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ABSTRACT: The asymmetric hydrogenation of α-boryl enamides has been developed using a 

bisphosphine-rhodium catalyst. The chelate coordination of the amido group to rhodium and the 

nonbonding interactions between the substrate and ligand play important roles to afford chiral α-

amidoboronic esters with quantitative conversions, high chemoselectivity, and excellent 

enantioselectivity (92-99% ee). Computation of the catalytic cycle revealed selectivity both in 

the hydrogen activation and migratory insertion steps equally contributing to the high 

enantioselectivity. In both cases the nonbonding interactions provided by the Bpin group 

contributed significantly to the stabilization of the transition states in the lower energy pathway.
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 INTRODUCTION

Organoboron compounds are popular in the chemical and pharmaceutical fields owing to their 

unique physical, chemical, and bioactive properties.[1] The Nobel Prize in chemistry has been 

awarded to the development of boron-related reagents and reactions three times (1976, 1979, 

2010). Recently, chiral organoboron compounds have attracted much attention due to their broad 

utilization in drug discovery and synthetic applications.[2] Among them, chiral α-aminoboronic 

acids, as mimics of chiral amino acids, are one of the most significant fragments in many 

important pharmaceuticals, such as Bortezomib (marketed as Velcade®) and Ixazomib citrate 

(marketed as Ninlaro®) (Figure 1).[3]
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Figure 1. Pharmaceutically important compounds bearing chiral α-aminoboronic acid fragments.

The importance of chiral α-aminoboronic acid derivatives has promoted the development of 

their asymmetric synthesis. The most common route is a diastereoselective method that utilizes 

chiral auxiliaries to synthesize chiral α-aminoboronic esters.[4] A lithiation-borylation protocol 
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has also been developed mediated by chiral sparteine or starting from chiral amines.[5] However, 

such methods are unsatisfactory since they require stoichiometric amounts of chiral reagents. In 

contrast, asymmetric catalytic routes for the synthesis of chiral α-aminoboronic acid derivatives 

are supposed to be more economic but are not as widely reported. The asymmetric borylation of 

imines or enamines is one of the most feasible approaches to furnish chiral α-aminoboronic 

esters (Scheme 1a and 1b).[6] Another method to afford the target compounds is the asymmetric 

amination of alkenylboronates (Scheme 1c).[7] However, high catalyst loadings and a large 

dosage of boron-, silicon-, nitrogen-containing reagents reduces the practicality of the process 

and increases problems in scale-up. Therefore, it is highly desirable to develop a more efficient 

and green method for the construction of chiral α-aminoboronic acid derivatives.

Transition-metal-catalyzed asymmetric hydrogenation is considered to be one of the most 

efficient and green routes for the synthesis of chiral compounds.[8] It has shown extremely high 

performance in the synthesis of chiral α-amino acid derivatives via asymmetric hydrogenation of 

α-acyl enamides (Scheme 1d).[9] However, the enantioselective synthesis of their analogues, 

chiral α-aminoboronic acid derivatives, has not yet been realized via the asymmetric 

hydrogenation of α-boryl enamides, even though this method seems to be a natural and feasible 

solution. The reason lies in the challenge with regards to high chemoselectivity between 

hydrogenation and hydrodeboronation, as well as high stereoselectivity.[10] It was envisaged that 

the presence of a chelating amido group at the α-position to the boryl group would be 

advantageous for chemoselectivity. Additionally, one could expect that the Bpin group is capable 

of several kinds of weak nonbonding interactions enabling it to act as a directing group to 

provide high stereoselectivity.[11] Along with our continuing research on asymmetric 

hydrogenation,[11,12] herein we report the chemo- and enantioselective synthesis of chiral α-
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4

aminoboronic acid derivatives via asymmetric hydrogenation using α-boryl enamides as the 

substrates and BenzP*-Rh[13] as the catalyst (Scheme 1e).
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Scheme 1. Catalytic Enantioselective Synthesis of Chiral α-Aminoboronic Acid Derivatives

 RESULTS AND DISCUSSION

Looking for appropriate substrates, we first considered 1a-NH as the one having a simple 

structure. Unfortunately, our attempts to prepare 1a-NH were unsuccessful. This initiated the 

search for alternative precursors and resulted in finding a substrate 1a with a five-membered 

oxazolidinonyl group, which can be readily synthesized according to the procedure reported by 

Zhu et al.[14] Actually, 1a may be a better substrate than 1a-NH, since the optimized structure of 

1a shows a larger BC-NC twist angle of 37.5°, a larger N-C-O angle of 127.1°, and a longer 
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O···B bond length of 2.85 Å compared to those computed for 1a-NH (Figure 2), which may be 

advantageous for the coordination of the C=O and C=C bonds with the Rh atom. Indeed, 

substrate 1a underwent smooth hydrogenation catalyzed by a BenzP*-Rh complex, affording the 

desired product in 99% conversion and with 95% ee (Table 1, entry 1).

