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Cyclization-Lactone	Reduction	Cascade	Mediated	by	SmI2-H2O	

Monserrat	H.	Garduño-Castro,a	and	David	J.	Proctera*	

a	Department	of	Chemistry,	University	of	Manchester,	Oxford	Road,	Manchester	M13	9PL,	UK	

david.j.procter@manchester.ac.uk	

Dedicated	to	Prof.	Philippe	Renaud	on	the	occasion	of	his	60th	birthday	

The	 hydroxyethylation	 of	 β-hydroxyketones	 allows	 diastereoselective	 access	 to	 important	 1,3,5-triols.	 The	 approach	 exploits	 a	 SmI2-H2O-mediated	

Reformatsky	cyclization-lactone	reduction	cascade.	
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Introduction	

The	1,3,5-triol	motif	is	an	important	motif	found	in	a	number	of	biologically	

active	 natural	 products	 including	 important	 polyketides	 (Scheme	 1A).[1–5]	

The	 motif	 is	 most	 often	 constructed	 by	 diastereoselective	 ketone	

reduction.[6–12]	Samarium	diiodide	(Kagan’s	reagent,	SmI2)	is	well-known	for	

its	ability	to	form	carbon-carbon	bonds,	with	high	diastereoselectivity,[13–15]	

particularly	 when	 couplings	 are	 carried	 out	 in	 an	 intramolecular	 sense.	

Recently,	 our	 group	 has	 expanded	 the	 synthetic	 reach	 of	 the	 reagent	 by	

developing	 chemistry	 involving	 radicals	 generated	 from	 the	 carbonyl	

groups	 of	 carboxylic	 acid	 derivatives.	 In	 particular,	 we	 have	 developed	

reductions	of	 lactones,[16,17]	acyclic	esters,[18]	carboxylic	acids,[19]	nitriles,[20]	

and	amides,[21]	using	SmI2	activated	by	H2O.
[22]	This	work	has	culminated	in	

the	development	of	radical	cascade	reactions	for	the	selective	construction	

of	 complex	 architectures.[23–29]	 In	 the	 case	 of	 lactone	 reduction,	we	 have	

described	the	ring	size-selective	reduction	of	six-membered	lactones	using	

SmI2–H2O	 that	 proceeds	by	 electron-transfer	 to	 the	 lactone	 carbonyl	 and	

delivers	 the	 corresponding	 diol	 products	 (Scheme	 1B).[16,17]	 Inspired	 by	

Molander’s	 seminal	 work	 on	 a	 highly	 diastereoselective	 SmI2-mediated	

intramolecular	Reformatsky	approach	to	6-membered	lactones,[30]	here	we	

describe	 a	 diastereoselective	 hydroxyethylation	 of	β-hydroxyketones	 that	

delivers	 1,3,5-triols	 and	 involves	 a	 SmI2–H2O-mediated	 Reformatsky	

cyclization-lactone	reduction	cascade	(Scheme	1C).		

	

Results	and	Discussion	

The	 feasibility	 of	 the	 hydroxyethylation	 process	 was	 assessed	 using	 β-

hydroxyketone	1a.	 After	 conversion	 to	α-bromoacetate	2a	 (BrCH2C(O)Br,	

pyridine,	CH2Cl2,	72%),	treatment	with	SmI2	at	–78	°C	for	30	min,	followed	

by	addition	of	H2O	to	the	pot,	and	warming	to	room	temperature,	gave	the	

1,3,5-triol	 product	 of	 hydroxyethylation	 4a	 in	 54%	 yield	 and	 lactone	

intermediate	 3a	 in	 36%	 yield,	 both	 as	 single	 diastereoisomers.	 The	

structure	 and	 relative	 stereochemistry	 of	 lactone	 intermediate	 3a	 was	

confirmed	by	X-Ray	crystallographic	analysis	(See	Supporting	Information	-	

CCDC	 Number:	 1953812).	 The	 diastereoselectivity	 observed	 in	 the	 SmI2-

mediated	 Reformatksy	 cyclization	 of	 2a	 to	 form	 lactone	 3a	 is	 consistent	

with	 that	 observed	 by	 Molander[30]	 and	 arises	 from	 a	 highly	 organised	

transition	structure	 I	 in	which	Sm(III)	of	 the	Sm(III)-enolate[31]	 coordinates	

to	the	ketone	carbonyl	in	the	substrate,	with	the	two	alkyl	substituents	in	

pseudoequatorial	orientations	(Scheme	2).	

	

	

Scheme	 1.	 A.	 Selected	 bioactive	 molecules	 containing	 the	 1,3,5-triol	 motif.	 B.	 The	

selective	 reduction	 of	 six-membered	 lactones	 using	 SmI2–H2O.	 C.	Diastereoselective	

hydroxyethylation	of	β-hydroxyketones.	
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Scheme	2.	 	Assessing	the	feasibility	of	the	diastereoselective	hydroxyethylation	of	β-

hydroxyketones.	 Samarium	 enolate	 intermediate	 I	 and	 samarium	 ketyl	 radical	

intermediate	 II.	Diastereoisomeric	purity	was	assessed	by	 inspection	of	 the	 1H	NMR	

spectrum	of	the	crude	product	mixture.	

	

Addition	 of	 H2O	 activates	 SmI2
[32–38]	 and	 switches	 on	 the	 second	 stage	 of	

the	process	by	facilitating	reduction	of	the	lactone	carbonyl	to	give	unusual	

ketyl	 radical	 anion	 II.	 A	 sequence	 of	 further	 reductions	 and	 protonations	

delivers	1,3,5-triol	4a	as	a	single	diastereoisomer.	The	conversion	of	2a	to	

4a	was	optimized	by	varying	 the	amount	of	SmI2	and	 the	amount	of	H2O	

employed	in	the	cascade:	Using	8	equivalents	of	SmI2	(a	1.3-fold	excess	as	

the	cascade	requires	6-electrons)	and	200	equivalents	of	H2O	gave	a	94%	

isolated	yield	of	4a.	

