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ABSTRACT: We report the development of a stereoselective method for
the allylation of ketones utilizing N-substituted allyl equivalents generated
from a chiral allenamide. By choice of the appropriate ligand for the Cu-
catalyst, high linear selectivity can be obtained with good diastereocontrol.
This methodology allows access to chiral γ-hydroxyaldehyde equivalents
that were applied in the synthesis of chiral γ-lactones and 2,5-disubstitued
tetrahydrofurans.

Chiral alcohols are ubiquitous in organic molecules
prepared both naturally and synthetically for a desired

biological function. Therefore, development of synthetic
methods to access chiral alcohols has been an intense area of
research in the field of organic chemistry.1 One of the most
highly studied areas of stereoselective alcohol synthesis is in
the controlled addition of an allylmetal reagent to an aldehyde
or ketone electrophile.2 Pioneering work in stereoselective
allylation typically employed the generation of a stoichiometric
chiral allylmetal nucleophile in a separate step to be used in the
allylation reaction with an aldehyde or ketone to generate the
chiral alcohol.3 Over the years, catalytic methods to generate
the reactive allylmetal in situ from an unreactive allyl source
and metal catalyst have emerged.4−7 In particular, reductive
coupling strategies8 that generate the reactive allylmetal from
unsaturated hydrocarbons via hydrometalation are extremely
powerful, atom-economical approaches for the synthesis of
chiral homoallylic alcohols.9

Recently, an elegant catalytic method for the allylation of
ketone and imine electrophiles was developed by Buchwald
employing hydrocupration of carbon-substituted allenes (2)10

or 1,3-dienes11 by a Cu−H catalyst to generate the reactive
allylmetal reagent in situ (Figure 1A). In the ketone version of
this process,10a the anti-diastereomer of the branched product
(anti-b-3) was formed as the major product in high diastereo-
and enantioselectivity when using chiral bis(phosphine)
ligands. However, the linear product l-3 was not formed.
Our group became interested in developing a method to
generate linear products utilizing this approach, which has not
been reported with ketones. While Buchwald demonstrated
that both linear and branched products could be obtained
when using imine electrophiles10c by changing the N-
substituent on the imine, this is not possible with ketone
electrophiles.
Our working mechanistic hypothesis for regio- and

diasteroselectivity for this reaction is given in Figure 1B.

Hydrometalation of allenes typically occurs trans to the R′-
substituent of the allene due to steric reasons.12 Therefore,
initial hydrocupration of 2 would be expected to afford the Z-
isomer of the linear (allyl)Cu species l-Z-5. Buchwald has
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Figure 1. Cu-catalyzed reductive coupling of allenes and ketones.
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already determined that the turnover-limiting step is allylation
of the ketone,10a so π−σ−π equilibration of 5 would be
expected. Assuming the allylation step proceeds through closed
Zimmerman−Traxler13,14 chairlike transition states (6), the
major product obtained in Buchwald’s report10a (anti-b-3)
would be derived from anti-b-7 from reaction between l-E-5
and 1 via 6c. The preference for this isomer can be easily
rationalized by steric effects. Arguably, l-E-5 would be the least
sterically hindered of the three possible (allyl)Cu intermediates
(5) causing it to be the dominant species in the reaction.
Therefore, if this mechanistic hypothesis is correct, then to
obtain the linear product (E-l-7), conditions would need to be
designed to either stabilize the branched (ally)Cu intermediate
b-5 relative to l-5 or make it more reactive.
Our strategy to stabilize (allyl)Cu intermediate b-5 is shown

in Figure 1C. Use of allene 8 containing a heteroatom tethered
ligand should initially generate linear (allyl)Cu species l-9 after
hydrocupration. The tethered ligand could then help stabilize
the branched (allyl)Cu intermediate b-9 through coordination
to Cu. Reaction of b-9 with a ketone would then generate
linear product l-10 with an enol (X = O) or enamine (X = NR)
group representing a masked aldehyde functionality to provide
useful chiral γ-hydroxyaldehyde equivalents. Additionally, use
of a chiral tethered ligand in allene 8 could enable
stereocontrol of the newly formed stereocenter of 10. Overall,
we envisioned that this methodology could be a valuable entry
into chiral lactone15 or tetrahydrofuran16 containing natural
products (Scheme 1) through lactol 11 obtained by hydrolysis

of the enol or enamine functionality of 10. Herein, we report
our findings on the development of a diastereoselective
copper-catalyzed reductive coupling of a chiral allenamide
with ketones to access the linear isomer (10) of product.
To identify an allene that fit the requirements of 8, we

initially chose to investigate allenamide 14 derived from Evans’
auxiliary because it has been synthesized previously (Table
1).17 Furthermore, we had hoped that the carbonyl group of
the oxazolidinone would serve as a sufficient coordinating
group for Cu.18 Additionally, based on our design in Figure
1C, we focused on reaction conditions where Cu would have a
low coordination number to facilitate potential coordination of

