Applied Organometallic Chemistry

COMMUNICATION

CuI-catalyzed tandem synthesis of thioethers using aryl halides, electron-deficient alkenes, and sodium *iso*-propyl xanthogenate

Mohammad Abbasi 💿	Najmeh Nowrouzi 回	Т	Rahimeh Khezri
	J		

Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran

Correspondence

Mohammad Abbasi, Department of Chemistry, Faculty of Sciences, Persian Gulf University. Bushehr 75169, Iran. Email: abbassi@pgu.ac.ir

Funding information

Persian Gulf University Research Council; Iran National Science Foundation, Grant/ Award Number: 96009857

1 | INTRODUCTION

Thioether functionality is an important motif found in a large number of natural products and biologically interesting compounds.^[1] A variety of bioactive thioethers have been studied as drug candidates against drug-resistant bacteria,^[2] HIV infection,^[3] allergies,^[4] asthma,^[4] coronary artery disease,^[4] schizophrenia,^[5] bipolar disorder,^[5] major depressive disorder,^[5] and so on.^[6] Synthetically, they are precursors of chiral sulfoxides, which are useful tools in asymmetric carbon– carbon and carbon–heteroatom bond formation.^[7] They can be oxidized to sulfones for stabilizing a radical or anion on the α -carbon atom.^[8] Removal of the sulfur moiety after the completion of the procedure by reductive desulfurization provides access to sulfur-free products.^[9]

Alkyl aryl thioethers can be prepared by crosscoupling of aliphatic thiols with aryl derivatives bearing a leaving group catalyzed by transition metals^[10] or by treating aryl mercaptans with a variety of reactants, including alkyl halides,^[11] alkenes,^[12] and electrondeficient alkenes.^[13] The use of foul-smelling thiols is a major difficulty of these strategies. Furthermore, because

A ligand-free, CuI-catalyzed protocol was developed for the one-step preparation of Michael adducts of aromatic thiols in high yields by reacting a mixture of an aryl halide and an electron-deficient alkene with sodium *iso*-propyl xanthogenate.

K E Y W O R D S aryl halide, CuI, sodium *iso*-propyl xanthogenate, thia-Michael addition

> of their oxidizing tendency, few aryl mercaptans are commercially available^[14] and they should be primarily synthesized from aryl halides via a few malodorous procedures.

> The conjugate addition of aryl mercaptans to electron-deficient alkenes as an efficient strategy for preparing aryl alkyl thioethers has been widely studied in organic synthesis.^[13] These studies have been mainly focused on finding new catalysts and optimizing reaction conditions.^[13] As mentioned earlier, aryl mercaptans are rare, smelly, and unpleasant chemicals. To overcome such drawbacks, researchers have developed alternative protocols for preparing thia-Michael adducts by in situ generation of aryl thiols using different strategies. In this regard, electron-deficient alkenes have been treated with aryl sulfonyl chloride together with Zn,^[15] or diaryl disulfides along with $[BnEt_3N]_2MoS_4$,^[16] or a reducing reagent such as In,^[17] InI,^[18] Zn,^[19] Se,^[20] Sm,^[21] Fe,^[22] or PPh₃.^[23] Here we introduce an efficient ligand-free CuI-catalyzed one-step synthesis of thia-Michael adducts of aryl mercaptans by treating a mixture of an aryl halide and an electron-deficient alkene with sodium iso-propyl xanthogenate in dimethylformamide (DMF) at 110°C (Scheme 1).

SCHEME 1 One-pot, non-sequential synthesis of thia-Michael products. DMF, dimethylformamide; EWG, electron withdrawing group

2 | RESULTS AND DISCUSSION

To start our study, different solvents were screened for reaction of iodobenzene (1.2 mmol), butyl acrylate (1 mmol), and sodium *iso*-propyl xanthogenate (1.3 mmol) in the presence of NaHCO₃ (2 mmol) and CuI (20 mol%) at 110°C for 24 hr. The results are summarized in Table 1.

