

Diastereoselective Hydroxyethylation of β -Hydroxyketones: a Reformatsky Cyclization-Lactone Reduction Cascade Mediated by Sml₂-H₂O

Monserrat H. Garduño-Castro,^a and David J. Procter^a*

^a Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK

david.j.procter@manchester.ac.uk

Dedicated to Prof. Philippe Renaud on the occasion of his 60th birthday

The hydroxyethylation of β -hydroxyketones allows diastereoselective access to important 1,3,5-triols. The approach exploits a Sml₂-H₂O-mediated Reformatsky cyclization-lactone reduction cascade.

Keywords: radical • samarium diiodide • Reformatsky • lactones • cascade

Introduction

The 1,3,5-triol motif is an important motif found in a number of biologically active natural products including important polyketides (Scheme 1A).^[1-5] The motif is most often constructed by diastereoselective ketone reduction. $^{\rm [6-12]}$ Samarium diiodide (Kagan's reagent, SmI_2) is well-known for its ability to form carbon-carbon bonds, with high diastereoselectivity, $^{\left[13-15\right] }$ particularly when couplings are carried out in an intramolecular sense. Recently, our group has expanded the synthetic reach of the reagent by developing chemistry involving radicals generated from the carbonyl groups of carboxylic acid derivatives. In particular, we have developed reductions of lactones,^[16,17] acyclic esters,^[18] carboxylic acids,^[19] nitriles,^[20] and amides, $^{[21]}$ using SmI₂ activated by H₂O. $^{[22]}$ This work has culminated in the development of radical cascade reactions for the selective construction of complex architectures.^[23-29] In the case of lactone reduction, we have described the ring size-selective reduction of six-membered lactones using SmI_2-H_2O that proceeds by electron-transfer to the lactone carbonyl and delivers the corresponding diol products (Scheme 1B).^[16,17] Inspired by Molander's seminal work on a highly diastereoselective Sml2-mediated intramolecular Reformatsky approach to 6-membered lactones, [30] here we describe a diastereoselective hydroxyethylation of β -hydroxyketones that delivers 1,3,5-triols and involves a Sml₂-H₂O-mediated Reformatsky cyclization-lactone reduction cascade (Scheme 1C).

Results and Discussion

The feasibility of the hydroxyethylation process was assessed using $\beta\text{-}$ hydroxyketone 1a. After conversion to α -bromoacetate 2a (BrCH₂C(O)Br, pyridine, CH₂Cl₂, 72%), treatment with SmI₂ at -78 °C for 30 min, followed by addition of H₂O to the pot, and warming to room temperature, gave the 1,3,5-triol product of hydroxyethylation 4a in 54% yield and lactone intermediate 3a in 36% yield, both as single diastereoisomers. The structure and relative stereochemistry of lactone intermediate 3a was confirmed by X-Ray crystallographic analysis (See Supporting Information -

CCDC Number: 1953812). The diastereoselectivity observed in the SmI₂mediated Reformatksy cyclization of 2a to form lactone 3a is consistent with that observed by Molander^[30] and arises from a highly organised transition structure I in which Sm(III) of the Sm(III)-enolate^[31] coordinates to the ketone carbonyl in the substrate, with the two alkyl substituents in pseudoequatorial orientations (Scheme 2).

A. The 1,3,5-triol motif in selected, bioactive natural products

(+)-discodermolide

B. Sml₂-H₂O-mediated reduction of lactones

C. This work: Hydroxyethylation of β-hydroxyketones

[■] high diastereocontrol ■ Reformatsky cyclization ■ lactone reduction

Scheme 1. A. Selected bioactive molecules containing the 1.3.5-triol motif. B. The selective reduction of six-membered lactones using Sml2-H2O. C. Diastereoselective hvdroxvethvlation of β-hvdroxvketones.

Scheme 2. Assessing the feasibility of the diastereoselective hydroxyethylation of β -hydroxyketones. Samarium enolate intermediate I and samarium ketyl radical intermediate II. Diastereoisomeric purity was assessed by inspection of the ¹H NMR spectrum of the crude product mixture.

