<u>LETTERS</u>

Formation of C(sp³)–C(sp³) Bonds by Palladium Catalyzed Cross-Coupling of α -Diazoketones and Allylboronic Acids

Marie-Charlotte Belhomme, Dong Wang, and Kálmán J. Szabó*

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden

(5) Supporting Information

ABSTRACT: Palladium catalyzed cross-coupling of allylboronic acids with α -diazoketones was studied. The reaction selectively affords the linear allylic product. The reaction proceeds with formation of a new $C(sp^3)-C(sp^3)$ bond. The reaction was performed without an external oxidant, likely without the Pd-catalyst undergoing redox reactions.

A llylboronates have found many important applications in selective carbon–carbon bond formation reactions.¹ The most important selective transformations involve allylboration of carbonyl compounds² and imines,³ but recently an increasing number of metal-catalyzed cross-coupling reactions involving allylboronates have also been appeared.⁴ A particularly interesting feature is the regiochemistry of the cross-coupling. The Pd-catalyzed cross-coupling of allyl boron compounds with aryl halides inherently results in the branched allylic product.^{4b,c,e,f} However, the ligand effects and the applied substrates can alter this regioselectivity affording a linear cross-coupling product.^{4e,f} Very recently, we reported^{4d} a Cucatalyzed cross-coupling of allylboronic acids and α -diazoketones, which also resulted in a branched allylic product (Scheme 1c).

Scheme 1. Cross-Coupling of α -Diazocarbonyl Compounds with Allyl Substrates by the Groups of Wang,⁵ Gong,⁶ and Our Group^{4d}

Applications involving α -diazocarbonyl compounds with organoboronates represent a very interesting concept for new selective cross-coupling reactions. The typical organoboronate components in previously reported examples of Pd-catalyzed coupling reactions included aryl and vinyl boron species.⁷ Allyl boron species have never been used in these types of transformations. On the other hand, the groups of Wang⁵

and Gong⁶ applied allylic chlorides (Scheme 1a) and terminal alkenes (Scheme 1b) as coupling components. These processes required the use of an oxidant (benzoquinone) affording linear butadiene products. Considering these^{5,6} (Scheme 1a-b) and our recent results^{4d} (Scheme 1c), it was appealing to study the Pd-catalyzed reactions of α -diazocarbonyl compounds and allylboronic acids (Scheme 1c). Indeed, we have found that α diazocarbonyl compounds and allylboronic acids underwent Pd-catalyzed cross-coupling. Surprisingly, this cross-coupling reaction did not require use of an oxidant and the reaction occurred with formation of a new $C(sp^3)-C(sp^3)$ bond (cf. Scheme 1c with 1a-b). Furthermore, in contrast to the Cucatalyzed procedure^{4d} the Pd-catalyzed process gave the linear allylic product (Scheme 1c). Optimization of the reaction conditions showed that Pd(0) catalysts are not efficient for cross-coupling of α -diazoketone **1a** and cinnamylboronic acid²ⁱ 2a (Table 1, entries 1-2). Pd(II) catalysts, such as Pd(TFA)₂ and $Pd(OAc)_{2}$, in CH_2Cl_2 gave promising yields (entries 3–5). Variation of the solvent (entries 6-7) led to lower yields than in the case of CH₂Cl₂. We have found that addition of catalytic amounts (20 mol %) of CuI substantially improved the yield (entry 8). However, other Cu-salts were not as efficient as CuI (entries 9-12). Addition of tBuOH did not improve the yield either (entry 13). Addition of PPh₃, dppe, and 1,10phenanthroline (potential ligands to Pd) also led to lowering of the yield. We have found that the yield can be slightly improved (70%), when α -diazoketone 1a was added in two portions (in 15 min) to the reaction mixture (entry 14).

When the reaction was conducted without a Pd-catalyst, we did not observe formation of 3a (entry 15). Similarly to Cucatalyzed cross-coupling,^{4d} product 3a did not form, when 2a was replaced by its Bpin analog 4 (eq 1).