Although none of the reactions were complete after this period, the reaction in DMF gave the best yield (Table 1, entry 1). It gave the desired product in 54% yield After choosing DMF as the solvent, we examined several different bases. The bases Na_2CO_3 , K_2CO_3 , KOH, Et_3N , and NaOH did not give higher yield than NaHCO_3 (Table 1, entry 1 vs. 7–12). Subsequently, by changing the amount of NaHCO₃ in the reaction, we found that an increase in the amount of NaHCO₃ reduces the reaction time and increases the reaction yield. For example, by increasing the amount of NaHCO₃ to 4 and 6 equivalents, the starting iodobenzene was completely consumed to give butyl 3-(phenylthio)propanoate in 84% (within 4 hr) and 90% (12 hr) yields, respectively. On the other hand, decreasing the catalyst loading to 10 mol% or the reaction temperature to $100^{\circ}C$ reduced the reaction efficiency. Meanwhile, the reaction time or yield was not improved

TABLE 1 Reaction of iodobenzene, sodium iso-propyl xanthogenate, and butyl acrylate under different conditions^a

PhI + NaS OPr^i + CO_2Bu $T (^{\circ}C), solvent$ 1.1 mmol 1.1 mmol 1 mmol T mmol T mmol $PhS(CH_2)_2CO_2Bu$						
Entry	Solvent	Base/Z (mmol)	CuX/Y (mol%)	<i>t</i> (hr)	<i>T</i> (°C)	Yield (%)
1	DMF	NaHCO ₃ /2	CuI/20	24	110	54
2	DMSO	NaHCO ₃ /2	CuI/20	24	110	43
3	H ₂ O	NaHCO ₃ /2	CuI/20	24	110	-
3	SDS/H ₂ O	NaHCO ₃ /2	CuI/20	24	110	-
4	PEG-200	NaHCO ₃ /2	CuI/20	24	110	37
	PhCH ₃	NaHCO ₃ /2	CuI/20	24	110	40
5	DMF	Na ₂ CO ₃ /2	CuI/20	24	110	54
6	DMF	K ₂ CO ₃ /2	CuI/20	24	110	53
7	DMF	$Et_3N/2$	CuI/20	24	110	45
8	DMF	NaOH/2	CuI/20	24	110	50
9	DMF	KOH/2	CuI/20	24	110	52
10	DMF	NaHCO ₃ /4	CuI/20	17	110	84
11	DMF	NaHCO ₃ /6	CuI/20	12	110	90
12	DMF	NaHCO ₃ /6	CuI/20	12	120	87
13	DMF	NaHCO ₃ /6	CuI/20	24	100	80
14	DMF	NaHCO ₃ /6	CuI/10	24	110	55
15	DMF	NaHCO ₃ /6	CuCl/20	15	110	85
16	DMF	NaHCO ₃ /6	Cu (OAc) ₂ /20	16	110	79

DMF, dimethylformamide; DMSO, dimethyl sulfoxide; PEG-200, polyethylene glycol; SDS, sodium dodecyl sulfate.

^aReaction conditions: PhI (1.2 mmol), sodium iso-propyl xanthogenate (1.3 mmol), butyl acrylate (1 mmol), solvent (2 ml).

by elevation of temperature from 110 to 120°C or with increasing catalyst loading to 30 mol%. With the optimal reaction conditions in hand, we proceeded to investigate the scope of the reaction for the synthesis of thia-Michael adducts using a range of different aryl halides and electron-deficient alkenes.

The results shown in Table 2 indicate that both aryl iodides and bromides efficiently react with sodium isopropyl xanthogenate and electron-deficient alkenes under reaction conditions to produce thia-Michael adducts in high yields. Iodobenzene reacts completely within 12 hr, but bromobenzene reacts more slowly and is consumed after 19 hr. Also, both ortho- and para-iodotoluenes react much slower than iodobenzene but in high yields. Also, para-bromotoluene reacts more slowly but 4-bromobenzonitrile reacts faster than bromobenzene. Reactions with the participation of 2-bromopyridine proceeded to completion more slowly than with bromobenzene and gave lower yields of Michael products.

We considered two reasonable pathways for the reaction, marked path A and path B in Scheme 2.

According to path A, CuI undergoes oxidative addition by insertion into the aryl C–X bond to produce Cu(III) intermediate **1**. Next, this intermediate is converted to intermediate **2** by replacing halide (X^-) with xanthogenate on Cu. This step is followed by reductive elimination to give *O-iso*-propyl *S*-phenyl carbonodithioate (**3**) along with regeneration of CuI. This intermediate under basic hydrolysis affords aryl thiolate, which in turn undergoes 1,4-addition to an electrondeficient alkene followed by proton capture from bicarbonate to produce the thia-Michael adduct.

According to path B, the conjugate addition of *iso*propyl xanthogenate to alkene results in the thia-Michael adduct **4**, which subsequently undergoes basic hydrolysis to form the aliphatic thiolate **5**. On the other hand, insertion of Cu into the aryl–X bond generates intermediate **1**, which under treatment with the aliphatic thiolate **5** generates intermediate **6** by replacing halide with thiolate. Finally, a reductive elimination process regenerates CuI catalyst and releases the thia-Michael adduct.