Addition of H₂O activates Sml₂^[32–38] and switches on the second stage of the process by facilitating reduction of the lactone carbonyl to give unusual ketyl radical anion II. A sequence of further reductions and protonations delivers 1,3,5-triol **4a** as a single diastereoisomer. The conversion of **2a** to **4a** was optimized by varying the amount of Sml₂ and the amount of H₂O employed in the cascade: Using 8 equivalents of Sml₂ (a 1.3-fold excess as the cascade requires 6-electrons) and 200 equivalents of H₂O gave a 94% isolated yield of **4a**.

To explore the scope of selective 1,3,5-triol synthesis, we synthesized a range of β -hydroxyketones. Our route to substrates employed a Zn-mediated Barbier reaction involving ethyl 2-cyanoacetate and allyl bromide, with aluminium trichloride as a Lewis acid to activate the nitrile.^[39] The resulting ketoester was reduced under Luche conditions and the resultant alcohol transformed to the Weinreb amide **5** using trimethyl aluminium and *N*,*O*-dimethylhydroxylamine hydrochloride. This three-step sequence could be carried out without purification and gave **5** in an overall yield of 82%. Treatment of **5** with three Grignard reagents delivered ketones **6a-c** in moderate yields. Finally, ketones **6** underwent olefin cross-metathesis, using various styrenes and the Hoveyda-Grubbs 2nd generation catalyst, to yield β -hydroxyketones **1a-g** in good yield (Scheme 3).^[40,41]

1g R = *i*Bu, Ar = Ph, 76%

Scheme 3. Synthesis of β -hydroxyketone substrates 1a-g.

 β -Hydroxyketones **1a-g** were acylated using bromoacetyl bromide prior to treatment with Sml₂ and H₂O (Scheme 4). By varying the aryl substituent on the alkene we found that the presence of potentially reduceable bromo (**4b**), chloro (**4e**), and trifluoromethyl (**4c**) functional groups was tolerated in the process. Crucially, the presence of an alkene, in a position that renders it potentially susceptible to radical cyclization, was also tolerated (**4a-g**). Finally, the alkyl group of the ketone could be varied (**4f**, **4g**). In all cases, **1**,3,5-triols products were formed as single diastereoisomers (Scheme 4).

Scheme 4. Hydroxyethylation of β-hydroxyketones using a Sml₂–H₂O-mediated cascade. Diastereoisomeric purity was assessed by inspection of the ¹H NMR spectrum of the crude product mixture. ^{*a*}Yield for the acylation of the β-hydroxyketone. ^{*b*}Yield for the Sml₂–H₂O-mediated cascade.

Conclusions

A two-stage, hydroxyethylation of β -hydroxyketones delivers 1,3,5-triols with high diastereocontrol. After formation of the corresponding α -bromoacetate, ketone hydroxyethylation proceeds through a Sml₂–H₂O-mediated cascade reaction. The cascade process consists of a highly diastereoselective Sml₂-mediated Reformatsky cyclization, to give lactone intermediates, that are then reduced to the corresponding triols, upon addition of H₂O to the reaction pot. The process shows promising functional group compatibility and delivers important 1,3,5-triols as single diastereoisomers in good isolated yield.

Experimental Section

General procedure A for the preparation of α -bromoacetates **2a-g**. β -Hydroxyketone **1** (1 equivalent) was dissolved in CH₂Cl₂. Pyridine (2 equivalents) was added followed by the dropwise addition of bromoacetyl bromide (1.5 equivalent) at 0 °C. The reaction was stirred at that temperature for 30 min and quenched with aqueous 1 M HCl. The aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL) and the combined organic layers were washed with brine (10 ml), dried over MgSO₄, and concentrated *in vacuo*. Purification by column chromatography, eluting with EtOAc/hexane (30:70), gave α -bromoacetates **2** as yellow oils.