To	 explore	 the	 scope	 of	 selective	 1,3,5-triol	 synthesis,	 we	 synthesized	 a	

range	 of	 β-hydroxyketones.	 Our	 route	 to	 substrates	 employed	 a	 Zn-

mediated	Barbier	reaction	involving	ethyl	2-cyanoacetate	and	allyl	bromide,	

with	 aluminium	 trichloride	 as	 a	 Lewis	 acid	 to	 activate	 the	 nitrile.[39]	 The	

resulting	ketoester	was	reduced	under	Luche	conditions	and	the	resultant	

alcohol	 transformed	 to	 the	Weinreb	 amide	 5	 using	 trimethyl	 aluminium	

and	N,O-dimethylhydroxylamine	 hydrochloride.	 This	 three-step	 sequence	

could	be	carried	out	without	purification	and	gave	5	 in	an	overall	yield	of	

82%.	Treatment	of	5	with	three	Grignard	reagents	delivered	ketones	6a-c	

in	moderate	 yields.	 Finally,	 ketones	6	 underwent	olefin	 cross-metathesis,	

using	various	styrenes	and	the	Hoveyda-Grubbs	2nd	generation	catalyst,	to	

yield	β-hydroxyketones	1a-g	in	good	yield	(Scheme	3).[40,41]		

	

	
Scheme	3.		Synthesis	of	β-hydroxyketone	substrates	1a-g.	

	

β-Hydroxyketones	1a-g	were	acylated	using	bromoacetyl	bromide	prior	to	

treatment	with	SmI2	 and	H2O	 (Scheme	4).	By	varying	 the	aryl	 substituent	

on	the	alkene	we	found	that	the	presence	of	potentially	reduceable	bromo	

(4b),	chloro	(4e),	and	trifluoromethyl	(4c)	functional	groups	was	tolerated	

in	 the	 process.	 Crucially,	 the	 presence	 of	 an	 alkene,	 in	 a	 position	 that	

renders	 it	potentially	 susceptible	 to	 radical	 cyclization,	was	also	 tolerated	

(4a-g).	Finally,	the	alkyl	group	of	the	ketone	could	be	varied	(4f,	4g).	In	all	

cases,	 1,3,5-triols	 products	 were	 formed	 as	 single	 diastereoisomers	

(Scheme	4).	

	
Scheme	 4.	 Hydroxyethylation	 of	 β-hydroxyketones	 using	 a	 SmI2–H2O-mediated	

cascade.	 Diastereoisomeric	 purity	 was	 assessed	 by	 inspection	 of	 the	 1H	 NMR	

spectrum	 of	 the	 crude	 product	 mixture.	 aYield	 for	 the	 acylation	 of	 the	 β-

hydroxyketone.	bYield	for	the	SmI2–H2O-mediated	cascade.	
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Conclusions	

A	 two-stage,	 hydroxyethylation	 of	 β-hydroxyketones	 delivers	 1,3,5-triols	

with	 high	 diastereocontrol.	 After	 formation	 of	 the	 corresponding	 α-

bromoacetate,	 ketone	 hydroxyethylation	 proceeds	 through	 a	 SmI2–H2O-

mediated	 cascade	 reaction.	 The	 cascade	 process	 consists	 of	 a	 highly	

diastereoselective	 SmI2-mediated	Reformatsky	 cyclization,	 to	 give	 lactone	

intermediates,	 that	 are	 then	 reduced	 to	 the	 corresponding	 triols,	 upon	

addition	 of	 H2O	 to	 the	 reaction	 pot.	 The	 process	 shows	 promising	

functional	group	compatibility	and	delivers	important	1,3,5-triols	as	single	

diastereoisomers	in	good	isolated	yield.	

Experimental	Section	

General	procedure	A	for	the	preparation	of	α-bromoacetates	2a-g.	

β-Hydroxyketone	 1	 (1	 equivalent)	 was	 dissolved	 in	 CH2Cl2.	 Pyridine	 (2	

equivalents)	was	added	followed	by	the	dropwise	addition	of	bromoacetyl	

bromide	 (1.5	 equivalent)	 at	 0	 °C.	 The	 reaction	 was	 stirred	 at	 that	

temperature	for	30	min	and	quenched	with	aqueous	1	M	HCl.	The	aqueous	

layer	 was	 extracted	 with	 CH2Cl2	 (3	 ×	 10	 mL)	 and	 the	 combined	 organic	

layers	 were	 washed	 with	 brine	 (10	 ml),	 dried	 over	 MgSO4,	 and	

concentrated	 in	 vacuo.	 Purification	 by	 column	 chromatography,	 eluting	

with	EtOAc/hexane	(30:70),	gave	α-bromoacetates	2	as	yellow	oils.	

General	 procedure	B	 for	 the	 preparation	 of	 1,3,5-triols	4a-g.	 To	a	

solution	 of	 SmI2	 (8	 equivalents,	 0.1	M	 in	 THF),	 under	 N2,	 at	 –78	 °C,	 was	

added	α-bromoacetate	2	(1	equivalent)	in	THF	(0.5	mL),	dropwise	and	the	

resulting	 mixture	 stirred	 for	 30	 min.	 The	 reaction	 was	 then	 allowed	 to	

slowly	 warm	 to	 room	 temperature	 and	 degassed	 H2O	 (200	 equivalents)	

was	added.	The	reaction	was	stirred	at	room	temperature	for	18	h	before	

being	 quenched	by	 opening	 to	 air,	 followed	by	 the	 addition	 of	 saturated	

aqueous	Rochelle’s	salt.	The	aqueous	layer	was	extracted	with	Et2O	(3	×	5	

mL)	 and	 the	 combined	 organic	 layers	 were	 washed	 with	 brine	 (10	 mL),	

dried	 over	 MgSO4,	 and	 concentrated	 in	 vacuo.	 Purification	 by	 column	

chromatography,	 eluting	with	EtOAc/hexane	 (50:50),	 gave	 the	1,3,5-triols	

as	single	diastereoisomers	and	as	colourless	oils.	