In order to understand the thiol intermediates involved in the process and therefore to approve or reject the proposed mechanisms, a reaction using iodobenzene (1.2 mmol), butyl acrylate (1 mmol), sodium *iso*-propyl xanthogenate (1.3 mmol), NaHCO₃ (6 mmol), and CuI (20 mol%) in DMF at 110 oC was conducted in the presence of C_2Cl_6 (1 mmol). Thiols in the presence of C_2Cl_6 undergo fast oxidation to symmetric disulfides.^[24] The reaction in the presence of C_2Cl_6 gave only diphenyl disulfide and the starting butyl acrylate was recovered unreacted from the reaction mixture in near-quantitative yield. This finding confirms path A and rejects path B.

In conclusion, we have developed conditions for a one-step copper-catalyzed synthesis of thia-Michael products of aromatic thiols using aryl halides, sodium *iso*-propyl xanthogenate, and diverse electron-deficient alkenes. The method is ligand-free, one-pot, one-step, thiol-free, and simple, giving thia-Michael adducts in good to excellent yields.

SCHEME 2 Two possible reaction pathways. Path A was confirmed by further experiments whereas path B was rejected. EWG, electron withdrawing groups

4 of 9 WILEY Organometallic.

TABLE 2	Synthesis of Michael adducts by reacting aryl halides, electron-deficient alkenes, and sodium iso-propyl xanthogenate ^a

Entry	ArX	Alkene	Product	<i>T</i> (hr)	Yield (%)
1		Butyl acrylate	O S OC ₄ H ₉	12	89
2		Ethyl acrylate	S OC2H5	12	86
3		Methyl acrylate	C S O OCH3	12	86
4		Acrylonitrile	S CN	12	85
5		Methyl vinyl sulfone	S S S S S S CH ₃ O S CH ₃	12	83
6	CH ₃	Ethyl acrylate	CH ₃ O S OC ₂ H ₅	21	85
7	CH ₃	Acrylonitrile	CH ₃ SCN	21	84
8	CH ₃	Methyl vinyl sulfone	CH ₃	21	80
9	H ₃ C-	Methyl acrylate	H ₃ C S OCH ₃	21	83
10	H ₃ C-	Butyl acrylate	H ₃ C OC ₄ H ₉	21	85

(Continues)

Applied Organometallic_WILEY_5 of 9 Chemistry

TABLE 2 (Continued)

Entry	ArX	Alkene	Product	T (hr)	Yield (%)
11	H ₃ C	Methyl vinyl sulfone	H ₃ C	21	85
12	F	Acrylonitrile	F CN	20	85
13	F	Ethyl acrylate	F S OC ₂ H ₅	20	85
14	NC	Ethyl acrylate	NC O S OC ₂ H ₅	17	85
15	NC	Methyl acrylate	NC O OCH3	17	85
16	Br	Butyl acrylate	S C 4H9	19	86
17	Br	Ethyl acrylate	S O OC2H5	19	86
18	Br	Methyl acrylate	S CH3	19	85
19	Br	Acrylonitrile	S CN	19	83
20	Br	Methyl vinyl sulfone	S S S S S S CH ₃ O	19	81

(Continues)

^aReaction conditions: aryl halide (1.2 mmol), sodium *iso*-propyl xanthogenate (1.3 mml), electron-deficient alkene (1 mmol), CuI (0.2 mmol), NaHCO₃ (6 mmol), DMF (2 ml), 110°C.

3 | EXPERIMENTAL SECTION

General procedure: An aryl halide (1.2 mmol), a Michael acceptor (1 mmol), CuI (0.2 mmol), and NaHCO₃ (6 mmol) were added to a mixture of sodium *iso*-propyl xanthogenate (1.3 mmol) in DMF (2 ml). The reaction mixture was stirred at 110°C until the aryl halide was consumed. After that, the mixture was diluted with H₂O (0.5 ml) and extracted with 1:1 *n*-hexane/ethyl acetate (4 × 1 ml). The organic extracts were combined, concentrated, and purified by chromatography on silica gel using *n*-hexane or a suitable mixture of *n*-hexane/EtOAc as eluent to obtain pure product.

The NMR spectra of products are shown in the supporting information file.

Butyl 3-(phenylthio)propanoate (Table 2, entries 1 and 16): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.41–7.39 (m, 2H), 7.35–7.31 (m, 2H), 7.26–7.22 (m, 1H), 4.12 (t, J = 6.7 Hz, 2H), 3.20 (t, J = 7.4 Hz, 2H), 2.66 (t, J = 7.4 Hz, 2H), 1.67–1.60 (m, 2H), 1.45–1.36 (m, 2H), 0.96 (t, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm):171.9, 135.3, 130.1, 129.9, 126.6, 64.7, 34.5, 30.6, 29.1, 19.2, 13.7.