General procedure B for the preparation of 1,3,5-triols **4a-g**. To a solution of Sml₂ (8 equivalents, 0.1 M in THF), under N₂, at -78 °C, was added α -bromoacetate **2** (1 equivalent) in THF (0.5 mL), dropwise and the resulting mixture stirred for 30 min. The reaction was then allowed to slowly warm to room temperature and degassed H₂O (200 equivalents) was added. The reaction was stirred at room temperature for 18 h before being quenched by opening to air, followed by the addition of saturated aqueous Rochelle's salt. The aqueous layer was extracted with Et₂O (3 × 5 mL) and the combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated *in vacuo*. Purification by column chromatography, eluting with EtOAc/hexane (50:50), gave the 1,3,5-triols as single diastereoisomers and as colourless oils.

(E)-6-Oxo-1-phenylhept-1-en-4-yl 2-bromoacetate 2a

Prepared according to general procedure A using (*E*)-4-hydroxy-7phenylhept-6-en-2-one **1a** (356 mg, 1.74 mmol), pyridine (0.280 mL, 3.48 mmol) and bromoacetyl bromide (0.230 mL, 2.61 mmol) to give the title compound as a yellow oil (406 mg, 1.00 mmol, 58%). ¹H NMR (400 MHz, CDCl₃) δ 2.17 (s, 3 H, CH₃), 2.57 (dtd, *J* = 7.5, 6.0, 1.4 Hz, 2 H, CH₂CH=CHAr), 2.68 – 2.88 (m, 2 H, CH₂C(O)), 3.78 (s, 2 H, CH₂Br), 5.44 (dq, *J* = 7.3, 5.8 Hz, 1 H, CH), 6.12 (dt, *J* = 15.6, 7.3 Hz, 1 H, CH=CHAr), 6.46 (dt, *J* = 15.8, 1.4 Hz, 1 H, CH=CHAr), 7.20 – 7.25 (m, 1 H, ArCH), 7.28 – 7.37 (m, 4 H, ArCH) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 25.9 (CH₂Br), 30.7 (CH₃), 37.4 (CH₂CH=CHAr), 46.6 (CH₂C(O)), 71.6 (CH), 123.9 (CH=CHAr), 126.3 (ArCH), 127.7 (ArCH), 128.7 (ArCH), 134.1 (CH=CHAr), 137.0 (ArC), 166.6 (C(O)CH₂Br), 205.1 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 3025, 1732, 1715, 1495, 1421, 1378, 1357, 1276, 1159, 1106, 1042, 967, 795, 745, 693. HRMS calcd for $C_{15}H_{18}O_3Br$ [M + H]⁺: 325.0434, found 325.0427.

(E)-1-(4-Bromophenyl)-6-oxohept-1-en-4-yl 2-bromoacetate 2b

Prepared according to general procedure A using (*E*)-7-(4-bromophenyl)-4hydroxyhept-6-en-2-one **1b** (165 mg, 0.580 mmol), pyridine (0.090 mL, 1.16 mmol) and bromoacetyl bromide (0.080 mL, 0.88 mmol) to give the title compound as a yellow oil (169 mg, 0.420 mmol, 72%). ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 3 H, *CH*₃), 2.47 – 2.63 (m, 2 H, *CH*₂CH=CHAr), 2.67 – 2.87 (m, 2 H, *CH*₂C(O)), 3.77 (s, 2 H, *CH*₂Br), 5.42 (dq, *J* = 7.2, 5.7 Hz, 1 H, *CH*), 6.11 (dt, *J* = 15.8, 7.3 Hz, 1 H, *CH*=CHAr), 6.35 – 6.42 (m, 1 H, CH=CHAr), 7.17 – 7.23 (m, 2 H, ArC*H*), 7.38 – 7.45 (m, 2 H, ArC*H*) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 25.9 (*CH*₂Br), 30.7 (*CH*₃), 37.4 (*CH*₂CH=CHAr), 46.7 (*CH*₂C(O), 71.4 (*CH*), 121.4 (ArC), 124.8 (*CH*=CHAr), 127.9 (ArC*H*), 131.8 (ArC*H*), 132.9 (*CH*=CHAr), 136.0 (Ar*C*), 166.6 (*C*(O)CH₂Br), 204.9 (*C*(O)) ppm. IR v_{max} (neat/cm⁻¹): 2923, 1732, 1716, 1587, 1486, 1401, 1357, 1301, 1151, 1105, 1043, 1071, 1008, 968, 796, 731. HRMS calcd for C1₅H₁₆O₃Br₂Na [M + Na]⁺: 424.9358, found 424.9345.