With the optimal conditions in hand, we studied the synthetic scope of the reaction. All reactions are completed in about 1 h under mild neutral conditions at rt selectively affording the linear allylic product with a new $C(sp^3)-C(sp^3)$

Received: April 19, 2016

Table 1. Variation of the Reaction Conditions for Cross-Coupling of Allylboronic Acid 2a with α -Diazoketone 1a^{*a*}

Ph 1a	_⊱ N ₂ + Ph 2 ;	Pd B(OH) ₂ a	catalyst dditive olvent t / 1 h	3a Ph
entry	Pd catalyst	solvent	additive	yield (%) ^b
1 ^c	$Pd(PPh_3)_4$	CH_2Cl_2	-	0
2 ^c	$Pd(dba)_2$	CH_2Cl_2	-	21
3 ^c	$Pd(TFA)_2$	CH_2Cl_2	-	36
4 ^{<i>c</i>}	$Pd(OAc)_2$	CH_2Cl_2	-	44
5	$Pd(OAc)_2$	CH_2Cl_2	-	51
6	$Pd(OAc)_2$	toluene	-	18
7	$Pd(OAc)_2$	CH ₃ CN	-	6
8	$Pd(OAc)_2$	CH_2Cl_2	Cul	60
9	$Pd(OAc)_2$	CH_2Cl_2	Cul·Me ₂ S	0
10	$Pd(OAc)_2$	CH_2Cl_2	CuOAc	0
11	$Pd(OAc)_2$	CH_2Cl_2	CuBr	50
12	$Pd(OAc)_2$	CH_2Cl_2	CuCl	41
13 ^d	$Pd(OAc)_2$	CH_2Cl_2	<i>t</i> BuOH	47
l4 ^e	$Pd(OAc)_2$	CH_2Cl_2	Cul	70
15	_	CH_2Cl_2	Cul	0

^{*a*}Unless otherwise stated a mixture of **1a** (0.12 mmol), **2a** (0.10 mmol), Pd catalyst (10 mol %), and the additive (20 mol %) in CH_2Cl_2 (0.5 mL) was stirred for 1 h at rt. ^{*b*}Isolated yield. ^{*c*}**1a** (0.10 mmol), **2a** (0.12 mmol), and Pd catalyst (10 mol %) were used. ^{*d*}The reaction was performed with 10 equiv of *t*BuOH. ^{*e*}**1a** was added in two portions.

$$Ph \xrightarrow{O} N_2 + Ph \xrightarrow{Ph} Bpin \xrightarrow{Pd(OAc)_2, Cul} Ph \xrightarrow{O} Ph (1)$$
1a 4

bond. The aromatic substituents of the α -diazoketone component had a relatively weak effect. α -Diazoketones with electron-withdrawing substituents (such as 1c-e) reacted readily (Table 2, entries 2–6). In some cases, as for example for 1b with a methoxy substituent (entry 2) and 1f with a nitro group, an excess of α -diazoketone substrate was employed to improve the yield.

On the other hand 1g with a naphthyl group reacted similarly to 1a affording 3g in 64% yield. The coupling of 2a with 1a-ggave a single diastereomer. Not only cinnamylboronic acid 2a but also alkyl substituted allyl boronic acids 2b-2d also proved to be useful cross-coupling partners (entries 8–15). In the case of monosubstituted allylboronic acid 2b, the E/Z ratio of the product varied between 6.0 and 9.0 to 1.

When γ -disubstituted boronic acids, such as geranyl (2c) and neryl (2d) boronic acids, were used the E/Z ratio was poor (1.6–0.9 to 1) indicating that substantial isomerization of the allylic *E* and *Z* double bond occurs (entries 13–14). We tried to improve the E/Z ratio by conducting the reaction at low temperature (0 °C and -20 °C) or by dilution of the reaction mixture. However, these attempts remained fruitless. In these reactions (entries 8–14) we observed a formation of traces (<5%) of the branched allylic product as well. We were able to perform cross-coupling of aliphatic α -diazoketone **1h** with **2a** affording **3n** (entry 15). Disubstituted α -diazoketone **1i** was also reacted readily giving a linear allylic product **3o** (entry 16).