Ethyl 3-(phenylthio)propanoate (Table 2, entries 2 and 17): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.40–7.37 (m, 2H), 7.34–7.28 (m, 2H), 7.25–7.21 (m, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.19 (t, J = 7.4 Hz, 2H), 2.64 (t, J = 7.4 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.7, 135.3, 130.1, 129.0, 126.5, 60.7, 34.42, 29.0, 14.2.

Methyl 3-(phenylthio)propanoate (Table 2, entries 3 and 18): ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.40–7.35 (m, 2H), 7.33–7.27 (m, 2H), 7.23–7.17 (m, 1H), 3.67 (s, 3H), 3.17 (t, *J* = 7.1 Hz, 2H), 2.63 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 172.3, 135.4, 130.3, 129.2, 126.7, 51.9, 34.4, 29.2.

3-(Phenylthio)propanenitrile (Table 2, entries 4 and 19): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.47–7.44 (m, 2H), 7.40–7.30 (m, 3H), 3.15 (t, *J* = 7.2 Hz, 2H), 2.62 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 133.3, 131.5, 129.5, 127.9, 118.2, 30.3, 18.4.

(2-(Methylsulfonyl)ethyl)(phenyl)sulfane (Table 2, entries 5 and 20): ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.46–7.31 (m, 5H), 3.40–3.33 (m, 2H), 3.31–3.23 (m, 2H), 2.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 133.3, 130.7, 129.5, 127.6, 54.5, 41.4, 26.5.

Ethyl 3-(o-tolylthio)propanoate (Table 2, entry 6): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.37-7.35 (m, 1H), 7.23–7.14 (m, 3H), 4.18 (q, J = 7.1 Hz, 2H), 3.19 (t, J = 7.4 Hz, 2H), 2.67 (t, J = 7.4 Hz, 2H), 2.42 (s, 3H),1.30 (t, J = 7.1 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.8, 138.4, 134.6, 130.3, 129.1, 126.5, 126.4, 60.8, 34.3, 28.3, 20.5, 14.2.

3-(o-Tolylthio)propanenitrile (Table 2, entry 7): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.39-7.36 (m, 1H), 7.29–7.20 (m, 3H), 3.14 (t, J = 7.2 Hz, 2H), 2.61 $(t, J = 7.2 \text{ Hz}, 2\text{H}), 2.47 (3, 3\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz},$ CDCl₃) δ (ppm): 139.6, 132.4, 130.8, 130.7, 127.6, 126.8, 118.1, 29.3, 20.5, 18.1.

(2-(Methylsulfonyl)ethyl)(o-tolyl)sulfane (Table 2, entry 8): ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.39–7.34 (m, 1H), 7.28-7.19 (m, 3H), 3.37-3.22 (m, 4H), 2.97 (s, 3H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 139.0, 132.6, 130.8, 129.8, 127.4, 126.9, 54.3, 41.3, 25.5, 20.5.

Butyl 3-(p-tolylthio)propanoate (Table 2, entry 10): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.32 (d, *J* = 8.1 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 4.10 (t, J = 6.7 Hz, 2H), 3.14 (t, J = 7.4 Hz, 2H), 2.62 (t, J = 7.4 Hz, 2H), 2.35(s, 3H), 1.66-1.59 (m, 2H), 1.44-1.35 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 172.1, 137.0, 131.5, 131.2, 130.0, 64.7, 34.7, 30.8, 29.9, 21.2, 19.3, 13.9.

(2-(Methylsulfonyl)ethyl)(p-tolyl)sulfane (Table 2, entries 11 and 23): ¹H NMR (300 MHz, $CDCl_3$) δ (ppm): 7.33 (dd, J = 8.2, 1.2 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 3.33-3.17 (m, 4H), 2.93 (s, 3H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm):138.0, 131.5, 130.3, 129.6, 54.4, 41.3, 27.2, 21.1.

3-((4-Fluorophenyl)thio)propanenitrile (Table 2, entry 12): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.50–7.46 (m, 2H), 7.10–7.06 (m, 2H), 3.10 (t, J = 7.2 Hz, 2H), 2.60 $(t, J = 7.2 \text{ Hz}, 2\text{H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta (\text{ppm}):$ 164.1, 161.6, 134.8, 134.7, 128.2, 128.16, 118.0, 116.8, 116.6, 77.5, 77.2, 76.8, 31.4, 18.4.

Ethyl 3-((4-fluorophenyl)thio)propanoate (Table 2, entry 13): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42–7.38 (m, 2H), 7.02 (t, J = 8.7 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.12 (t, J = 7.4 Hz, 2H), 2.59 (t, J = 7.4 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.7, 163.4, 160.9, 133.4, 133.3, 130.1, 130.1, 116.3, 116.0, 60.7, 34.5, 30.4, 14.2.