(E)-6-Oxo-1-(4-(trifluoromethyl)phenyl)hept-1-en-4-yl bromoacetate 2c

Prepared according to general procedure A using (*E*)-4-hydroxy-7-(4-(trifluoromethyl)phenyl)hept-6-en-2-one **1c** (118 mg, 0.430 mmol), pyridine (0.070 mL, 0.86 mmol) and bromoacetyl bromide (0.060 mL, 0.65 mmol) to give the title compound as a yellow oil (76.3 mg, 0.190 mmol, 45%). ¹H NMR (500 MHz, CDCl₃) δ 2.17 (d, *J* = 1.9 Hz, 3 H, CH₃), 2.58 – 2.63 (m, 2 H, CH₂CH=CHAr), 2.78 – 2.85 (m, 2 H, CH₂C(O)), 3.77 (d, *J* = 1.9 Hz, 2 H, CH₂Br), 5.45 (p, *J* = 6.1 Hz, 1 H, CH), 6.19 – 6.28 (m, 1 H, CH=CHAr), 6.48 (d, *J* = 15.8 Hz, 1 H, CH=CHAr), 7.42 (d, *J* = 8.1 Hz, 2 H, ArCH), 7.55 (d, *J* = 8.0 Hz, 2 H, ArCH) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 25.8 (CH₂Br), 30.7 (CH₃), 37.4 (CH₂CH=CHAr), 46.7 (CH₂C(O)), 71.2 (CH), 123.2 (ArC), 125.6 (ArCH), 126.5 (ArCH), 126.9 (CH=CHAr), 132.7 (CH=CHAr), 140.4 (ArC), 166.6 (C(O)CH₂Br), 197.4 (C(O)) ppm (CF₃ not observed). IR v_{max} (neat/cm⁻¹): 2953, 1735, 1718, 1615, 1414, 1323, 1278, 1161, 1110, 1066, 1045, 971, 908, 857, 730, 649. HRMS calcd for C₁₆H₁₆O₃BrF₃Na [M + Na]⁺: 415.0127, found 415.0112.

(E)-6-Oxo-1-(m-tolyl)hept-1-en-4-yl 2-bromoacetate 2d

Prepared according to general procedure A using (*E*)-4-hydroxy-7-(m-tolyl)hept-6-en-2-one **1d** (146 mg, 0.670 mmol), pyridine (0.110 mL, 1.34 mmol) and bromoacetyl bromide (0.09 mL, 1 mmol) to give the title compound as a yellow oil (178 mg, 0.520 mmol, 78%). ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 3 H, *CH*₃), 2.34 (s, 3 H, *ArCH*₃), 2.48 – 2.62 (m, 2 H, *CH*₂CH=CHAr), 2.67 – 2.87 (m, 2 H, *CH*₂C(O)), 3.79 (s, 2 H, *CH*₂Br), 5.43 (dq, *J* = 7.5, 5.8 Hz, 1 H, *CH*), 6.10 (dt, *J* = 15.8, 7.3 Hz, 1 H, *CH*=CHAr), 6.42 (dd, *J* = 15.8, 1.5 Hz, 1 H, CH=CHAr), 7.03 – 7.07 (m, 1 H, ArCH), 7.12 – 7.23 (m, 3 H, ArCH). ¹³C NMR (101 MHz, CDCl₃) δ 21.5 (ArCH₃), 25.9 (*CH*₂Br), 30.7 (*CH*₃), 37.4 (*CH*₂CH=CHAr), 46.6 (*CH*₂C(O)), 71.6 (*CH*), 123.5 (ArCH), 123.6 (*CH*=CHAr), 127.0 (ArCH), 128.5 (ArCH), 128.6 (ArCH), 134.2 (CH=CHAr), 137.0 (ArC), 138.3 (ArC), 166.6 (*C*(O)CH₂Br), 205.0 (*C*(O)) ppm. IR v_{max}

2-

(neat/cm⁻¹): 2922, 1735, 1716, 1602, 1485, 1421, 1378, 1357, 1276, 1159, 1106, 1042, 967, 774, 732, 694. HRMS calcd for $C_{16}H_{19}O_3BrNa$ [M + Na]⁺: 361.0410. found 361.0392.