B

N

O
O

O

OH

1a-NH 1a

2.71Å B

N
O

O
O

O
2.85Å37.531.0

124.5 127.1

Figure 2. Representative substrates.

Table 1 shows the chiral diphosphine ligands that were tested in the Rh-catalyzed 

hydrogenation of 1a carried out in dichloromethane (DCM) under 30 atm hydrogen pressure 

(Table 1). Using the centrally chiral ligand NorPhos, the desired product was obtained with poor 

chemoselectivity and moderate enantioselectivity. The hydrogenation in this case was 

characterized by low conversion together with formation of some amount of the deboronated by-

products 2a' and 2a''. The axially chiral ligand BINAP exhibited moderate conversion, excellent 

chemoselectivity, and poor enantioselectivity. The conversions and chemoselectivities were 

dramatically improved by using the planarly chiral ligands PhanePhos and JosiPhos, although the 

enantioselectivities were still poor. The ligand Me-FcPhos, bearing electron-rich phosphine 

groups on a ferrocene skeleton, gave the desired product in quantitative conversion but with poor 

enantioselectivity. Another typical electron-rich ligand Me-DuPhos, possessing the same 

phosphine groups as Me-FcPhos, afforded a positive enantioselectivity but unsatisfactory 

chemoselectivity. Both excellent chemoselectivity and enantioselectivity were only obtained by 
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using the P-stereogenic ligand BenzP* possessing electron-rich tert-butylmethylphosphino 

groups. The same excellent enantioselectivity of 95% was observed with another P-stereogenic 

ligand QuinoxP* that demonstrates the importance of the t-Bu groups on the ligand for high 

enantioselectivity in this reaction. Further optimization was focused on the screening of solvents 

using the BenzP*-Rh catalyst. Another halogenated solvent, dichloroethane (DCE), gave a 

higher enantioselectivity of 98% ee but lower conversion (entry 2 vs 1). Reaction in less polar 

solvents such as tetrahydrofuran (THF), dimethyl ethyl diether (DME), and toluene also showed 

high chemo- and enantioselectivity with incomplete conversion (entries 3-5). A better result was 

obtained using ethyl acetate (EtOAc) as the solvent (entry 6). The desired product was obtained 

without any loss of conversion and ee when the hydrogen pressure was reduced from 30 atm to 5 

atm (entries 7-8). Further reduction of the hydrogen pressure to 1 atm gave incomplete 

conversion with retention of enantioselectivity (entry 9). The hydrogenation of 1a was also 

completed using 1 mol % catalyst, affording the desired product 2a in 99% conversion and 96% 

ee (entry 10).

With the optimized reaction conditions in hand, we set out to study the substrate scope of α-boryl 

enamides in this hydrogenation (Scheme 2). It was found that the substituted positions and 

electronic properties of the substituents had a great impact on reactivities as well as 

enantioselectivities. Substrates bearing small substituents at the para-position showed higher 

activity (2f, 2n, 2p, 2q, and 2t), while other substrates required a 2 mol % catalyst loading to 

complete the hydrogenation (2b-d, 2g-k, 2o, 2r, and 2s), and the last three substrates needed a 4 

mol % catalyst loading for complete hydrogenation (2e, 2l, and 2m). Generally, the electron-

withdrawing substituted substrates exhibited slightly better enantioselectivities compared with 

the electron-donating substituted substrates. When a halogen was substituted on the phenyl ring, 
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7

Table 1. Condition Optimization

P

P N

N P

P

(R,R)-QuinoxP*
conv: 28/4/4

ee: 95%

(R,R)-BenzP*
conv: 99/0/0

ee: 95%

(R,R)-Me-DuPhos
conv: 36/29/6

ee: 87%

P

P
Fe

P

P

(R,R)-Me-FcPhos
conv: 99/0/0

ee: 7%

BpinN

O O

BpinN

O O
PP*-Rh (2 mol %)

H2 (30 atm)

DCM, rt, 10 h

N

O O

N

OO

1a 2a 2a' 2a''