Ethyl 3-((4-cyanophenyl)thio)propanoate (Table 2, entry 14): ¹H NMR (400 MHz, CDCl₃) δ (ppm):7.58 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 4.20(q, J = 7.2 Hz, 2H), 3.29 (t, J = 7.3 Hz, 2H), 2.71(t, J = 7.3 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.2, 143.5, 132.3, 127.2, 118.7, 108.7, 61.0, 33. 7, 27.0, 14.1.

Applied Organometallic_WILEY-Chemistry Methyl 3-((4-cyanophenyl)thio)propanoate (Table 2,

7 of 9

entry 15): ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.54 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 3.72 (s, 3H), $3.24(t, J = 7.2 \text{ Hz}, 2\text{H}), 2.68 (t, J = 7.1 \text{ Hz}, 2\text{H}); {}^{13}\text{C NMR}$ (100 MHz, CDCl₃) δ (ppm) 171.9, 143.8, 132.6, 127.7, 118.9, 109.0, 52.3, 33.8, 27.3.

3-(*p*-Tolylthio)propanenitrile (Table 2, entry 21): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.37 (d, J = 7.7 Hz, 2H), 7.19 (d, J = 7.7 Hz, 2H), 3.10 (t, J = 7.3 Hz, 2H), 2.59 (t, J = 7.3 Hz, 2H), 2.38 (s, 3H), ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 138.4, 132.4, 130.4, 129.5, 118.3, 31.0, 21.3. 18.4.

Ethyl 3-(*p*-tolylthio)propanoate (Table 2, entry 22): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.31 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 3.14 (t, J = 7.4 Hz, 2H), 2.61 (t, J = 7.4 Hz, 2H), 2.34 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 171.8, 136.7, 131.3, 131.0, 129.7, 60.6, 34.5, 29.7, 21.0, 14.2.

Ethyl 3-(pyridin-2-ylthio)propanoate (Table 2, entry 24): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.45–8.44 (m, 1H), 4.527.48 (m, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.02-6.99(m, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.46 (t, J = 7.1 Hz, 2H), 2.80 (t, J = 7.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 172.1, 158.2, 149.4, 135.9, 122.4, 119.5, 60.6, 34.7, 24.9, 14.1.

3-(Pyridin-2-ylthio)propanenitrile (Table 2, entry 25): ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.47–8.45 (m, 1H), 7.57–7.53 (m, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.08–7.05 (m, 1H), 3.46 (t, J = 7.1 Hz, 2H), 2.90 (t, J = 7.1 Hz, 2H), ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 156.6, 149.6, 136.3, 122.7, 120.0, 118.7, 25.6, 18.8.

ACKNOWLEDGEMENTS

We thank the Persian Gulf University Research Council and Iran National Science Foundation (INSF grant no.96009857) for support of this work.

ORCID

Mohammad Abbasi D https://orcid.org/0000-0002-0505-7159

Najmeh Nowrouzi D https://orcid.org/0000-0002-9734-981X

REFERENCES

- [1] a) E. Block, Reactions of Organosulfur Compounds, New York, Academic Press 1978; b) P. I. Beletskaya, P. A. Valentine, Chem. Rev. 2011, 111, 1596.
- [2] J. C. Sheehan, K. R. Henery-Logan, J. Am. Chem. Soc. 1959, 81, 3089.
- [3] S. Raghavan, B. Sridhar, J. Org. Chem. 2010, 75, 498.
- [4] M.-L. Alcaraz, S. Atkinson, P. Cornwall, A. C. Foster, D. M. Gill, L. A. Humphries, P. S. Keegan, R. Kemp,

WILEY Chemistry

8 of 9

E. Merifield, R. A. Nixon, A. J. Noble, D. OBeirne, Z. M. Patel, J. Perkins, P. Rowan, P. Sadler, J. T. Singleton, J. Tornos, A. J. Watts, I. A. Woodland, *Org. Process Res. Dev.* **2005**, *9*, 555.