(E)-1-(2-Chlorophenyl)-6-oxohept-1-en-4-yl 2-bromoacetate 2e

Prepared according to general procedure A using (E)-7-(2-chlorophenyl)-4hydroxyhept-6-en-2-one 1e (176 mg, 0.740 mmol), pyridine (0.120 mL, 1.47 mmol) and bromoacetyl bromide (0.10 mL, 1.1 mmol) to give the title compound as a yellow oil (183 mg, 0.510 mmol, 69%). $^1\!\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 2.17 (s, 3 H, CH₃), 2.52 – 2.67 (m, 2 H, CH₂CH=CHAr), 2.70 – 2.90 (m, 2 H, CH₂C(O)), 3.79 (s, 2 H, CH₂Br), 5.41 - 5.50 (m, 1 H, CH), 6.10 (ddd, J = 15.7, 7.9, 7.0 Hz, 1 H, CH=CHAr), 6.75 - 6.85 (m, 1 H, CH=CHAr), 7.14 -7.25 (m, 2 H, ArCH), 7.33 (dd, J = 7.8, 1.5 Hz, 1 H, ArCH), 7.47 (dd, J = 7.6, 1.9 Hz, 1 H, ArCH) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 25.9 (CH₂Br), 30.7 (CH₃), 37.6 (CH₂CH=CHAr), 46.7 (CH₂C(O)), 71.3 (CH), 127.0 (2 \times ArCH, CH=CHAr), 128.7 (ArCH), 129.7 (ArCH), 130.3 (CH=CHAr), 132.8 (ArC), 135.2 (ArC), 166.6 (C(O)CH₂Br), 204.9 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2962, 1733, 1716, 1591, 1470, 1423, 1357, 1275, 1150, 1105, 1034, 967, 751, 694. HRMS calcd for $C_{15}H_{16}O_{3}BrClNa [M + Na]^{+}$: 380.9864, found 380.9850.

(E)-6-Oxo-1-phenyloct-1-en-4-yl 2-bromoacetate 2f

Prepared according to general procedure A using (E)-5-hydroxy-8phenyloct-7-en-3-one 1f (62.0 mg, 0.280 mmol), pyridine (0.050 mL, 0.57 mmol) and bromoacetyl bromide (0.040 mL, 0.43 mmol) to give the title compound as a yellow oil (55.5 mg, 0.160 mmol, 58%). ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, J = 7.3 Hz, 3 H, CH₃), 2.36 (qd, J = 7.3, 1.9 Hz, 2 H, CH₃CH₂), 2.50 (dtd, J = 7.5, 5.8, 1.4 Hz, 2 H, CH₂CH=CHAr), 2.58 - 2.78 (m, 2 H, CH₂C(O)), 3.71 (s, 2H, CH₂Br), 5.39 (ddt, J = 13.4, 7.7, 5.9 Hz, 1 H, CH), 6.05 (dtd, J = 15.8, 7.3, 4.8 Hz, 1 H, CH=CHAr), 6.38 (dd, J = 15.8, 1.6 Hz, 1 H, CH=CHAr), 7.12 – 7.19 (m, 1 H, ArCH), 7.21 – 7.31 (m, 4 H, ArCH) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 7.6 (CH₃), 25.9 (CH₂Br), 36.7 (CH₃CH₂), 37.4 (CH₂CH=CHAr), 45.4 (CH₂C(O)), 71.7 (CH), 123.9 (CH=CHAr), 126.3 (ArCH), 127.6 (ArCH), 128.7 (ArCH), 134.0 (CH=CHAr), 137.0 (ArC), 166.6 (C(O)CH₂Br), 207.7 (C(O)) ppm. IR v_{max} (neat/cm⁻¹): 2975, 1732, 1714, 1449, 1410, 1378, 1277, 1165, 1109, 966, 910, 751, 701. HRMS calcd for $C_{16}H_{19}O_{3}BrNa [M + Na]^{+}: 361.0410$, found 361.0394.