Probably the most interesting feature of the cross-coupling reaction of α -diazoketones and allylboronic acids is the opposite regioselectivity in Cu- and Pd-catalyzed reactions (Scheme 1c). A decrease in the diastereoselectivity for the

Letter

Table 2. Palladium Catalyzed Cross-Coupling of

^{*a*}Unless otherwise stated a mixture of 1 (0.12 mmol, added in two portions), 2 (0.10 mmol), Pd(OAc)₂ (10 mol %), and CuI (20 mol %) in CH₂Cl₂ (0.5 mL) were stirred at rt for 1 h. ^{*b*}Isolated yields. ^{*c*}The reaction was performed with 0.15 mmol of 1. ^{*d*}The reaction was performed with 0.20 mmol of 1. ^{*e*}The product contains less than 5% of the branched product. ^{*f*}The reaction was performed without CuI, and 1 mL of CH₂Cl₂ was used. ^{*g*}2 mL of CH₂Cl₂ were used.

aliphatic (**2b**-**d**), especially using the disubstituted allyl boronic acids **2c**-**d**, suggests formation of η^3 -allylpalladium complexes, which may undergo $\eta^3 - \eta^1 - \eta^3$ isomerization.⁸ Thus, a conceivable initial step of the reaction is transmetalation of the allylboronic acid component with the Pd(II) catalyst to give η^3 allylpalladium complex **5**. In order to test this hypothesis, we prepared complex **5** and reacted it with α -diazoketone **1a** in the presence and in the absence of CuI. We could not observe formation of 3a in any of these reactions (eq 2). This clearly indicates that 5 is not a kinetically competent intermediate of

the Pd-catalyzed cross-coupling reaction of α -diazoketones (such as 1a) and allylboronic acids (such 2a). This is a very surprising finding in view of the fact that Wang⁵ and Gong⁶ have shown that the reaction of α -diazocarbonyl compounds with allyl chlorides⁵ and alkenes⁶ do proceed via η^3 -allyl palladium complexes, such as 5.

Considering the above-mentioned results (including eq 2), we propose a catalytic cycle initiated by formation of Pd-carbenoid **6** from **1** and Pd(OAc)₂ (Figure 1). A similar type of Pd-carbenoid formation has been reported in the literature⁹ and was invoked^{7a,b} in many Pd-catalyzed transformations of α -diazocarbonyl compounds.

Figure 1. Proposed catalytic cycle for the cross-coupling of allylboronic acids with α -diazoketones.

Subsequently, Pd-carbenoid 6 may undergo transmetalation with allylboronic acid 2 affording η^3 -allylpalladium carbenoid complex 7. As mentioned above (Table 1, entries 8), addition of CuI improved the yield of the reaction. A possible explanation is that the Cu-salt facilitates the transmetalation¹⁰ of allylboronic acid 2 with the palladium atom of 6. In this process CuI was more efficient than CuCl and CuBr (Table 1, entries 11-12), possibly because of the better solubility in the reaction media. Formation of η^3 -allylpalladium carbenoid complexes, such as 7, has been suggested in the coupling of α -diazocarbonyl compounds with allylic substrates.^{5,6} Complex 7 may undergo $\eta^3 - \eta^1 - \eta^3$ isomerization. An indication of the η^3 - η^1 - η^3 isomerization is the formation of the E/Z isomers of **3m** using geranyl 2c and neryl boronic acids 2d in the crosscoupling with 1a (Table 2, entries 13-14). The η^3 - η^1 - η^3 isomerization involves formation of various syn-anti isomers of the η^3 -allylpalladium complexes.^{8,11} The final E/Z ratio is mainly determined by the steric effects of the substituents.^{8,11} The η^1 -form of 7 with the least substituted allylic terminus is probably more stable than the other η^1 -allylic isomer. The η^1 allyl group may undergo migratory insertion into the Pdcarbene to give 8. Formation of η^1 -alkylpalladium complex 8