the oxazolidinone carbonyl group (i.e., noncoordinating
solvents, monodentate ligands).
Trialkyl monodentate phosphines favored the formation of

linear product l-15a with modest l/b selectivity (entries 1, 3,
and 4). Furthermore, use of dcpe, a bidentate ligand
commonly employed in Cu−H catalyzed reductive coupling
reactions,10,11 also gave preferentially the branched product
(entry 2). A further survey of monodentate phosphine ligands
of varying electronic19 and steric19a properties revealed that the
linear selectivity was largely influenced by the electron-
donating ability of the ligand employed with less electron-
donating ligands affording higher linear selectivities (compare
entries 1, 3, 4, and 8−14). There was a rough correlation
between ligand cone angle and diasterocontrol with larger
ligands affording higher diastereoselectivity (compare entries 1,
3, 4, 9, 10, 12, and 13). Ultimately, phosphoramidite ligand 16
afforded the highest reaction yield with excellent linear
selectivity and good diastereoselectivity.
The substrate scope for the linear-selective reductive

coupling of ketones and allene 14 is given in Scheme 2. In
general, high linear selectivity was obtained in good to
excellent reaction yield for halogenated (l-15f,i), electron-
rich (l-15b,c,j,k), and electron-poor (l-15e,m) arenes.
Hindered ketones bearing ortho-substitution on the aryl
group required heating to achieve full conversion; however,
this did not severely reduce the diastereoselectivity (l-15c,h,i).
Additionally, diastereoselectivity and linear selectivity were
reduced when the steric bias between the two R-groups of
ketone 1 was reduced (e.g. l-15d,l,n,o,p,u). Notably, a nitrile

Scheme 1. Chiral Lactone and THF Containing Natural
Products

Table 1. Copper-Catalyzed Reductive Couplinga

entry ligand TEPb θc % l-15a (dr)d l/bd

1 PCy3 2056 170 68 (84:16) 80:20
2 Dcpe − 142 14 (84:16) 23:77
3 P(t-Bu)3 2056 182 61 (93:7) 76:24
4 P(adam)3 2052 − 71 (93:7) 71:29
5 SPhos − − 7 (68:32)e 9:91
6 XPhos − − 5 12:88
7 t-BuXPhos − − 5 26:74
8 P(o-tol)3 2067 194 14 (81:19) 70:30
9 P(NMe2)3 2062 157 79 (87:13) 83:17
10 P(OEt)3 2076 109 90 (83:17) 92:8
11 16 − − 97 (90:10) 97:3
12 17 − − 89 (92:8) 97:3
13 P(OPh)3 2085 128 76 (89:11) 99:1
14 P(C6F5)3 2091 184 12 (85:15) 99:1

a1a (0.25 mmol) and 14 (0.30 mmol) in 0.5 mL of toluene. See the
Supporting Information for details. bTolman electronic parameter
from ref 19. cLigand cone angle obtained from ref 19a. dDetermined
by 1HNMR spectroscopy on the unpurified reaction mixture. edr of b-
15a.
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group was not reduced under the reaction conditions (l-15q),
and both amino (l-15s) and a free hydroxyl group (l-15k) was
also tolerated.
In regards to factors dictating branched/linear selectivity and

stereocontrol in these reactions, studies employing achiral
allenamide 18 were informative (Scheme 3). Use of 18 lacking
substitution on the oxazolidinone ring afforded reduced linear

selectivity in the reaction when the optimized ligand 16 was
used. Additionally, use of PCy3 in the reaction employing
allenamide 18 led to a turnover in the reaction selectivity and
favored formation of the branched product b-19. In contrast,
with chiral allenamide 14, use of PCy3 as a ligand afforded
linear selectivity (Scheme 3 and Table 1, entry 1). Based on
these observations, and the results of our ligand optimization
survey (Table 1), a model to rationalize regio- and stereo-
control in these reactions could be developed (Figure 2).

Mechanistically, hydrocupration of allene 14 or 18 is expected
to initially form the Z-linear (σ-allyl)Cu complex (l-Z-20; vide
supra) that will be in equilibrium with the branched (σ-
allyl)Cu complex (b-σ-20) through the intermediacy of the (π-
allyl)Cu complex π-20. The π-allyl geometry and coordination
of the oxazolidinone group to Cu in complex π-20 are
proposed based on structural information determined by X-ray
crystallography and NMR spectroscopy for related anions of
this type found in the literature.20 Considering the turnover-
limiting step in Cu-catalyzed reductive coupling of ketones and
allenes is believed to be the addition of the (allyl)Cu reagent to
the ketone electrophile,10 this would allow for a pre-

Scheme 2. Linear Selective Copper(phosphoramidite)
Catalyzed Reductive Couplinga

aPercent yield represents isolated yield of linear product as a mixture
of two diastereomers on 0.5 mmol scale of 1 using 1.2 equiv of 14; see
the Supporting Information for further details. Diastereomeric ratios
(dr) and linear:branched ratios (l:b) were determined by 1H NMR
spectroscopy on the unpurified reaction mixture. bReaction
performed at 60 °C. cReaction performed at 40 °C. d4.0 equiv of
Me(MeO)2SiH used.