	

(E)-6-Oxo-1-phenylhept-1-en-4-yl	2-bromoacetate	2a	

Prepared	 according	 to	 general	 procedure	 A	 using	 (E)-4-hydroxy-7-

phenylhept-6-en-2-one	1a	 (356	mg,	1.74	mmol),	pyridine	 (0.280	mL,	3.48	

mmol)	 and	bromoacetyl	 bromide	 (0.230	mL,	 2.61	mmol)	 to	 give	 the	 title	

compound	as	a	yellow	oil	 (406	mg,	1.00	mmol,	58%).	 1H	NMR	 (400	MHz,	

CDCl3)	δ	2.17	(s,	3	H,	CH3),	2.57	(dtd,	J	=	7.5,	6.0,	1.4	Hz,	2	H,	CH2CH=CHAr),	

2.68	–	2.88	(m,	2	H,	CH2C(O)),	3.78	(s,	2	H,	CH2Br),	5.44	(dq,	J	=	7.3,	5.8	Hz,	

1	H,	CH),	6.12	(dt,	J	=	15.6,	7.3	Hz,	1	H,	CH=CHAr),	6.46	(dt,	J	=	15.8,	1.4	Hz,	

1	H,	CH=CHAr),	7.20	–	7.25	(m,	1	H,	ArCH),	7.28	–	7.37	(m,	4	H,	ArCH)	ppm.	
13C	NMR	(101	MHz,	CDCl3)	δ	25.9	 (CH2Br),	30.7	 (CH3),	37.4	 (CH2CH=CHAr),	

46.6	 (CH2C(O)),	 71.6	 (CH),	 123.9	 (CH=CHAr),	 126.3	 (ArCH),	 127.7	 (ArCH),	

128.7	 (ArCH),	 134.1	 (CH=CHAr),	 137.0	 (ArC),	 166.6	 (C(O)CH2Br),	 205.1	

(C(O))	ppm.	IR	νmax	(neat/cm
−1):	3025,	1732,	1715,	1495,	1421,	1378,	1357,	

1276,	1159,	1106,	1042,	967,	795,	745,	693.	HRMS	calcd	for	C15H18O3Br	[M	

+	H]+:	325.0434,	found	325.0427.	

	

(E)-1-(4-Bromophenyl)-6-oxohept-1-en-4-yl	2-bromoacetate	2b	

Prepared	according	to	general	procedure	A	using	(E)-7-(4-bromophenyl)-4-

hydroxyhept-6-en-2-one	 1b	 (165	 mg,	 0.580	 mmol),	 pyridine	 (0.090	 mL,	

1.16	mmol)	 and	bromoacetyl	bromide	 (0.080	mL,	0.88	mmol)	 to	give	 the	

title	 compound	as	a	yellow	oil	 (169	mg,	0.420	mmol,	72%).	 1H	NMR	 (400	

MHz,	CDCl3)	δ	2.16	(s,	3	H,	CH3),	2.47	–	2.63	(m,	2	H,	CH2CH=CHAr),	2.67	–	

2.87	(m,	2	H,	CH2C(O)),	3.77	(s,	2	H,	CH2Br),	5.42	(dq,	J	=	7.2,	5.7	Hz,	1	H,	

CH),	6.11	(dt,	J	=	15.8,	7.3	Hz,	1	H,	CH=CHAr),	6.35	–	6.42	(m,	1	H,	CH=CHAr),	

7.17	–	7.23	(m,	2	H,	ArCH),	7.38	–	7.45	(m,	2	H,	ArCH)	ppm.	13C	NMR	(101	

MHz,	CDCl3)	δ	25.9	(CH2Br),	30.7	(CH3),	37.4	(CH2CH=CHAr),	46.7	(CH2C(O),	

71.4	(CH),	121.4	(ArC),	124.8	(CH=CHAr),	127.9	(ArCH),	131.8	(ArCH),	132.9	

(CH=CHAr),	 136.0	 (ArC),	 166.6	 (C(O)CH2Br),	 204.9	 (C(O))	 ppm.	 IR	 νmax	

(neat/cm−1):	2923,	1732,	1716,	1587,	1486,	1401,	1357,	1301,	1151,	1105,	

1043,	1071,	1008,	968,	796,	731.	HRMS	calcd	for	C15H16O3Br2Na	[M	+	Na]+:	

424.9358,	found	424.9345.		

	

(E)-6-Oxo-1-(4-(trifluoromethyl)phenyl)hept-1-en-4-yl	 2-

bromoacetate	2c	

Prepared	 according	 to	 general	 procedure	 A	 using	 (E)-4-hydroxy-7-(4-

(trifluoromethyl)phenyl)hept-6-en-2-one	 1c	 (118	 mg,	 0.430	 mmol),	

pyridine	(0.070	mL,	0.86	mmol)	and	bromoacetyl	bromide	(0.060	mL,	0.65	

mmol)	 to	 give	 the	 title	 compound	 as	 a	 yellow	oil	 (76.3	mg,	 0.190	mmol,	

45%).	1H	NMR	(500	MHz,	CDCl3)	δ	2.17	(d,	J	=	1.9	Hz,	3	H,	CH3),	2.58	–	2.63	

(m,	2	H,	CH2CH=CHAr),	2.78	–	2.85	(m,	2	H,	CH2C(O)),	3.77	(d,	J	=	1.9	Hz,	2	H,	

CH2Br),	5.45	(p,	J	=	6.1	Hz,	1	H,	CH),	6.19	–	6.28	(m,	1	H,	CH=CHAr),	6.48	(d,	

J	=	15.8	Hz,	1	H,	CH=CHAr),	7.42	(d,	J	=	8.1	Hz,	2	H,	ArCH),	7.55	(d,	J	=	8.0	Hz,	

2	H,	ArCH)	ppm.	13C	NMR	(126	MHz,	CDCl3)	δ	25.8	(CH2Br),	30.7	(CH3),	37.4	

(CH2CH=CHAr),	46.7	 (CH2C(O)),	71.2	 (CH),	123.2	(ArC),	125.6	(ArCH),	126.5	

(ArCH),	126.9	(CH=CHAr),	132.7	(CH=CHAr),	140.4	(ArC),	166.6	(C(O)CH2Br),	

197.4	(C(O))	ppm	(CF3	not	observed).	IR	νmax	(neat/cm
−1):	2953,	1735,	1718,	

1615,	1414,	1323,	1278,	1161,	1110,	1066,	1045,	971,	908,	857,	730,	649.	

HRMS	calcd	for	C16H16O3BrF3Na	[M	+	Na]+:	415.0127,	found	415.0112.	