would also explain the regioselective formation of the linear allylic product 3. Migratory insertion of vinyl and aryl groups to Pd-carbene was previously suggested by the groups of Van Vranken,¹² Barluenga,¹³ and Wang.^{7c,d} The last step of the reaction is probably formation of Pd-enolate 10 via $oxa-\eta^3$ intermediate 9.¹⁴ By a rapid $8 \rightarrow 10$ tautomerization, the β hydride elimination in 8 can be avoided, and therefore formation of a diene product, such as in the reaction of α diazocarbonyl compounds with allylic chlorides⁵ or alkenes⁶ (Scheme 1a-b), can be avoided. The Pd(II) catalyst is recovered by formation of product 3 and boric acid from 10. Water necessary for this process was probably formed by dehydration of $B(OH)_n$ (n = 2, 3) species by formation of boroxines.²ⁱ A very interesting feature of the above-mentioned reaction is that palladium does not undergo redox reactions but it is kept in oxidation state +2. Therefore, we did not need to use oxidants (such as BQ), as in the analogous allylation reactions of α -diazocarbonyl compounds (Schemes 1a-b).

In summary we have shown that Pd-catalyzed cross-coupling of α -diazoketones and allylboronic acids can be performed. The reaction selectively provides a linear allylic product. Thus, the presented Pd-catalyzed coupling and the previously reported Cu-catalyzed reaction have the opposite regiopreference. The reaction was performed without using oxidants. The Pd-catalyst probably preserves its oxidation state during the entire reaction. The presented process widens the synthetic scope of the transition metal catalyzed cross-coupling reactions,¹⁵ which are suitable for formation of C(sp³)-C(sp³) bonds.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.6b01132.

Detailed experimental procedures and compound characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: kalman@organ.su.se.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the financial support of the Swedish Research Council (VR) and the Knut och Alice Wallenbergs Foundation.

REFERENCES

(1) (a) Hall, D. G. Boronic Acids; Wiley: Weinheim, 2011. (b) Hall, D. G.; Lachance, H. Allylboration of Carbonyl Compounds; Wiley: Hoboken, NJ, 2012. (c) Kennedy, J. W.; Hall, D. G. Angew. Chem., Int. Ed. 2003, 42, 4732.

(2) (a) Kennedy, J. W.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586.
(b) Carosi, L.; Hall, D. G. Angew. Chem., Int. Ed. 2007, 46, 5913.
(c) Ding, J. Y.; Hall, D. G. Angew. Chem., Int. Ed. 2013, 52, 8069.
(d) Hesse, M.; Essafi, S.; Watson, C.; Harvey, J.; Hirst, D.; Willis, C.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2014, 53, 6145.
(e) Chen, J. L. Y.; Scott, H. K.; Hesse, M. J.; Willis, C. L.; Aggarwal, V. K. J. Am. Chem. Soc. 2013, 135, 5316.
(f) Ito, H.; Okura, T.; Matsuura, K.; Sawamura, M. Angew. Chem., Int. Ed. 2010, 49, 560.
(g) Brauns, M.; Muller, F.; Gülden, D.; Böse, D.; Frey, W.; Breugst, M.; Pietruszka, J.

Angew. Chem., Int. Ed. 2016, 55, 1548. (h) Alam, R.; Vollgraff, T.;
Eriksson, L.; Szabó, K. J. J. Am. Chem. Soc. 2015, 137, 11262.
(i) Raducan, M.; Alam, R.; Szabó, K. J. Angew. Chem., Int. Ed. 2012, 51, 13050. (j) Barnett, D. S.; Moquist, P. N.; Schaus, S. E. Angew. Chem., Int. Ed. 2009, 48, 8679. (k) Miralles, N.; Alam, R.; Szabó, K. J.; Fernández, E. Angew. Chem., Int. Ed. 2016, 55, 4303. (l) Guo, X.; Nelson, A. K.; Slebodnick, C.; Santos, W. L. ACS Catal. 2015, 5, 2172.

