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ABSTRACT: Decarboxylative Csp
3−N coupling reactions have been developed through electrochemical oxidation of amino

acids. The reaction proceeds via anodic oxidative decarboxylation of carboxylic acids to form stabilized carbocations, which are
trapped by azoles or amides to construct C−N bonds. This method avoids the preactivation of carboxylic acids and the use of
expensive transition-metals and external chemical oxidants.

Carbon-nitrogen bond formation is one of the most
important transformations in organic chemistry owing to

the prevalence of nitrogen-containing motifs in natural
products, pharmaceuticals, agrochemicals, and functional
materials.1 Transition-metal-catalyzed Csp

2−N coupling proce-
dures with prefunctionalized reagents, such as C−halide and
C−metal have been developed as a powerful tool to construct
C−N bonds, under basic or oxidative conditions.2 Among
them, Buchwald−Hartwig coupling,3 Ullmann-type reactions,4

and Chan−Lam oxidative amination5 are notable methods for
Csp

2−N cross-couplings. However, broad-scope Csp
3−N cross-

couplings are very scarce, and classical methods, such as
nucleophilic substitution with alkyl halides,6 reductive
amination with carbonyls,7 Curtius rearrangement,8 and
Mitsunobu reaction with alcohols,9 are still commonly used
for Csp

3−N bond formation. Therefore, new methods and
strategies for efficient Csp

3−N bond formation with easily
available starting materials under mild conditions are greatly
demanded. For example, the recent development of cross
dehydrogenative couplings of N−H and Csp

3−H bonds10 and
transition-metal-catalyzed alkylation of nitrogen nucleophiles
with aliphatic halides11 have attracted much attentions.
Due to the characteristics of carboxylic acids, including great

availability, high stability, low-cost, and nontoxic nature, this
class of compounds is one ideal reactant for organic synthesis.
Decarboxylative reactions have been demonstrated to be
applicable to the formation of C−C and C−X bonds.12

Although several precedents of decarboxylative Csp
3−N

couplings have been reported, they are limited to special
substrates or intramolecular reactions.13 Very recently, the
decarboxylative C−N cross-coupling was reported by Fu,14

Hu,15 and Macmillan16 via photoredox and copper catalysis
(Scheme 1A). In these processes, alkyl carboxylic acids were
first converted into the corresponding redox active esters, N-
hydroxyphthalimide (NHPI) esters or iodomesitylene dicar-
boxylates (IMDC), thus enabling CO2 extrusion in the
presence of a photocatalyst to generate the required alkyl
radicals for copper-catalyzed C−N cross-coupling. Despite the
ground-breaking nature of these transformations, the preacti-
vation of carboxylic acids is still necessary for the
decarboxylation event.
The direct use of carboxylic acids as reactants would be ideal

for a broad-scope C−N cross-coupling. Carboxylic acids can be
decarboxylated by anodic oxidation to radicals,17 which
normally undergo addition to double bonds or can combine
to form symmetrical dimers in the Kolbe electrolysis.18 Radical
intermediates formed under Kolbe conditions can be further
oxidized to generate the corresponding carbocations, in a
process referred to as non-Kolbe electrolysis or Hofer−Moest
reaction (Scheme 1B).19 Recently, the group of Baran applied
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these electrogenerated carbocations to synthesize hindered
dialkyl ethers from carboxylic acids, demonstrating the power
of electrochemical decarboxylation for C−O bond formation.20

In contrast, although intramolecular C−N bond coupling by
electrochemical decarboxylation is known,21 intermolecular
reactions are restricted to solvolysis with MeCN18 or N-
formylation of amines via decarboxylation of glyoxylic acid.22