	

(E)-6-Oxo-1-(m-tolyl)hept-1-en-4-yl	2-bromoacetate	2d	

Prepared	 according	 to	 general	 procedure	 A	 using	 (E)-4-hydroxy-7-(m-

tolyl)hept-6-en-2-one	1d	 (146	mg,	 0.670	mmol),	 pyridine	 (0.110	mL,	 1.34	

mmol)	 and	 bromoacetyl	 bromide	 (0.09	 mL,	 1	 mmol)	 to	 give	 the	 title	

compound	as	a	yellow	oil	(178	mg,	0.520	mmol,	78%).	1H	NMR	(400	MHz,	

CDCl3)	 δ	 2.16	 (s,	 3	 H,	 CH3),	 2.34	 (s,	 3	 H,	 ArCH3),	 2.48	 –	 2.62	 (m,	 2	 H,	

CH2CH=CHAr),	2.67	–	2.87	(m,	2	H,	CH2C(O)),	3.79	(s,	2	H,	CH2Br),	5.43	(dq,	J	

=	7.5,	5.8	Hz,	1	H,	CH),	6.10	(dt,	J	=	15.8,	7.3	Hz,	1	H,	CH=CHAr),	6.42	(dd,	J	=	

15.8,	1.5	Hz,	1	H,	CH=CHAr),	7.03	–	7.07	(m,	1	H,	ArCH),	7.12	–	7.23	(m,	3	H,	

ArCH).	13C	NMR	(101	MHz,	CDCl3)	δ	21.5	(ArCH3),	25.9		(CH2Br),	30.7	(CH3),	

37.4	 (CH2CH=CHAr),	 46.6	 (CH2C(O)),	 71.6	 (CH),	 123.5	 (ArCH),	 123.6	

(CH=CHAr),	 127.0	 (ArCH),	 128.5	 (ArCH),	 128.6	 (ArCH),	 134.2	 (CH=CHAr),	

137.0	 (ArC),	 138.3	 (ArC),	 166.6	 (C(O)CH2Br),	 205.0	 (C(O))	 ppm.	 IR	 νmax	
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(neat/cm−1):	2922,	1735,	1716,	1602,	1485,	1421,	1378,	1357,	1276,	1159,	

1106,	 1042,	 967,	 774,	 732,	 694.	HRMS	 calcd	 for	 C16H19O3BrNa	 [M	+	Na]+:	

361.0410,	found	361.0392.		

	

(E)-1-(2-Chlorophenyl)-6-oxohept-1-en-4-yl	2-bromoacetate	2e	

Prepared	according	to	general	procedure	A	using	(E)-7-(2-chlorophenyl)-4-

hydroxyhept-6-en-2-one	 1e	 (176	 mg,	 0.740	 mmol),	 pyridine	 (0.120	 mL,	

1.47	mmol)	and	bromoacetyl	bromide	(0.10	mL,	1.1	mmol)	to	give	the	title	

compound	as	a	yellow	oil	(183	mg,	0.510	mmol,	69%).	1H	NMR	(400	MHz,	

CDCl3)	δ	2.17	(s,	3	H,	CH3),	2.52	–	2.67	(m,	2	H,	CH2CH=CHAr),	2.70	–	2.90	

(m,	2	H,	CH2C(O)),	3.79	(s,	2	H,	CH2Br),	5.41	–	5.50	(m,	1	H,	CH),	6.10	(ddd,	J	

=	15.7,	7.9,	7.0	Hz,	1	H,	CH=CHAr),	6.75	–	6.85	(m,	1	H,	CH=CHAr),	7.14	–	

7.25	(m,	2	H,	ArCH),	7.33	(dd,	J	=	7.8,	1.5	Hz,	1	H,	ArCH),	7.47	(dd,	J	=	7.6,	

1.9	 Hz,	 1	 H,	 ArCH)	 ppm.	 13C	 NMR	 (101	MHz,	 CDCl3)	 δ	 25.9	 (CH2Br),	 30.7	

(CH3),	 37.6	 (CH2CH=CHAr),	 46.7	 (CH2C(O)),	 71.3	 (CH),	 127.0	 (2	 ×	 ArCH,	

CH=CHAr),	128.7	(ArCH),	129.7	(ArCH),	130.3	(CH=CHAr),	132.8	(ArC),	135.2	

(ArC),	166.6	(C(O)CH2Br),	204.9	(C(O))	ppm.	IR	νmax	(neat/cm
−1):	2962,	1733,	

1716,	 1591,	 1470,	 1423,	 1357,	 1275,	 1150,	 1105,	 1034,	 967,	 751,	 694.	

HRMS	calcd	for	C15H16O3BrClNa	[M	+	Na]+:	380.9864,	found	380.9850.			

	

(E)-6-Oxo-1-phenyloct-1-en-4-yl	2-bromoacetate	2f	

Prepared	 according	 to	 general	 procedure	 A	 using	 (E)-5-hydroxy-8-

phenyloct-7-en-3-one	1f	 (62.0	mg,	0.280	mmol),	pyridine	 (0.050	mL,	0.57	

mmol)	 and	bromoacetyl	 bromide	 (0.040	mL,	 0.43	mmol)	 to	 give	 the	 title	

compound	as	a	yellow	oil	(55.5	mg,	0.160	mmol,	58%).	1H	NMR	(400	MHz,	

CDCl3)	δ	0.97	(t,	J	=	7.3	Hz,	3	H,	CH3),	2.36	(qd,	J	=	7.3,	1.9	Hz,	2	H,	CH3CH2),	

2.50	 (dtd,	 J	 =	 7.5,	 5.8,	 1.4	 Hz,	 2	 H,	 CH2CH=CHAr),	 2.58	 –	 2.78	 (m,	 2	 H,	

CH2C(O)),	3.71	(s,	2H,	CH2Br),	5.39	(ddt,	J	=	13.4,	7.7,	5.9	Hz,	1	H,	CH),	6.05	

(dtd,	 J	 =	15.8,	7.3,	4.8	Hz,	1	H,	CH=CHAr),	6.38	 (dd,	 J	 =	15.8,	1.6	Hz,	1	H,	

CH=CHAr),	7.12	–	7.19	(m,	1	H,	ArCH),	7.21	–	7.31	(m,	4	H,	ArCH)	ppm.	13C	

NMR	 (101	 MHz,	 CDCl3)	 δ	 7.6	 (CH3),	 25.9	 (CH2Br),	 36.7	 (CH3CH2),	 37.4	

(CH2CH=CHAr),	 45.4	 (CH2C(O)),	 71.7	 (CH),	 123.9	 (CH=CHAr),	 126.3	 (ArCH),	

127.6	 (ArCH),	 128.7	 (ArCH),	 134.0	 (CH=CHAr),	 137.0	 (ArC),	 166.6	

(C(O)CH2Br),	207.7	(C(O))	ppm.	IR	νmax	(neat/cm
−1):	2975,	1732,	1714,	1449,	

1410,	 1378,	 1277,	 1165,	 1109,	 966,	 910,	 751,	 701.	 HRMS	 calcd	 for	

C16H19O3BrNa	[M	+	Na]+:	361.0410,	found	361.0394.		