- [5] C. Bharathi, K. J. Prabahar, C. S. Prasad, M. S. Rao, G. N. Trinadhachary, V. K. Handa, R. Dandala, A. Naidu, *Pharmazie* 2008, 63, 14.
- [6] a) A. Gangjee, Y. Zeng, T. Talreja, J. J. McGuire, R. L. Kisliuk, S. F. Queener, J. Med. Chem. 2007, 50, 3046; b) G. Liu, J. R. Huth, E. T. Olejniczak, R. Mendoza, P. DeVries, S. Leitza, E. B. Reilly, G. F. Okasinski, S. W. Fesik, T. W. von Geldern, J. Med. Chem. 2001, 44, 1202; c) S. Pasquini, C. Mugnaini, C. Tintori, M. Botta, A. Trejos, R. K. Arvela, M. Larhed, M. Witvrouw, M. Michiels, F. Christ, Z. Debyser, F. Corelli, J. Med. Chem. 2008, 51, 5125; d) R. Romagnoli, P. G. Baraldi, M. D. Carrion, O. Cruz-Lopez, M. Tolomeo, S. Grimaudo, A. Di Cristina, M. R. Pipitone, J. Balzarini, A. Brancale, Bioorg. Med. Chem. 2010, 18, 5114; e) G. De Martino, M. C. Edler, C. La Regina, A. Coluccia, M. C. Barbera, D. Barrow, R. I. Nicholson, G. Chiosis, A. Brancale, E. Hamel, M. Artico, R. Silvestri, J. Med. Chem. 2006, 49, 947.
- [7] a) H. Pellissier, *Tetrahedron* 2006, *62*, 5559; b) A. J. Walker, *Tetrahedron: Asymmetry* 1992, *3*, 961; c) M. Carmen Carreno, G. Hernandez-Torres, M. Ribagorda, A. Urbano, *Chem. Commun.* 2009, *41*, 6129.
- [8] B. M. Trost, Bull. Chem. Soc. Jpn. 1988, 61, 107.
- [9] a) J. S. Pizey, Synthetic Reagents, Vol. 2chapter 4, John Wiley & Sons Inc., New York 1974; b) M. Node, K. Nishide, Y. Shigeta, K. Obata, H. Shiraki, H. Kunishige, Tetrahedron 1997, 53, 12,883; c) V. Boekelheide, P. H. Anderson, T. A. Hylton, J. Am. Chem. Soc. 1974, 96, 1558; d) K. Kondo, A. Negishi, K. Matsui, D. Tunemoto, S. Z. Masamune, J. Chem. Soc., Chem. Commun. 1972, 1311; e) R. A. Holton, D. J. Crouse, A. D. Williams, R. M. Kennedy, J. Org. Chem. 1987, 52, 2317; f) G. Tsuchihashi, S. Mitamura, K. Ogura, Tetrahedron Lett. 1976, 17, 855; g) J. M. Khurana, A. Gogia, Org. Prep. Proc. Int. 1997, 29, 1; h) G. Solladie, C. Greek, G. Demailly, A. Solladicavallo, Tetrahedron Lett. 1982, 23, 5047; i) K. Nishide, Y. Shigeta, K. Obata, T. Inoue, M. Node, Tetrahedron Lett. 1996, 37, 2271.
- [10] a) A. Ghaderi, Tetrahedron 2016, 72, 4758; b) C.-F. Lee, Y.-C. Liu, S. S. Badsara, Chem. - Asian J. 2014, 9, 706; c) L. Rout, T. K. Sen, T. Punniyamurthy, Angew. Chem. Int. Ed. 2007, 46, 5583; d) H.-J. Xu, Y.-F. Liang, X.-F. Zhou, Y.-S. Feng, Org. Biomol. Chem. 2012, 10, 2562; e) A. M. Thomas, S. Asha, K. S. Sindhu, G. Anilkumar, Tetrahedron Lett. 2015, 56, 6560; f) J. She, Z. Jiang, Y. Wang, Tetrahedron Lett. 2009, 50, 593; g) D. J. C. Prasad, G. Sekar, Synthesis 2010, 79; h) N. Iranpoor, H. Firouzabadi, A. Rostami, Appl. Organomet. Chem. 2013, 27, 501; i) X. Lv, W. Bao, J. Org. Chem. 2007, 72, 3863; j) S. Jammi, P. Barua, L. Rout, P. Saha, T. Punniyamurthy, Tetrahedron Lett. 2008, 49, 1484; k) Y.-S. Feng, Y.-Y. Li, L. Tang, W. Wu, H.-J. Xu, Tetrahedron Lett. 2010, 51, 2489; l) Y. Yatsumonji, O. Okada, A. Tsubouchi, T. Takeda, Tetrahedron 2006, 62, 9981; m) L. Rout, P. Saha, S. Jammi, T. Punniyamurthy, Eur. J. Org. Chem. 2008, 640; n) Y. Feng, H. Wang, F. Sun, Y. Li, X. Fu, K. Jin, Tetrahedron 2009, 65, 9737; o) H.-J. Xu, X.-Y. Zhao, J. Deng, Y. Fu, Y.-S. Feng, Tetrahedron Lett. 2009, 50, 434; p) N. Panda, A. K. Jena, S. Mohapatra, Appl. Catal. A