Scheme 3. Effect of Oxazolidinone Structure on
Regioselectivity

Figure 2. Stereo- and Regiochemical model.
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equilibrium between l-Z-20 and b-σ-20 to be established before
reaction with the ketone. Therefore, a model to rationalize
regioselectivity in the reaction could be developed based on
considering the stability of these two intermediates whereby a
preference for l-Z-20 would result in a branched selective
process while preference for b-σ-20 in the reaction would result
in linear selectivity.21

Due to the Z-olefin geometry formed in the initial
hydrocupration event, reaction regioselectivity could be
explained by a competition between the strength of the
oxazolidinone coordination versus the size of the A1,3-strain
present in l-Z-20 (Figure 2). The high linear selectivity
obtained as the electron-donating ability of the phosphine
ligand decreases (Table 1) can be explained by an increase in
the preference for complex b-σ-20 due to the enhanced
electrophilicity at Cu. Additionally, the magnitude of the A1,3-
strain in l-Z-20 would be expected to affect the overall
equilibrium between the (allyl)Cu complexes. As a result,
when the poorly electron-donating ligand 16 is employed,
coordination of the oxazolidinone to the electrophilic Cu atom
leads to a preference for b-σ-20 leading to linear selectivity
when using either allenamide 14 or 18. A reduction in linear
selectivity with ligand 16 when using allenamide 18 in place of
14 can be rationalized by the presence of increased amounts of
l-Z-20 due to the reduction in the magnitude of the A1,3-strain
present in l-Z-20 when R = H. In contrast, when the electron-
rich ligand PCy3 is used, the branched product (b-19) is
preferred when the unsubstituted allenamide 18 was used. This
may result from a shift in the equilibrium of the (allyl)Cu
complexes to favor l-Z-20 because of the reduced coordinating
ability of the oxazolidinone to the more electron-rich Cu atom.
When the magnitude of the A1,3-strain present in l-Z-20 is
increased by utilizing the chiral allenamide 14 with PCy3 as
ligand, the oxazolidinone coordination is presumably enhanced
by destabilizing l-Z-20 leading to preferential linear selectivity
in the reaction. Furthermore, it is important to point out that if
the A1,3-strain present in l-Z-20 is involved in governing
regiochemical control in this reaction, then the alkene moiety
in b-σ-20 likely remains coordinated to Cu.22 If the alkene of b-
σ-20 were to disassociate from Cu, isomerization of the Z-
alkene to the E-isomer l-E-20 could occur that would remove
this A1,3-interaction that is proposed to be important.
Additionally, it is possible that b-σ-20 may not be a discrete
intermediate in these reactions, and rather, π-20 may be the
dominant species that reacts directly with ketone 1a to afford
linear product l-15a/19.22 However, this scenario is also
consistent with the model described above for regiocontrol.
Finally, the absolute stereochemistry and the Z-olefin geometry
of the linear product l-15a can be rationalized by the reaction
of b-σ-20 or π-20 with ketone 1a through chair-transition state
21 with the oxazolidinone group in an axial position and
complexed with Cu for selective reaction to the Si-face of 1a.
Transition state model 21 is supported by literature
precedent20b,c and further supports oxazolidinone coordination
in these processes.
Demonstration of the synthetic potential of the reductive

coupling products is outlined in Scheme 4. Reduction of the
oxazolidinone of l-15a with excess DIBAL afforded lactol 22
after hydrolysis of the resultant eneamine formed in the
reduction to unmask the chiral γ-hydroxyaldehyde equivalent.
Lactol 22 could then be converted to chiral γ-lactone 23 by
oxidation with TPAP/NMO or converted to the 2,5-
substituted tetrahydrofuran 24 in good yield albeit with poor

diastereocontrol in the Et2Zn addition.23 Finally, the linear
selective reductive coupling reaction was performed on a 1.0 g
scale to complete a three-step asymmetric synthesis of the
natural product (S)-(−)-boivinianin A15a−c starting from 4′-
methylacetophenone.
In conclusion, we have disclosed a strategy for the

stereoselective reductive coupling of ketones and a chiral
allenamide to selectively generate the linear reaction products
providing useful chiral γ-hydroxyaldehyde equivalents. This
method employs simple starting materials and a readily
available catalyst system to furnish chiral products with
increased complexity in an efficient manner. Further develop-
ment of this reaction to enable stereocontrol by a chiral
catalyst is currently under investigation and will be reported in
due course.
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