	

(E)-8-Methyl-6-oxo-1-phenylnon-1-en-4-yl	2-bromoacetate	2g	

Prepared	according	 to	general	procedure	A	using	 (E)-6-hydroxy-2-methyl-

9-phenylnon-8-en-4-one	1g	 (33.1	mg,	0.13	mmol),	pyridine	(0.02	mL,	0.27	

mmol)	 and	 bromoacetyl	 bromide	 (0.02	 mL,	 0.20	 mmol)	 to	 give	 the	 title	

compound	as	a	yellow	oil	 (37.4	mg,	0.10	mmol,	76%).	1H	NMR	(500	MHz,	

CDCl3)	δ	0.89	(d,	J	=	6.1	Hz,	3	H,	CH3),	0.91	(d,	J	=	6.1	Hz,	3	H,	CH3),	2.06	–	

2.17	(m,	1	H,	(CH3)2CH),	2.29	(dd,	J	=	7.0,	2.4	Hz,	2	H,	(CH3)2CHCH2),	2.51	–	

2.62	 (m,	 2	 H,	 CH2CH=CHAr),	 2.63	 –	 2.83	 (m,	 2	 H,	 CH2C(O)),	 3.78	 (s,	 2	 H,	

CH2Br),	 5.45	 (dq,	 J	 =	 7.4,	 5.8	Hz,	 1	H,	 CH),	 6.14	 (tt,	 J	 =	 15.3,	 7.3	Hz,	 1	H,	

CH=CHAr),	6.45	(d,	J	=	15.8	Hz,	1	H,	CH=CHAr),	7.21	–	7.25	(m,	1	H,	ArCH),	

7.28	–	7.35	(m,	4	H,	ArCH)	ppm.	13C	NMR	(126	MHz,	CDCl3)	δ	22.6	(2	×	CH3),	

24.6	 ((CH3)2CH),	 25.9	 (CH2Br)),	 37.4	 (CH2CH=CH2),	 46.2	 (CH2C(O)),	 52.5	

(CH3)2CHCH2),	 71.6	 (CH),	 124.0	 (CH=CHAr),	 126.3	 (ArCH),	 127.7	 (ArCH),	

128.7	 (ArCH),	 134.0	 (CH=CHAr),	 137.1	 (ArC),	 166.6	 (C(O)CH2Br),	 207.1	

(C(O))	ppm.	IR	νmax	(neat/cm
−1):	2958,	2254,	1737,	1405,	1367,	1277,	1166,	

1107,	 967,	 907,	 694,	 649.	 HRMS	 calcd	 for	 C18H23O3BrNa	 [M	 +	 Na]+:	

389.0723,	found	389.0706.		

	

rac-(3R,5S,E)-3-Methyl-8-phenyloct-7-ene-1,3,5-triol	4a	

Prepared	according	to	general	procedure	B	using	SmI2	(2.46	mL,	0.25	mmol,	

0.1	M	 in	 THF),	 ethyl	 (E)-6-oxo-1-phenylhept-1-en-4-yl	 2-bromoacetate	2a	

(0.01	 mg,	 0.03	 mmol)	 and	 H2O	 (0.11	 mL,	 6.14	 mmol)	 to	 give	 the	 title	

compound	 as	 a	 colourless	 oil	 (7.20	 mg,	 0.03	 mmol,	 94%).	 1H	 NMR	 (400	

MHz,	CDCl3)	δ	1.35	(s,	3	H,	CH3),	1.51	–	1.63	(m,	1	H,	CquatCHaHbCH),	1.75	(tt,	

J	=	5.2,	2.3	Hz,	2	H,	CquatCH2CH2OH),	1.87	–	1.92	(m,	1	H,	CquatCHaHbCH),	2.41	

(ddd,	J	=	7.4,	6.1,	1.4	Hz,	2	H,	CH2CH=CH),	3.03	(s,	1	H,	OH),	3.29	(s,	1	H,	OH),	

3.92	(t,	J	=	5.5	Hz,	2	H,	CH2OH),	4.20	(ddt,	J	=	7.9,	6.0,	3.0	Hz,	1	H,	CH),	4.27	

(s,	1	H,	OH),	6.16	–	6.28	(m,	1	H,	CH=CHAr),	6.49	(dd,	J	=	15.8,	3.3	Hz,	1	H,	

CH=CHAr),	7.20	–	7.25	(m,	1	H,	ArCH),	7.31	(dd,	J	=	7.6,	7.6	Hz,	2	H,	ArCH),	

7.37	(dt,	J	=	5.8,	1.4	Hz,	2	H,	ArCH)	ppm.	13C	NMR	(101	MHz,	CDCl3)	δ	26.4	

(CH3),	 42.2	 (CH2CH=CH),	 43.8	 (CquatCH2CH2OH),	 45.8	 (CquatCH2CH),	 59.8	

(CH2OH),	 69.0	 (CH),	 74.5	 (Cquat),	 125.7	 (CH=CHAr),	 126.3	 (ArCH),	 127.5	

(ArCH),	 128.7	 (ArCH),	 133.6	 (CH=CHAr),	 137.2	 (ArC)	 ppm.	 IR	 νmax	

(neat/cm−1):	 3341,	 2934,	 2042,	 1665,	 1426,	 1259,	 1117,	 1053,	 967,	 744.	

HRMS	calcd	for	C15H21O3	[M	-	H]-:	249.1496,	found	249.1498.	