2012, *433-434*, 258; q) H.-J. Xu, X.-Y. Zhao, Y. Fu, Y.-S. Feng, Synlett **2008**, 3063; r) P. Guan, C. Cao, Y. Liu, Y. Li, P. He, Q. Chen, G. Liu, Y. Shi, *Tetrahedron Lett.* **2012**, *53*, 5987; s) R. Varala, M. A. Ramu, S. R. Adapa, *Chem. Lett.* **2004**, *33*, 1614; t) J.-R. Wu, C.-H. Lin, C.-F. Lee, *Chem. Commun.* **2009**, 4450; u) Y.-A. Chen, S. S. Badsara, W.-T. Tsai, C.-F. Lee, *Synthesis* **2015**, *47*, 181; v) D. Zhu, L. Xu, F. Wu, B. Wan, *Tetrahedron Lett.* **2006**, *47*, 5781.

- [11] a) V. N. Ipatieff, H. Pines, B. S. Friedman, J. Am. Chem. Soc.
 1938, 60, 2731; b) K. Nguyen, F. Duus, T. X. T. Luu, J. Sulfur Chem. 2016, 37, 349; c) E. Angeletti, P. Tundo, P. Venturello, J. Chem. Soc. Perkin Trans. 1982, 1, 1137. d) N. Ono, H. Miyake, T. Saito, A. Kaji, Synthesis 1980, 952; e) F. Matloubi Moghaddam, M. DokhtTaimoory, H. Ismaili, G. H. R. Bardajee, Synth. Commun. 2006, 36, 3599; f) J. Xu, X. Su, Q. Zhang, Tetrahedron: Asymmetry 2003, 14, 1781; g) H. M. Meshram, B. C. Reddy, P. R. Goud, Synth. Commun. 2009, 39, 2297; h) G. J. Cross, A. J. Seed, K. J. Toyne, J. W. Goodby, M. Hird, C. M. Artal, J. Mater. Chem. 2000, 10, 1555.
- [12] a) S. Banerjee, J. Das, S. Santra, Tetrahedron Lett. 2009, 50, 124; b) S. Banerjee, J. Das, R. P. Alvarez, S. Santra, New J. Chem. 2010, 34, 302; c) E. L. Tyson, M. S. Ament, T. P. Yoon, J. Org. Chem. 2013, 78, 2046; d) H. L. Yue, M. Klussmann, Synlett 2016, 27, 2505; e) D. Limnios, C. G. Kokotos, Adv. Synth. Catal. 2017, 359, 323; f) S. R. Lanke, B. M. Bhanage, Cat. Com. 2013, 41, 29; g) S. Chun, J. Chung, J. E. Park, Y. K. Chung, ChemCatChem 2016, 8, 2476; h) C. C. Silveira, S. R. Mendes, F. M. Libero, Synlett 2010, 790; i) R. Kumar, A. S. Saima, N. H. Andhare, A. K. S. Richa, Angew. Chem. Int. Ed. 2015, 54, 828; j) M. Watanabe, S. Suga, J. -I. Yoshida, Bull. Chem. Soc. Jpn. 2000, 73, 243; k)M. Singh, A. K. Yadav, L. D. S. Yadav, R. K. P. Singh, Tetrahedron Lett. 2017, 58, 2206; 1) P. Kumar, R. K. Pandey, V. R. Hegde, Synlett 1999, 1921; m) A. Neuba, J. Ortmeyer, D. D. Konieczna, G. Weigel, U. Flörke, G. Henkel, R. Wilhelm, RSC Adv. 2015, 5, 9217.
- [13] a) S. Payra, A. Saha, S. Banerjee, RSC Adv. 2016, 6, 95951; b) M. Dewan, A. De, S. Mozumdar, Inorg. Chem. Commun. 2015, 53, 92; c) A. Corma, C. Gonzalez-Arellano, M. Iglesias, F. Sanchez, Appl. Catal. A 2010, 375, 49; d) H. Liu, T. Cohen, J. Org. Chem. 1995, 60, 2022; e) B. M. Fetterly, N. K. Jana, J. G. Verkade, Tetrahedron 2006, 62, 440; f) C. M. Chu, S. Gao, M. N. V. Sastry, C. W. Kuo, C. Lu, J. T. Liu, C. F. Yao, Tetrahedron 2007, 63, 1863; g) A. K. Verma, P. Attri, V. Chopra, R. K. Tiwari, R. Chandra, Monatsh. Chem. 2008, 139, 1041; h) F. Rajabi, S. Razavi, R. Luque, Green Chem. 2010, 12, 786; i) K. Konno, K. Hashimoto, H. Shirahama, T. Matsumoto, Tetrahedron Lett. 1986, 27, 3865; j) G. Bartoli, M. Bartolacci, A. Giuliani, E. Marcantoni, M. Massaccesi, E. Torregiani, J. Org. Chem. 2005, 70, 169; k) N. S. Krishnaveni, K. Surendra, K. R. Rao, Chem. Commun. 2005, 669; 1) A. Kumar, Tetrahedron 2007, 63, 11,086; m) M. Hans, L. Delaude, J. Rodriguez, Y. Coquerel, J. Org. Chem. 2014, 79, 2758; n) C. -M. Chu, S. Gao, M. N. V. Sastry, C. F. Yao, Tetrahedron Lett. 2005, 46, 4971; o) N. Azizi, E. Saki, M. Edrisi, C. R. Chim. 2011, 14, 973: D. Stevanovića, A. Pejovića, I. Damljanovića, p) M. Vukićevićb, G. A. Bogdanovićc, R. D. Vukićević, Tetrahedron Lett. 2012, 53, 6257; q) P. Bernal, J. Tamariz, Tetrahedron