(E)-8-Methyl-6-oxo-1-phenylnon-1-en-4-yl 2-bromoacetate 2g

Prepared according to general procedure A using (E)-6-hydroxy-2-methyl-9-phenylnon-8-en-4-one 1g (33.1 mg, 0.13 mmol), pyridine (0.02 mL, 0.27 mmol) and bromoacetyl bromide (0.02 mL, 0.20 mmol) to give the title compound as a yellow oil (37.4 mg, 0.10 mmol, 76%). ¹H NMR (500 MHz, CDCl₃) δ 0.89 (d, J = 6.1 Hz, 3 H, CH₃), 0.91 (d, J = 6.1 Hz, 3 H, CH₃), 2.06 -2.17 (m, 1 H, (CH₃)₂CH), 2.29 (dd, J = 7.0, 2.4 Hz, 2 H, (CH₃)₂CHCH₂), 2.51 -2.62 (m, 2 H, CH₂CH=CHAr), 2.63 - 2.83 (m, 2 H, CH₂C(O)), 3.78 (s, 2 H, CH₂Br), 5.45 (dq, J = 7.4, 5.8 Hz, 1 H, CH), 6.14 (tt, J = 15.3, 7.3 Hz, 1 H, CH=CHAr), 6.45 (d, J = 15.8 Hz, 1 H, CH=CHAr), 7.21 - 7.25 (m, 1 H, ArCH), 7.28 – 7.35 (m, 4 H, ArCH) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 22.6 (2 × CH₃), 24.6 ((CH₃)₂CH), 25.9 (CH₂Br)), 37.4 (CH₂CH=CH₂), 46.2 (CH₂C(O)), 52.5

(CH₃)₂CHCH₂), 71.6 (CH), 124.0 (CH=CHAr), 126.3 (ArCH), 127.7 (ArCH), 128.7 (ArCH), 134.0 (CH=CHAr), 137.1 (ArC), 166.6 (C(O)CH₂Br), 207.1 (*C*(O)) ppm. IR v_{max} (neat/cm⁻¹): 2958, 2254, 1737, 1405, 1367, 1277, 1166, 1107, 967, 907, 694, 649. HRMS calcd for $C_{18}H_{23}O_3BrNa$ [M + Na]⁺: 389.0723, found 389.0706.

rac-(3R,5S,E)-3-Methyl-8-phenyloct-7-ene-1,3,5-triol 4a

Prepared according to general procedure B using Sml₂ (2.46 mL, 0.25 mmol, 0.1 M in THF), ethyl (E)-6-oxo-1-phenylhept-1-en-4-yl 2-bromoacetate 2a (0.01 mg, 0.03 mmol) and $\rm H_2O$ (0.11 mL, 6.14 mmol) to give the title compound as a colourless oil (7.20 mg, 0.03 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ 1.35 (s, 3 H, CH₃), 1.51 – 1.63 (m, 1 H, C_{quat}CH_aH_bCH), 1.75 (tt, J = 5.2, 2.3 Hz, 2 H, C_{quat}CH₂CH₂OH), 1.87 – 1.92 (m, 1 H, C_{quat}CH_aH_bCH), 2.41 (ddd, J = 7.4, 6.1, 1.4 Hz, 2 H, CH₂CH=CH), 3.03 (s, 1 H, OH), 3.29 (s, 1 H, OH), 3.92 (t, J = 5.5 Hz, 2 H, CH₂OH), 4.20 (ddt, J = 7.9, 6.0, 3.0 Hz, 1 H, CH), 4.27 (s, 1 H, OH), 6.16 - 6.28 (m, 1 H, CH=CHAr), 6.49 (dd, J = 15.8, 3.3 Hz, 1 H, CH=CHAr), 7.20 – 7.25 (m, 1 H, ArCH), 7.31 (dd, J = 7.6, 7.6 Hz, 2 H, ArCH), 7.37 (dt, J = 5.8, 1.4 Hz, 2 H, ArCH) ppm. 13 C NMR (101 MHz, CDCl₃) δ 26.4 (CH₃), 42.2 (CH₂CH=CH), 43.8 (C_{quat}CH₂CH₂OH), 45.8 (C_{quat}CH₂CH), 59.8 (CH₂OH), 69.0 (CH), 74.5 (C_{guat}), 125.7 (CH=CHAr), 126.3 (ArCH), 127.5 (ArCH), 128.7 (ArCH), 133.6 (CH=CHAr), 137.2 (ArC) ppm. IR v_{max} (neat/cm⁻¹): 3341, 2934, 2042, 1665, 1426, 1259, 1117, 1053, 967, 744. HRMS calcd for C₁₅H₂₁O₃ [M - H]⁻: 249.1496, found 249.1498.

