to two different 
isomeric acetate products. The ester 14c was produced as the major 
adduct along with a minor amount of the adduct arising from 
trapping at C4 (not shown17). The three-component adduct 14d18 
was produced when tetrahydrothiophene (THT) and acetic acid 
were both present during pyridyne generation. This demonstrates 
the greater proclivity of a softer, more polarizable nucleophile to 
engage the electrophilic pyridyne, as has been observed19 for other 
three-component reactions involving benzynes.  

 

Figure 2. Class 1 aza-HDDA nitrile diyne substrates preliminarily 
explored. Reaction temperatures reflect the relative reactivities. 

Under identical reaction conditions, the analogous pyridine 
products 15a-15d were formed from substrate 13 using the same 
pyridyne-trapping reagents as for 12. Additional traps yielded the 
pyridine products 15e-15i: The reaction of pyridine 13* with 
tetraphenylcyclopentadienone (TPCPD) in a [4+2] addition, 
followed by the thermal cheletropic extrusion of carbon monoxide, 
yielded the isoquinoline 15e. The absence of a highly electrophilic 
acyl nitrile moiety in substrate 13 further allowed for the use of 
nucleophilic pyridyne traps such as n-butylamine and 2,4,6-
trimethylphenol to give 15f and 15g, respectively. Finally, the 
pericyclic reactions of 13* with trimethylsilyl azide (in a 1,3-dipolar 
cycloaddition) and p-xylene (in a [4+2] cycloaddition) gave the 
respective pyridine products 15h and 15i. 

The sense of regioselectivity of nucleophilic addition to 
unsymmetrical arynes often correlates with the extent (and 
direction) of geometric distortion, as computed for the aryne 
structure.4d, 20  In the case of 12* and 13* (Figure 3), DFT 
calculations show only a slight degree of distortion in these 3,4-
pyridynes, as indicated by the denoted internal bond angles. 
Accordingly, mixtures of regioisomers were observed for those 
trapping reactions capable of leading to constitutionally isomeric     

• •
N

MeO

MeO

O

O
TBS

• •
N

O
TBS

• •

O
N

O
TBS

MeO

MeO • •
N

TBS
O• •

N
MsN

O
R TBS

O• •
N

O

225 °C

N

• •
O

TBS
O

N

• •
O

TBS MeO
OMe

MsN

N

• •
O

TBS

N

• •
O

TBS
MeO

OMe

O
N

• •
O

TBS

O N

• •
O

TBS

220 °C 220 °C

120 °C 175 °C 175 °C

Δ

o-DCB

N

• •
TBSO • •

N

O
R

1110

• •
N

10*

O
Si

10a

11a  (R = TBS; 36%) 
11a-H  (R = H; 10%)

10b

11b  (33%)

10c

11c  (38%)

10d

11d  (29%)

10e

11e  (66%)

10f

11f  (27%)

Page 2 of 6

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3 

 
 

Figure 3. Reactions of the class 1 substrates 12 and 13 (methyl-bearing analogs of 10e and 10f, respectively) involving trapping of pyridynes 12* and 
13*to give products 14a-d and 15a-i, respectively. 
aThe minor isomer was not isolated; this ratio reflects integration of an HPLC/MS chromatogram that verifies the mass of the minor component.

adducts. However, the product ratios vary considerably, 
suggesting that steric differences for the approach of the trapping 
agent also impact the regioselectivities.21  

In contrast, 2,3-pyridynes are recognized as being much more 
distorted and, accordingly, more discriminating in their site-
selectivity for nucleophilic addition.4c,e The computed structures 
for 16* and 18* (Figure 4) are well in line with this expectation. 

This further incentivized our exploration of class 2 aza-HDDA 
reactions [conjugated cyanoalkyne as the 4π-component (cf. 3, 
Figure 1)]. We first examined substrate 16 (preparation in SI). The 
lack on an open valency on the nitrogen terminus of the 4π-unit 
precluded the use of a tethered OTBS trapping group analogous to 
those used to explore the class 1 substrates (Figure 2).   
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Figure 4. (a) Reactions of the class 2 substrate 16 to give products 17a-f. (b) Reactions of the class 2 substrate 18 to give products 19a-g.  
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When heated to, now, just 120 °C for five hours in a solution 
containing furan, the ynone 16 was smoothly transformed into 
the furan adduct 17a in excellent yield (81%). The half-life for 
disappearance of 16 to give the pyridyne 16* was ca. 25 min. 