Lett. 2006, 47, 2905; r) G. L. Khatik, R. Kumar, A. K. Chakraborti, Org. Lett. 2006, 8, 2433; s) C. B. W. Phippen, J. K. Beattie, C. S. P. McErlean, Chem. Commun. 2010, 46, 8234; t) A. Kamal, D. R. Reddy, Tetrahedron Lett. 2005, 46, 7951; u) H. Firouzabadi, N. Iranpoor, A. A. Jafari, Synlett 2005, 299; v) H. Firouzabadi, N. Iranpoor, A. A. Jafari, Adv. Synth. Catal. 2005, 347, 655; w) C. M. Chu, W. J. Huang, C. Lu, P. Wu, J. T. Liu, C. F. Yao, Tetrahedron Lett. 2006, 47, 7375; x) M. A. Zolfigol, H. Veisi, F. Mohanazadeh, A. Sedrpoushan, J. Heterocyclic Chem. 2011, 48, 977; y) K. Sanjeev Garg, R. Kumar, A. K. Chakraborti, Tetrahedron Lett. 2005, 46, 1721.

- [14] T. Taldone, P. D. Patel, H. J. Patel, G. Chiosis, *Tetrahedron Lett.* 2012, 53, 2548.
- [15] D. Shi, Z. Lu, L. Mu, G. Dai, Synth. Commun. 1998, 28, 1073.
- [16] K. R. Prabhu, P. S. Sivanand, S. Chandrasekaran, Angew. Chem. Int. Ed. 2000, 39, 4316.
- [17] B. C. Ranu, T. Mandal, Synth. Commun. 2007, 37, 1517.
- [18] a) B. C. Ranu, T. Mandal, Synlett 2004, 1239; b) B. C. Ranu, T. Mandal, Can. J. Chem. 2006, 84, 762.
- [19] a) F. Tian, Y. M. Zhu, S. Zhang, Y. Wang, J. Chem. Res. 2002, 582; b) X. B. Xu, X. H. Yin, Y. Y. Zhu, X. H. Xu, T. Luo, Y. H. Li, X. Lu, L. L. Shao, J. G. Pan, R. H. Yang, J. Chem. Res. 2009, 750; c) B. Movassagh, Y. Z. Zakinezhad, Z. Naturforsch. B 2006, 61, 47.

- [20] A. Ogawa, Y. Nishiyama, N. Kambe, S. Murai, N. Sonoda, *Tetrahedron Lett.* 1987, 28, 3271.
- [21] X. Li, S. Zhang, Y. Zhang, Indian J. Chem. B 2005, 44, 1527.
- [22] M. Gholinejad, H. Firouzabadi, Indian J. Chem. B 2015, 39, 5953.
- [23] S. Banerjee, L. Adak, B. C. Ranu, Tetrahedron Lett. 2012, 53, 2149.
- [24] a) M. Abbasi, M. R. Mohammadizadeh, H. Moosavi, N. Saeedi, Synlett 2015, 26, 1185; b) N. Nowrouzi, M. Abbasi, H. Latifi, Appl. Organomet. Chem. 2017, 31, e3579.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Abbasi M, Nowrouzi N, Khezri R. CuI-catalyzed tandem synthesis of thioethers using aryl halides, electron-deficient alkenes, and sodium *iso*-propyl xanthogenate. *Appl Organometal Chem.* 2020;e5553. <u>https://doi.org/10.1002/aoc.5553</u>