rac-(3R,5S,E)-8-(4-Bromophenyl)-3-methyloct-7-ene-1,3,5-triol 4b

Prepared according to general procedure B using Sml₂ (6.00 mL, 0.60 mmol, 0.1 M in THF), (E)-1-(4-bromophenyl)-6-oxohept-1-en-4-yl 2-bromoacetate **2b** (30.3 mg, 0.075 mmol) and H_2O (0.27 mL, 15 mmol) to give the title compound as a colourless oil (19.6 mg, 0.059 mmol, 79%). ¹H NMR (500 MHz, CDCl₃) δ 1.34 (s, 3 H, CH₃), 1.48 – 1.54 (m, 1 H, C_{quat}CH_aH_bCH), 1.65 – 1.78 (m, 2 H, C_{auat}CH₂CH₂OH), 1.85 – 1.92 (m, 1 H, C_{auat}CH_aH_bCH), 2.38 (dd, J = 7.3, 7.3 Hz, 2 H, CH₂CH=CH), 3.08 (s, 1 H, OH), 3.59 (s, 1 H, OH), 3.92 (t, J = 5.7 Hz, 2 H, CH₂OH), 4.19 (dq, J = 16.0, 9.6, 8.0 Hz, 1 H, CH), 4.33 (s, 1 H, OH), 6.17 - 6.29 (m, 1 H, CH=CHAr), 6.41 (d, J = 15.8 Hz, 1 H, CH=CHAr), 7.15 – 7.24 (m, 2 H, ArCH), 7.42 (dd, J = 8.5, 1.9 Hz, 2 H, ArCH) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 26.3 (CH₃), 42.1 (CH₂CH=CH), 43.7 (C_{auat}CH₂CH₂OH), 45.7 (C_{quat}CH₂CH), 59.8 (CH₂OH), 68.8 (CH), 74.6 (C_{quat}), 121.1 (ArCH), 126.9 (CH=CHAr), 127.8 (ArCH), 131.7 (CH=CHAr), 132.2 (ArC), 136.2 (ArC) ppm. IR v_{max} (neat/cm⁻¹): 3347, 2930 1651, 1486, 1401, 1378, 1117, 1071, 1008, 968, 908, 798, 733, 648. HRMS calcd for C₁₅H₂₁O₃BrNa [M + Na]⁺: 351.0566, found 351.0554.

rac-(3R,5S,E)-3-Methyl-8-(4-(trifluoromethyl)phenyl)oct-7-ene-1,3,5-triol 4c

Prepared according to general procedure B using SmI_2 (4.00 mL, 0.40 mmol, 0.1 M in THF), (E)-6-oxo-1-(4-(trifluoromethyl)phenyl)hept-1-en-4-yl 2bromoacetate 2c (19.6 mg, 0.05 mmol) and H₂O (0.18 mL, 0.01 mmol) to give the title compound as a colourless oil (9.86 mg, 0.031 mmol, 62%). ¹H NMR (400 MHz, CDCl_3) δ 1.35 (s, 3 H, CH_3), 1.45 – 1.52 (m, 1 H,