(3) (a) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. (b) Silverio, D. L.; Torker, S.; Pilyugina, T.; Vieira, E. M.; Snapper, M. L.; Haeffner, F.; Hoveyda, A. H. Nature 2013, 494, 216. (c) Vieira, E. M.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 3332. (d) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2007, 129, 15398. (e) Selander, N.; Kipke, A.; Sebelius, S.; Szabó, K. J. J. Am. Chem. Soc. 2007, 129, 13723. (f) Alam, R.; Das, A.; Huang, G.; Eriksson, L.; Himo, F.; Szabó, K. J. Chem. Sci. 2014, 5, 2732. (g) Das, A.; Alam, R.; Eriksson, L.; Szabó, K. J. Org. Lett. 2014, 16, 3808. (h) Nowrouzi, F.; Batey, R. A. Angew. Chem., Int. Ed. 2013, 52, 892.

(4) (a) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082. (b) Yamamoto, Y.; Takada, S.; Miyaura, N. Chem. Lett. 2006, 35, 704. (c) Sebelius, S.; Olsson, V. J.; Wallner, O. A.; Szabó, K. J. J. Am. Chem. Soc. 2006, 128, 8150. (d) Das, A.; Wang, D.; Belhomme, M.-C.; Szabó, K. J. Org. Lett. 2015, 17, 4754. (e) Farmer, J. L.; Hunter, H. N.; Organ, M. G. J. Am. Chem. Soc. 2012, 134, 17470. (f) Yang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 10642. (g) Glasspoole, B. W.; Ghozati, K.; Moir, J. W.; Crudden, C. M. Chem. Commun. 2012, 48, 1230. (h) Chausset-Boissarie, L.; Ghozati, K.; LaBine, E.; Chen, J. L. Y.; Aggarwal, V. K.; Crudden, C. M. Chem. - Eur. J. 2013, 19, 17698. (i) Schuster, C. H.; Coombs, J. R.; Kasun, Z. A.; Morken, J. P. Org. Lett. 2014, 16, 4420. (j) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 16778. (k) Ding, J.; Rybak, T.; Hall, D. G. Nat. Commun. 2014, 5, 5474.

(5) Chen, S.; Wang, J. Chem. Commun. 2008, 4198.

(6) Wang, P.-S.; Lin, H.-C.; Zhou, X.-L.; Gong, L.-Z. Org. Lett. 2014, 16, 3332.

(7) (a) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
(b) Barluenga, J.; Valdés, C. Angew. Chem., Int. Ed. 2011, 50, 7486.
(c) Peng, C.; Wang, Y.; Wang, J. J. Am. Chem. Soc. 2008, 130, 1566.

 (d) Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.; Wang, J. Chem. Commun.
 2010, 46, 1724. (e) Xia, Y.; Xia, Y.; Liu, Z.; Zhang, Y.; Wang, J. J. Org. Chem. 2014, 79, 7711.

(8) Solin, N.; Szabó, K. J. Organometallics 2001, 20, 5464.

(9) Broring, M.; Brandt, C. D.; Stellwag, S. Chem. Commun. 2003, 2344.

(10) (a) Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196. (b) Zhao, T. S. N.; Yang, Y.; Lessing, T.; Szabó, K. J. J. Am. Chem. Soc. 2014, 136, 7563.

(11) Poli, G.; Prestat, G.; Liron, F.; Kammerer-Pentier, C. Selectivity in Palladium-Catalyzed Allylic Substitution. In *Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis;* Kazmaier, U., Ed.; Springer: Berlin, Heidelberg, 2012; p 1.

(12) (a) Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 2007, 9, 2047.
(b) Kudirka, R.; Van Vranken, D. L. J. Org. Chem. 2008, 73, 3585.

(13) Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. Angew. Chem., Int. Ed. 2007, 46, 5587.

(14) (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.

(b) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 5816.

(c) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Organometallics 2004, 23, 4317. (d) Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2010, 49, 1139.

(15) (a) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417. (b) Fu, G. C. Acc. Chem. Res. 2008, 41, 1555.