	

rac-(3R,5S,E)-8-(4-Bromophenyl)-3-methyloct-7-ene-1,3,5-triol	4b	

Prepared	according	to	general	procedure	B	using	SmI2	(6.00	mL,	0.60	mmol,	

0.1	M	in	THF),	(E)-1-(4-bromophenyl)-6-oxohept-1-en-4-yl	2-bromoacetate	

2b	 (30.3	mg,	 0.075	mmol)	 and	 H2O	 (0.27	mL,	 15	mmol)	 to	 give	 the	 title	

compound	 as	 a	 colourless	 oil	 (19.6	mg,	 0.059	mmol,	 79%).	 1H	NMR	 (500	

MHz,	CDCl3)	δ	1.34	(s,	3	H,	CH3),	1.48	–	1.54	(m,	1	H,	CquatCHaHbCH),	1.65	–	

1.78	(m,	2	H,	CquatCH2CH2OH),	1.85	–	1.92	(m,	1	H,	CquatCHaHbCH),	2.38	(dd,	J	

=	7.3,	7.3	Hz,	2	H,	CH2CH=CH),	3.08	(s,	1	H,	OH),	3.59	(s,	1	H,	OH),	3.92	(t,	J	=	

5.7	Hz,	2	H,	CH2OH),	4.19	(dq,	J	=	16.0,	9.6,	8.0	Hz,	1	H,	CH),	4.33	(s,	1	H,	

OH),	6.17	–	6.29	 (m,	1	H,	CH=CHAr),	6.41	 (d,	 J	 =	15.8	Hz,	1	H,	CH=CHAr),	

7.15	–	7.24	 (m,	2	H,	ArCH),	7.42	 (dd,	 J	=	8.5,	1.9	Hz,	2	H,	ArCH)	ppm.	 13C	

NMR	(126	MHz,	CDCl3)	δ	26.3	(CH3),	42.1	(CH2CH=CH),	43.7	(CquatCH2CH2OH),	

45.7	(CquatCH2CH),	59.8	(CH2OH),	68.8	(CH),	74.6	(Cquat),	121.1	(ArCH),	126.9	

(CH=CHAr),	127.8	 (ArCH),	131.7	 (CH=CHAr),	132.2	 (ArC),	136.2	 (ArC)	ppm.	

IR	νmax	(neat/cm
−1):	3347,	2930	1651,	1486,	1401,	1378,	1117,	1071,	1008,	

968,	908,	798,	733,	648.	HRMS	calcd	for	C15H21O3BrNa	[M	+	Na]+:	351.0566,	

found	351.0554.	

	

rac-(3R,5S,E)-3-Methyl-8-(4-(trifluoromethyl)phenyl)oct-7-ene-

1,3,5-triol	4c	

Prepared	according	to	general	procedure	B	using	SmI2	(4.00	mL,	0.40	mmol,	

0.1	 M	 in	 THF),	 (E)-6-oxo-1-(4-(trifluoromethyl)phenyl)hept-1-en-4-yl	 2-

bromoacetate	2c	 (19.6	mg,	0.05	mmol)	and	H2O	 (0.18	mL,	0.01	mmol)	 to	

give	the	title	compound	as	a	colourless	oil	(9.86	mg,	0.031	mmol,	62%).	1H	

NMR	 (400	 MHz,	 CDCl3)	 δ	 1.35	 (s,	 3	 H,	 CH3),	 1.45	 –	 1.52	 (m,	 1	 H,	
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CquatCHaHbCH),	 1.69	 –	 1.78	 (m,	 2	 H,	 CquatCH2CH2OH),	 1.79	 –	 1.91	 (m,	 1	 H,	

CquatCHaHbCH),	2.43	(ddd,	J	=	7.4,	4.8,	3.1	Hz,	2	H,	CH2CH=CH),	2.87	(s,	1	H,	

OH),	3.62	(s,	1	H,	OH),	3.93-4.05	(m,	3	H,	CH2OH,	OH),	4.18	–	4.29	(m,	1	H,	

CH),	 6.35	 (dt,	 J	 =	 15.9,	 7.2	 Hz,	 1	 H,	 CH=CHAr),	 6.51	 (d,	 J	 =	 15.9	 Hz,	 1	 H,	

CH=CHAr),	7.45	(d,	J	=	8.1	Hz,	2	H,	ArCH),	7.53	(d,	J	=	8.8	Hz,	2	H,	ArCH).	13C	

NMR	(101	MHz,	CDCl3)	δ	26.3	(CH3),	42.1	(CH2CH=CH),	43.7	(CquatCH2CH2OH),	

45.9	(CquatCH2CH),	59.8	(CH2OH),	68.8	(CH),	74.6	(Cquat),	125.4	(ArCH),	126.4	

(ArCH),	 128.6	 (CH=CHAr),	 129.0	 (ArC),	 132.0	 (CH=CHAr),	 140.8	 (ArC)	 ppm	

(CF3	 not	 observed).	 IR	 νmax	 (neat/cm
−1):	 	 3322,	 2936,	 1615,	 1415,	 1352,	

1163,	1120,	1067,	1017,	908,	856,	732,	649.	HRMS	calcd	for	C16H22O3F3	[M	

+	H]+:	319.1516,	found	319.1512.		

	

rac-(3R,5S,E)-3-Methyl-8-(m-tolyl)oct-7-ene-1,3,5-triol	4d	

Prepared	according	to	general	procedure	B	using	SmI2	(6.00	mL,	0.60	mmol,	

0.1	M	in	THF),	(E)-6-oxo-1-(m-tolyl)hept-1-en-4-yl	2-bromoacetate	2d	(25.4	

mg,	0.075	mmol)	and	H2O	(0.27	mL,	15	mmol)	to	give	the	title	compound	

as	a	colourless	oil	(18.2	mg,	0.068	mmol,	92%).	1H	NMR	(400	MHz,	CDCl3)	δ	

1.34	(s,	3	H,	CH3),	1.50	–	1.56	(m,	1	H,	CquatCHaHbCH),	1.73	(tq,	J	=	5.7,	3.6,	

3.0	Hz,	2	H,	CquatCH2CH2OH),	1.86	–	1.92	(m,	1	H,	CquatCHaHbCH),	2.34	(s,	3	H,	

ArCH3),	2.40	(td,	J	=	7.2,	1.4	Hz,	2	H,	CH2CH=CH),	3.21	(s,	1	H,	OH),	3.42	(s,	1	

H,	OH),	3.91	(t,	J	=	5.6	Hz,	2	H,	CH2OH),	4.20	(dtd,	J	=	11.1,	6.2,	2.0	Hz,	1	H,	

CH),	4.36	(s,	1	H,	OH),	6.20	(dt,	J	=	15.9,	7.3	Hz,	1	H,	CH=CHAr),	6.45	(dt,	J	=	

15.9,	1.4	Hz,	1	H,	CH=CHAr),	7.01	–	7.06	(m,	1	H,	ArCH),	7.14	–	7.23	(m,	3	H,	

ArCH).	 13C	 NMR	 (101	 MHz,	 CDCl3)	 δ	 21.5	 (ArCH3),	 26.4	 (CH3),	 42.2	

(CH2CH=CH),	 43.7	 (CquatCH2CH2OH),	 45.7	 (CquatCH2CH),	 59.7	 (CH2OH),	 69.0	

(CH),	 74.5	 (Cquat),	 123.4	 (ArCH),	 125.5	 (CH=CHAr),	 127.0	 (ArCH),	 128.3	

(ArCH),	 128.6	 (ArCH),	 133.6	 (CH=CHAr),	 137.2	 (ArC),	 138.2	 (ArC)	 ppm.	 IR	

νmax	(neat/cm
−1):	3343,	2924,	2245,	1603,	1429,	1377,	1117,	1053,	966,	908,	

857,	774,	732,	693,	648.	HRMS	calcd	for	C16H24O3Na	[M	+	Na]+:	287.1618,	

found	287.1605.		