We envisioned that the C−N coupling could take place if the
appropriate nitrogen nucleophiles would trap the carbocations
generated by anodic oxidative decarboxylation (Scheme 1B).
This anticipated C−N bond formation by electrochemical
method would exhibit several advantages: 1) no need to
preactivate carboxylic acids; 2) transition-metal- and expensive
photocatalyst-free; 3) no external oxidant. However, the
carbocations generated at the anode are usually very reactive
species, referred to as “hot carbocations”,18 and easily undergo
reactions with mild nucleophilic solvents (e.g., MeCN, MeOH,
etc.), rearrangement, or elimination to form alkenes.
Accordingly, in order to facilitate the formation of C−N
bonds, the carbocation intermediates should be sufficiently
long-lived to undergo disengagement from the electrode
surface, therefore allowing the effective molecular collision
with nitrogen nucleophile. For example, neighboring heter-
oatoms, such as N and O, are expected to stabilize the
carbocations generated by electrochemical oxidation23 of
abundant biomass resources, such as α-amino acids and α-
hydroxy acids.24 Therefore, this efficient electrochemical
decarboxylative C−N cross-coupling could enable the direct
conversion of inexpensive α-amino acids into complex and
medicinally relevant pharmacophores under mild and green
conditions. We report herein the successful transition-metal-
free decarboxylative Csp

3−N cross-coupling via electrochemical
oxidation of amino acids with a broad-range of N-nucleophiles.
In order to efficiently trap the relatively stable iminium

cations generated by anodic oxidation of amino acids, N-based
nucleophiles should be reactive enough and, at the same time,

should display good stabilities under electrolysis. Since azoles
are important moieties in organic chemistry25 and normally
serve as good nucleophiles,26 we decided to start our study
with azoles to construct C−N bonds by electrochemical
decarboxylation.
The optimization of the reaction conditions for the

decarboxylative C−N bond coupling was performed using
Boc-L-proline (1a) as the carboxylic acid and benzimidazole
(2a) as the nucleophile (Table 1). The best results were

obtained by conducting the electrolysis for 3 h under a
constant current of 7 mA in an undivided cell equipped with a
graphite anode and a nickel cathode at room temperature in
acetonitrile. Under these conditions, the C−N coupled
product 3a was obtained in almost quantitative yield (Table
1, entry 1). Shortening the reaction time and replacing
supporting electrolyte or electrode led to lower yields (Table 1,
entries 2−7). A control experiment showed that electricity is
crucial for the success of the desired reaction (Table 1, entry
8).
With the optimized conditions established to obtain product

3a, the scope of the reaction was then explored by first varying
the carboxylic acids (Scheme 2). Commercially available cyclic
N-protected α-amino acids, such as proline, azetidinecarboxylic
acid, and six-membered α-amino acids reacted well with
benzimidazole (2a) to give the desired C−N coupled products
(3a−3e) in good yields. Similarly, acyclic amino acid
derivatives, including alanine (3f, 3m), valine (3g), leucine
(3h), phenylalanine (3i, 3n), lysine (3j), methionine (3k), and
glycine (3l), were all found to be suitable substrates for
decarboxylation, leading to products with a free N−H bond
during electrolysis. Moreover, dipeptide derivative (Gly-Pro)
also underwent decarboxylative C−N bond formation with
benzimidazole to provide 3s in 50% yield. In addition,
tetrahydrofuroic acid, 4-methoxyphenylacetic acid, and 2,2-
diphenylacetic acid were successfully applied in this reaction,
affording 3o, 3p, and 3q, respectively, although with lower
yields. Furthermore, γ-lactam moiety was also tolerated in the
formation of product 3r.
We next tested a variety of N-based nucleophiles (Scheme

2). Pyrazole, 1,2,3- and 1,2,4-triazole, benzotriazole, and
tetrazole derivatives were found to be efficient nucleophiles

Scheme 1. Decarboxylative C−N Cross-Couplings

Table 1. Optimization of Reaction Conditionsa

entry deviation from standard conditions yield (%)b

1 none 99
2 reaction time: 2 h 85
3 nBu4NBF4 as supporting electrolyte 82

4 LiClO4 as supporting electrolyte 65
5 nBu4NClO4 as supporting electrolyte 20

6 nBu4NI as supporting electrolyte -

7 graphite as cathode 24
8 no electricity -

aReaction conditions: 1a (0.5 mmol), 2a (0.3 mmol), nBu4NPF6
(0.025 M), 8 mL of MeCN, 23 °C, under air. bYield determined by
1H NMR analysis of the crude reaction mixture using (E)-1,2-
diphenylethene as an internal standard.
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to trap the iminium cation generated by decarboxylation of
Boc-L-proline (1a) to give products 3t−3aa in good yields with
excellent regioselectivities, which were determined by NMR
analysis. Further studies revealed that, under slightly modified
conditions, primary amides as well as β- and γ-lactams and
oxazolidin-2-one can also be used as the N-based nucleophiles
to form the desired C−N coupled products 3ab−3ai in
moderate to good yields.
Importantly, the reaction is scalable (Scheme 3). For