*

PPh2
PPh2

(R)-BINAP
conv: 60/0/0

ee: 13%

PPh2

PPh2

Fe
Ph2P

(R,Sp)-JosiPhos
conv: 99/0/0

ee: 10%

PCy2

(R)-PhanePhos
conv: 99/0/0

ee: 43%

(R,R)-NorPhos
conv: 39/15/5

ee: 63%

PPh2

PPh2

entrya solvent H2 (atm) conv 2a (%)b ee (%)c

1 DCM 30 99 95

2 DCE 30 21 98

3 THF 30 87 94

4 DME 30 77 90

5 Toluene 30 77 98

6 EtOAc 30 99 96

7 EtOAc 20 99 96

8 EtOAc 5 99 96

9 EtOAc 1 26 96

10d EtOAc 20 99 96

aConditions: 1a (0.1 mmol), PP*-Rh (2 mol %), H2, solvent (2 mL), rt, 10 h, unless otherwise 
noted. bThe conversions were calculated from 1H-NMR spectra. cThe ee values were determined 
by HPLC using chiral columns. d[Rh((R,R)-BenzP*)(nbd)]SbF6 (1 mol %).
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Conditions: 1 (0.1 mmol), [Rh((R,R)-BenzP*)(nbd)]SbF6 (1 mol %), H2 (20 atm), EtOAc (2.0 mL), rt, 10 h, unless
otherwise noted. Isolated yields. The ee values were determined by HPLC using chiral columns. a[Rh((R,R)-
BenzP*)(nbd)]SbF6 (2 mol %), 24 h. b24 h. c[Rh((R,R)-BenzP*)(nbd)]SbF6 (4 mol %), 24 h.

Scheme 2. Substrate Scope. 
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the ee values of the desired chiral products were no less than 96% (2b-g). The substrates with 

trifluoromethyl, methoxy formyl, and phenyl groups at the para-position provided the products 

with complete conversions and almost perfect enantioselectivities (99% ee for 2h-j), while 

another product 2k with a nitro group at the para-position was obtained with 97% ee. When 

electron-donating groups such as methoxy and methyl were present at the ortho-, meta-, and 

para-positions, the activities increased while the enantioselectivities decreased gradually (2l-p). 

The activities of the catalytic reaction were reduced significantly when the para-substituent was 

changed from methyl to the relatively more bulky ethyl, n-propyl, and t-butyl groups, but the 

enantioselectivities were almost identical (2q-s). The naphthyl-substituted product 2t can also be 

obtained in high yield and excellent enantioselectivity. To demonstrate the potential utilities of 

this protocol, the hydrogenation of 1a was carried out on a gram scale using DCM as the solvent 

due to the solubility, affording the desired product in quantitative yield and with excellent 

enantioselectivity (Scheme 3).

B
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O

O

O
B

N

O

O

O

O

[Rh((R,R)-BenzP*)(nbd)]SbF6
(1 mol %)

H2 (20 atm)

DCM, rt, 24 h

1a
1.00 g, 3.2 mol

2a
0.98 g, 98% yield, 96% ee

Scheme 3. Gram Scale Hydrogenation

To gain insight into the origin of activity and enantioselectivity, we have computed a catalytic 

cycle of the reaction (Scheme 4 and 5, Figure 3). Similarly to the catalytic cycles of other 

enamides, the amido group remains coordinated to the Rh atom throughout the whole catalytic 

cycle – either in a chelating or non-chelating way. Scheme 4 summarizes computations of the 
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10

hydrogen activation step. Although the solvate dihydrides E and F are reasonably stable, TS1 

and TS2 have relatively high free energies, and the dihydride route for hydrogen activation is not 

the lowest energy pathway in this case. On the other hand, the chelated catalyst-substrate 

complexes I and M themselves are not capable of hydrogen activation. Molecular hydrogen 

complex N formed from the chelated M, rearranges to the gauche-coordinated[13d] molecular 

hydrogen complex P that can yield the monohydride Q with reasonably low barrier without 

intermediate formation of a dihydride. Monohydride Q can directly produce the hydrogenated 

product with the experimentally observed sense of enantioselection. However, the non-chelated 

complex G, formed as a result of the approaching hydrogen to the Rh atom in the chelated 

molecular hydrogen complex J, is significantly more reactive. Since the TS4 (hydrogen 

activation via K and L) is also high in energy, apparently, all hydrogen activations proceed via G 

formed either from J or from the non-chelated catalyst-substrate complex C, yielding selectively 

the non-chelated dihydride intermediate H.