	

rac-(3R,5S,E)-8-(2-Chlorophenyl)-3-methyloct-7-ene-1,3,5-triol	4e	

Prepared	according	to	general	procedure	B	using	SmI2	(6.00	mL,	0.60	mmol,	

0.1	M	 in	THF),	 (E)-1-(2-chlorophenyl)-6-oxohept-1-en-4-yl	2-bromoacetate	

2e	 (26.9	mg,	 0.075	mmol)	 and	 H2O	 (0.27	mL,	 15	mmol)	 to	 give	 the	 title	

compound	 as	 a	 colourless	 oil	 (18.9	mg,	 0.066	mmol,	 88%).	 1H	NMR	 (500	

MHz,	 CDCl3)	 δ	 1.35	 (d,	 J	 =	 2.0	 Hz,	 3	 H,	 CH3),	 1.51	 –	 1.56	 (m,	 1	 H,	

CquatCHaHbCH),	 1.70	 –	 1.80	 (m,	 2	 H,	 CquatCH2CH2OH),	 1.84	 –	 1.91	 (m,	 1	 H,	

CquatCHaHbCH),	2.39	–	2.50	(m,	2	H,	CH2CH=CH),	3.18	(s,	1	H,	OH),	3.64	(s,	1	

H,	OH),	3.92	(t,	J	=	5.9	Hz,	2	H,	CH2OH),	4.23	(dt,	J	=	11.9,	6.3	Hz,	1	H,	CH),	

4.38	(s,	1	H,	OH),	6.15	–	6.26	(m,	1	H,	CH=CHAr),	6.85	(d,	J	=	15.8	Hz,	1	H,	

CH=CHAr),	7.16	(t,	J	=	7.7	Hz,	1	H,		ArCH),	7.21	(t,	J	=	7.5	Hz,	1	H,	ArCH),	7.33	

(d,	J	=	7.9	Hz,	1	H,	ArCH),	7.52	(d,	J	=	7.7	Hz,	1	H,	ArCH)	ppm.	13C	NMR	(126	

MHz,	 CDCl3)	 δ	 26.4	 (CH3),	 42.2	 (CH2CH=CH),	 43.7	 (CquatCH2CH2OH),	 45.7	

(CquatCH2CH),	 59.7	 (CH2OH),	 68.9	 (CH),	 74.6	 (Cquat),	 126.9	 (ArCH),	 126.9	

(ArCH),	 128.5	 (ArCH),	 129.0	 (CH=CHAr),	 129.5	 (ArCH),	 129.8	 (CH=CHAr),	

132.8	(ArC),	135.4	(ArC)	ppm.	IR	νmax	(neat/cm
−1):	3345,	2928,	1648,	1469,	

1439,	 1377,	 1115,	 1055,	 1033,	 967,	 908,	 857,	 750,	 695.	 HRMS	 calcd	 for	

C15H21O3ClNa	[M	+	Na]+:	307.1071,	found	307.1058.	

	

rac-(3R,5S,E)-3-Ethyl-8-phenyloct-7-ene-1,3,5-triol	4f	

Prepared	according	to	general	procedure	B	using	SmI2	(6.50	mL,	0.65	mmol,	

0.1	M	in	THF),	(E)-6-oxo-1-phenyloct-1-en-4-yl	2-bromoacetate	2f	(27.7	mg,	

0.08	mmol)	and	H2O	(0.29	mL,	16.3	mmol)	to	give	the	title	compound	as	a	

colourless	oil	(13.3	mg,	0.05	mmol,	61%).	1H	NMR	(400	MHz,	CDCl3)	δ	0.84	

(t,	J	=	7.6	Hz,	3	H,	CH3),	1.55	–	1.67	(m,	2	H,	1	H	from	CquatCH2CH,	1	H	from	

CquatCH2CH2OH),	1.69	–	1.85	(m,	4	H,	2	H	from	CH3CH2,	1	H	from	CquatCH2CH,	

1	H	from	CquatCH2CH2OH),	2.40	(tt,	J	=	6.9,	1.6	Hz,	2	H,	CH2CH=CH),	3.21	(s,	1	

H,	OH),	3.45	(s,	1	H,	OH),	3.79	–	3.97	(m,	2	H,	CH2OH),	4.06	–	4.18	(m,	1	H,	

CH),	4.34	(s,	1	H,	OH),	6.21	(dt,	J	=	15.4,	7.3	Hz,	1	H,	CH=CHAr),	6.48	(d,	J	=	

15.8	Hz,	1	H,	CH=CHAr),	7.19	–	7.25	(m,	1	H,	ArCH),	7.30	(dd,	J	=	7.6,	7.6	Hz,	

2	H,	ArCH),	7.36	(d,	J	=	7.2	Hz,	2	H,	ArCH)	ppm.	13C	NMR	(101	MHz,	CDCl3)	δ	

9.1	 (CH3),	 31.5	 (CH3CH2),	 39.6	 (CquatCH2CH2OH),	 42.2	 (CH2CH=CH,	

CquatCH2CH),	 59.6	 (CH2OH),	 68.7	 (CH),	 77.0	 (Cquat),	 125.7	 (CH=CHAr),	 126.3	

(ArCH),	127.5	 (ArCH),	128.7	 (ArCH),	133.5	 (CH=CHAr),	137.3	 (ArC)	ppm.	 IR	

νmax	 (neat/cm
−1):	 3344,	 3026,	 2940,	 1598,	 1495,	 1432,	 1329,	 1108,	 1051,	