example, the desired product 3a can be produced in excellent
yield (96%, 1.37 g) under high concentration conditions (5
mmol, 8 mL MeCN). 5-Amino-2-pyrrolidinones would be
expected to have pharmacological activities and previously
require multistep synthesis.27 By electrolysis, the intra-
molecular reaction of Boc-L-glutamine (1aj) was also
successful to give the cyclized product 3aj in 60% yield
(Scheme 3).

In order to understand the oxidation/reduction potentials
for the substrates, cyclic voltammetry (CV) experiments were
carried out with Boc-L-proline (1a) and benzimidazole (2a) in
acetonitrile (Figure 1). For benzimidazole (2a), no obvious
oxidation peak was observed.28 Boc-L-proline (1a) showed an

Scheme 2. Scope of Decarboxylative C−N Bond Formation by Electrochemical Oxidationa

aReaction conditions: 1 (0.5 mmol), 2 (0.3 mmol), nBu4NPF6 (0.01 M), 8 mL of MeCN, 23 °C, under air, constant current (7 mA), 3.5 h. Isolated
yields after column chromatography. bThe reaction was performed in MeCN/DMSO = 8 mL/0.2 mL. c2,6-Lutidine (0.26 mmol) was added, and
the reaction was performed for 4 h. dEt4NPF6 (0.01 M), BF3·OEt2 (0.02 mmol), 8 mL of MeCN, 23 °C.

Scheme 3. Gram-Scale Synthesis and Intramolecular
Reaction
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oxidative potential around 2.36 V in its CV. These results and
the literature20,23 indicate that carboxylic acids most likely
undergo oxidation to their respective cations at the anode in
our electrochemical reactions. To further confirm that the
reactive intermediates are generated at the anode, we
performed control experiments using H-type divided cell
separated by an AMI-7001 membrane, expecting that the final
product would be obtained in the anodic chamber.28 The
reactions were conducted under the standard conditions, and
both the divided anodic chamber and cathodic chamber
contained the same solution, including substrates, solvent, and
supporting electrolyte. Indeed, in the case of Boc-L-proline
(1a) and benzimidazole (2a), the desired product 3a was
exclusively produced in the anodic chamber. Compound 3a
was obtained in 12% yield in this experiment due to the lower
efficiency of the electrolysis in the divided cell.
In addition, although electrochemical oxidation on cyclic

amine derivatives can also generate iminium cations,23 this
process does not compete under our reaction conditions as
shown, for example, in the successful formation of tetrahy-
droisoquinoline derivative 3e, which bears a potentially
oxidizable benzylic amine (Scheme 2). Moreover, when Boc-
ethylamine (1f-H) was used instead of Boc-alanine (1f),
product 3f was not detected at all (Scheme 4a). Furthermore,

in order to compare our results with those obtained under
photoredox catalysis, two redox active esters of Boc-L-proline,
4a and 4b, were synthesized and subjected to the reported
photoredox conditions15,16 with benzimidazole (2a) as the N-
nucleophile (Scheme 4b). However, no desired product 3a was
detected.28 These results show that our decarboxylative C−N
coupling reaction via electrochemical oxidation is a comple-
mentary method to photoredox catalysis, especially in the case
of α-amino acids as the substrates.
In summary, we have achieved the decarboxylative Csp

3−N
coupling by electrochemical oxidation with readily available α-
amino acids as substrates and a wide variety of azoles and
carboxamides as the N-nucleophiles. In this protocol,
carboxylic acids are directly used without any preactivation
under transition-metal- and external-oxidant-free conditions.
We expect that this efficient C−N bond formation reaction
that proceeds under green conditions will find wide
applications in organic synthesis.
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