We proceeded to test a number of other trapping reactions 
known to be effective for HDDA-benzynes. These gave rise to 
products 17b-f. In no instance was a second isomer isolated nor 
even definitively identified as a minor constituent in the crude 
product mixture, and in most cases its presence in as little as 1% 
would have been detectable by HPLC/MS. This high level of 
selectivity is consistent with the highly distorted nature of the 
computed structure of the 2,3-pyridyne 16*. The assignment of 
structure to the products rests, on i) NOE experiments for 
adducts 17b-f and ii) NMR chemical shift similarities (both 1H 
and 13C) throughout the series of six compounds. Capture by 
protic nucleophiles, exemplified by products 17b and 17c, are 
noteworthy, given the potentially electrophilic ynone and 
cyanoalkyne moities present in substrate 16. However, we 
surmise that the low yield of 17c is a reflection of competitive 
consumption of the substrate prior to its cyclization. The three-
component adduct18,19 17d arises from trapping of the pyridyne 
by, first, the sulfur atom in THT followed by the conjugate base 
of methyl cyanoacetate (MCA). Formation of products 17e and 
17f demonstrates that pyridyne 16* is capable of providing 
complex structures upon engaging natural products. 22  The 
tropinone and colchicine adducts, respectively, can be viewed as 
arising via the species indicated in brackets in the second row of 
Figure 4a.  

A complementary set of experiments was performed with the 
class 2 substrate 18, in which the carbonyl oxygen in 16 has been 
replaced by a gem-dimethyl moiety. This compound cyclized 
considerably more slowly than did the ynone 16 (comparable t1/2 
values at 170 vs. 120 °C, respectively). We have previously 
observed this type of rate difference in triyne-to-benzyne 
transformations,23 but attribute it not to an electronic effect but, 
instead, to a difference in the distance between the two closest sp-
hybridized carbons attainable in the reactive conformer of the 
substrate.  

Cyclization of 18 in the presence of furan led to 19a in a more 
modest yield than for the case of 17a—a reflection of that fact 
that at higher reaction temperatures adducts like 19a undergo 
further [4+2] cycloaddition with an additional molecule of 
furan.24 Products 19b-f demonstrate reactivity analogous to that 
giving 17c-f. Finally, trapping 18* with 2,4,6-trimethylphenol led 
to formation of 19g in high yield, a process we have described as a 
phenolic ene reaction.25 

In conclusion, we have demonstrated that two different types 
of nitrile analogs of HDDA triyne substrates can be thermally 
cyclized to produce either 3,4- or 2,3-pyridynes. These reactive 
intermediates are captured in situ by a variety of different 
trapping reagents. The 3,4-pyridynes (from what we call class 1 
aza-HDDA reactions) show (by DFT) only a minimal amount of 
distortion and often give rise to two isomeric products wherein 
the nucleophilic portion of the trapping agent has competitively 
attacked the C3- vs. the C4-pyridyne carbons. In contrast, 2,3-
pyridynes (from class 2 aza-HDDA reactions) are considerably 
more distorted and, accordingly, lead to the isolation of only a 
single regioisomeric product. Reflecting the inherently higher 
bond enthalpy of a C≡N vs. a C≡C bond, the aza-HDDA 

reaction proceeds more slowly (i.e., with a higher activation 
barrier) than HDDA reactions of analogous triyne substrates. 
Several of the products arise from reactions in which the aryne 
has been captured by a process that is, to our knowledge, 
unprecedented for pyridyne; these include reduction by 
dihydrogen transfer (14b/15b), carboxylic acid addition 
(14c/15c), three-component trapping initiated by sulfide 
(14d/15d/17d/19c/19d), phenol ene reaction (15g/19g/19h), 
and capture by a tertiary amine (17e/19e). Overall, the aza-
HDDA reaction represents a new way to assemble substituted 
pyridine compounds and do so in a fashion that is 
complementary to more classical approaches for construction of 
this long-revered heterocycle. 
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