966,	908,	852,	692,	648.	 HRMS	calcd	for	C16H24O3Na	[M	+	Na]+:	287.1618,	

found	287.1604.										
	

rac-(3R,5S,E)-3-Isobutyl-8-phenyloct-7-ene-1,3,5-triol	4g	

Prepared	according	to	general	procedure	B	using	SmI2	(5.50	mL,	0.55	mmol,	

0.1	 M	 in	 THF),	 (E)-8-methyl-6-oxo-1-phenylnon-1-en-4-yl	 2-bromoacetate	

2g	 (25.3	mg,	 0.07	mmol)	 and	H2O	 (0.25	mL,	 13.8	mmol)	 to	 give	 the	 title	

compound	 as	 a	 colourless	 oil	 (14.3	 mg,	 0.05	 mmol,	 70%).	 1H	 NMR	 (400	

MHz,	CDCl3)	δ	0.94	 (d,	 J	=	6.4	Hz,	3	H,	CH3),	0.98	 (d,	 J	=	6.4	Hz,	3	H,	CH3)	

1.52	 –	 1.64	 (m,	 3	 H,	 (CH3)2CH,	 1	 H	 from	 CquatCH2CH2OH,	 1	 H	 from	

CquatCH2CH),	 1.65	 –	 1.73	 (m,	 2	 H,	 (CH3)2CHCH2),	 1.80	 –	 1.99	 (m,	 2	 H,	 1	 H	

from	CquatCH2CH2OH,	1	H	from	CquatCH2CH),	2.40	(ddt,	J	=	7.2,	5.8,	1.4	Hz,	2	

H,	CH2CH=CH),	3.27	(d,	J	=	9.9	Hz,	1	H,	OH),	3.44	(s,	1	H,	OH),	3.80	–	4.01	(m,	

2	H,	CH2OH),	4.18	(dt,	J	=	11.9,	6.4	Hz,	1	H,	CH),	4.32	(s,	1	H,	OH),	6.21	(dt,	J	

=	15.9,	7.4	Hz,	1	H,	CH=CHAr),	6.48	(d,	J	=	15.8	Hz,	1	H,	CH=CHAr),	7.19	–	

7.25	(m,	1	H,	ArCH),	7.30	(dd,	J	=	8.4,	6.7	Hz,	2	H,	ArCH),	7.34	–	7.38	(m,	2	H,	

ArCH)	 ppm.	 13C	 NMR	 (101	 MHz,	 CDCl3)	 δ	 24.5	 (CH3),	 24.6	 (CH3),	 25.1	

((CH3)2CHCH2),	 40.7	 (CquatCH2CH2OH),	 42.3	 (CH2CH=CH),	 43.9	 (CquatCH2CH),	

47.9	 ((CH3)2CH),	 59.7	 (CH2OH),	 68.8	 (CH),	 77.0	 (Cquat),	 125.7	 (CH=CHAr),	

126.3	(ArCH),	127.5	(ArCH),	128.7	(ArCH),	133.6	(CH=CHAr),	137.2	(ArC).	IR	

νmax	 (neat/cm
−1):	 3335,	 2953,	 2247,	 1431,	 1081,	 966,	 907,	 727,	 693,	 647.	

HRMS	calcd	for	C18H28O3Na	[M	+	Na]+:	315.1931,	found	315.1915.	

	

rac-(4R,6S)-6-Cinnamyl-4-hydroxy-4-methyltetrahydro-2H-pyran-

2-one	3a	

To	a	solution	of	SmI2	 (0.95	mL,	0.095	mmol,	0.1	M	in	THF),	under	N2,	at	 -

78	 °C,	 (E)-6-oxo-1-phenylhept-1-en-4-yl	 2-bromoacetate	bromoacetate	2a	

(12.4	 mg,	 0.038	 mmol)	 in	 THF	 (0.5	 mL)	 was	 added	 dropwise	 and	 the	

mixture	 stirred	 for	 30	min.	 After	 that	 time,	 the	 reaction	 was	 allowed	 to	

slowly	 warm	 to	 room	 temperature	 before	 being	 quenched	 with	 air,	

followed	 by	 a	 saturated	 aqueous	 solution	 of	 Rochelle’s	 salt	 (5	 mL).	 The	

aqueous	 layer	 was	 extracted	 with	 Et2O	 (3	 ×	 5	 mL)	 and	 the	 combined	
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organic	 layers	 were	 washed	 with	 brine	 (10	 mL),	 dried	 over	 MgSO4,	

concentrated	 in	 vacuo	 and	 purified	 by	 column	 chromatography	 eluting	

with	EtOAc/hexane	(50:50),	to	give	title	compound	as	a	colourless	oil	(9.32	

mg,	0.038	mmol,	quantitative).	 	 1H	NMR	 (500	MHz,	CDCl3)	δ	1.38	 (s,	3	H,	

CH3),	1.49	(s,	1	H,	OH),	1.63	–	1.96	(m,	2	H,	CH2CHCH2CH=CHAr),	2.44	–	2.69	

(m,	4	H,	CH2C(O),	CH2CH=CHAr),	4.82	 (dtd,	 J	=	11.9,	6.0,	3.0	Hz,	1	H,	CH),	

6.23	(dt,	J	=	15.8,	7.3	Hz,	1	H,	CH=CHAr),	6.50	(d,	J	=	15.8	Hz,	1	H,	CH=CHAr),	

7.21	–	7.25	(m,	1	H,	ArCH),	7.31	(dd,	J	=	8.5,	6.8	Hz,	2	H,	ArCH),	7.36	(d,	J	=	

7.4	 Hz,	 2	 H,	 ArCH)	 ppm.	 13C	 NMR	 (126	 MHz,	 CDCl3)	 δ	 30.5	 (CH3),	 38.9	

(CH2CH=CHAr),	41.1	(CH2CHCH2CH=CHAr),	44.3	(CH2C(O)),	68.6	(Cquat),	76.5	

(CH),	 124.0	 (CH=CHAr),	 126.3	 (ArCH),	 127.6	 (ArCH),	 128.7	 (ArCH),	 133.9	

(CH=CHAr),	137.1	 (ArC),	170.4	 (C(O))ppm.	 IR	νmax	 (neat/cm
−1):	3431,	2925,	

2854,	1741,	1449,	1379,	1256,	1130,	1029,	969,	934,	817,	747,	695.	HRMS	

calcd	for	C15H17O3	[M	-	H]-:	245.1183,	found	245.1185.		
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