As shown in Scheme 5, barrierless coordination of the double bond in H can give either α- or 

β-dihydride R and S, respectively. The following migratory insertion and reductive elimination 

proceed faster starting from S thus providing selective formation of the S-product. Therefore, the 

S enantioselectivity is determined by the difference in stabilities of TS3 (-6.2 kcal/mol) and TS4 

(-2.0 kcal/mol) which halves the number of possible pathways in the late reaction stages, as well 

as between TS6 (-14.5 kcal/mol) and TS7 (-11.3 kcal/mol) that secures the formation of the S-

product.

Notably, in both cases the relative stability of TS3 or TS6 is caused by the pinacolylboryl 

group being in close proximity to the t-Bu group, leading to the significant energy difference 

(Figure 3). Thus, in TS3, the phenyl group is not participating in any intramolecular interactions. 
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Scheme 5. Calculated Free Energies for Hydrogen Transfer of Alternative Pathways (A positive 

charge on each Rh atom is omitted for clarity. The unit of energies is kcal/mol.)

In the same fashion, in TS4, only the C-H…π interaction between the methyl group of the ligand 

and the phenyl group of the substrate participates in the stabilization of the transition state. 

Hence, the stabilizing free energy provided by the nonbonding interaction of t-Bu and 

pinacoylboryl groups can be estimated to be over 4 kcal/mol. Comparing TS6 and TS7, it is 

difficult to make any similar semi-quantitative estimation. It is only clear that the stabilizing 

nonbonding interactions in TS6 are significantly greater in number than those in TS7, and that 

the contribution from the t-Bu…Bpin interaction is likely to also be around 4 kcal/mol.[15] We are 
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convinced that accumulation of the knowledge on the strength of the nonbonding interaction 

between various groups provides useful information for the construction of potential substrates 

and catalysts for asymmetric catalytic transformations.

Figure 3. Optimized structures of TS3 and TS4 (up); TS6 and TS7 (down), their relative Gibbs 

free energies and interatomic distances (Angstroms) for intramolecular interactions: C-H...H-C 

(green), C-H...O (red), C-H... (violet), C-H...B (yellow), and C-H...N (blue).[16] Significant 

relative stability of TS6 is secured by the whole network of 10 interactions against only 5 in 

TS7.

 CONCLUSIONS

In summary, we have developed a highly efficient route for the synthesis of chiral α-

aminoboronates in high yield and excellent enantioselectivity via the rhodium-catalyzed 
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asymmetric hydrogenation of α-boryl enamides. Computational studies showed that nonbonding 

interactions of t-Bu…Bpin are important for both reactivity and selectivity. In addition, the 

catalytic reaction can be carried out on a gram scale without any loss in enantioselectivity.

 EXPERIMENTAL SECTION

[Rh((R,R)-BenzP*)(nbd)]SbF6 (0.001 mmol) and substrate (0.1 mmol) were placed in a 

hydrogenation tube and then charged in an autoclave. The system was evacuated and filled with 

hydrogen. After repeating this operation 3 times, degassed EtOAc (2 mL) was added and the 

hydrogen pressure was adjusted to 20 atm. After vigorous stirring at room temperature for 10 h, 

the vessel was vented and the reaction mixture was evaporated under reduced pressure. The 

conversation was calculated from the 1H NMR spectrum of the crude product. After purification 

by column chromatography, the enantiomeric excess of the product was determined by HPLC 

using a chiral column.
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equilibrium between diastereomers of a Rh-diphosphine complex [ref: I. D. Gridnev, Attraction 

Page 25 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



26

versus Repulsion in Rhodium-Catalyzed Asymmetric Hydrogenation. ChemCatChem 2016, 8, 

3463–3465].

Table of Contents

[Rh((R,R)-BenzP*)(nbd)]SbF6

H2

B

N

O

O

O

O
B

N

O

O

O

O

Ar Ar

Nonbonding Interaction

Chelate Coordination
20 examples
up to 99% ee

P

P
Me

Me

(R,R)-BenzP*

Page 26 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 1 

172x76mm (300 x 300 DPI) 

Page 27 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 2 

88x40mm (300 x 300 DPI) 

Page 28 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Figure 3 

150x112mm (219 x 219 DPI) 

Page 29 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Scheme 1 

98x123mm (300 x 300 DPI) 

Page 30 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Scheme 2 

191x276mm (300 x 300 DPI) 

Page 31 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Scheme 3 

130x41mm (300 x 300 DPI) 

Page 32 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Scheme 4 

165x247mm (300 x 300 DPI) 

Page 33 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Scheme 5 

115x150mm (300 x 300 DPI) 

Page 34 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Table 1 

179x131mm (300 x 300 DPI) 

Page 35 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

TOC 

155x48mm (300 x 300 DPI) 

Page 36 of 36

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