4

$$\begin{split} & \mathsf{C}_{quat}\mathsf{C}\mathsf{H}_{d}\mathsf{H}_{b}\mathsf{C}\mathsf{H}), \ 1.69 - 1.78 \ (\mathsf{m}, \ 2 \ \mathsf{H}, \ \mathsf{C}_{quat}\mathsf{C}\mathsf{H}_{2}\mathsf{C}\mathsf{H}_{2}\mathsf{O}\mathsf{H}), \ 1.79 - 1.91 \ (\mathsf{m}, \ 1 \ \mathsf{H}, \\ & \mathsf{C}_{quat}\mathsf{C}\mathsf{H}_{a}\mathcal{H}_{b}\mathsf{C}\mathsf{H}), \ 2.43 \ (\mathsf{ddd}, \ \mathit{J} = 7.4, \ 4.8, \ 3.1 \ \mathsf{Hz}, \ 2 \ \mathsf{H}, \ \mathsf{C}\mathcal{H}_{2}\mathsf{C}\mathsf{H}=\mathsf{C}\mathsf{H}), \ 2.87 \ (\mathsf{s}, \ 1 \ \mathsf{H}, \\ & \mathcal{O}\mathcal{H}), \ 3.62 \ (\mathsf{s}, \ 1 \ \mathsf{H}, \ \mathcal{O}\mathcal{H}), \ 3.93 - 4.05 \ (\mathsf{m}, \ 3 \ \mathsf{H}, \ \mathcal{C}\mathcal{H}_{2}\mathsf{O}\mathsf{H}, \ \mathcal{O}\mathcal{H}), \ 4.18 - 4.29 \ (\mathsf{m}, \ 1 \ \mathsf{H}, \\ & \mathcal{C}\mathcal{H}), \ 6.35 \ (\mathsf{dt}, \ \mathit{J} = 15.9, \ 7.2 \ \mathsf{Hz}, \ 1 \ \mathsf{H}, \ \mathsf{C}\mathcal{H}=\mathsf{C}\mathsf{H}\mathsf{a}\mathsf{r}), \ 6.51 \ (\mathsf{d}, \ \mathit{J} = 15.9 \ \mathsf{Hz}, \ 1 \ \mathsf{H}, \\ & \mathsf{C}\mathsf{H}=\mathsf{C}\mathsf{H}\mathsf{a}\mathsf{r}), \ 7.45 \ (\mathsf{d}, \ \mathit{J} = 8.1 \ \mathsf{Hz}, \ 2 \ \mathsf{H}, \ \mathsf{A}\mathsf{r}\mathsf{C}\mathsf{H}), \ 7.53 \ (\mathsf{d}, \ \mathit{J} = 8.8 \ \mathsf{Hz}, \ 2 \ \mathsf{H}, \ \mathsf{A}\mathsf{r}\mathsf{C}\mathsf{H}). \ ^{13}\mathsf{C} \\ & \mathsf{NMR} \ (101 \ \mathsf{MHz}, \ \mathsf{CDC}\mathsf{I}_3) \ \delta \ 26.3 \ (\mathsf{CH}_3), \ 42.1 \ (\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}=\mathsf{CH}), \ 43.7 \ (\mathsf{C}_{quat}\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_2\mathsf{O}\mathsf{H}), \\ & 45.9 \ (\mathsf{C}_{quat}\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}), \ 59.8 \ (\mathsf{C}\mathsf{H}_2\mathsf{O}\mathsf{H}), \ 68.8 \ (\mathsf{C}\mathsf{H}), \ 74.6 \ (\mathsf{C}_{quat}), \ 125.4 \ (\mathsf{A}\mathsf{r}\mathsf{C}\mathsf{H}), \ 126.4 \\ & (\mathsf{A}\mathsf{r}\mathsf{C}\mathsf{H}), \ 128.6 \ (\mathsf{C}\mathsf{H}=\mathsf{C}\mathsf{H}\mathsf{A}\mathsf{r}), \ 129.0 \ (\mathsf{A}\mathsf{r}\mathsf{C}), \ 132.0 \ (\mathsf{C}\mathsf{H}=\mathsf{C}\mathsf{H}\mathsf{A}\mathsf{r}), \ 140.8 \ (\mathsf{A}\mathsf{r}\mathsf{C}) \ \mathsf{ppm} \\ & (\mathsf{C}\mathsf{F}_3 \ \mathsf{not} \ \mathsf{observed}). \ \mathsf{IR} \ v_{\mathsf{max}} \ (\mathsf{neat}/\mathsf{cm}^{-1}): \ 3322, \ 2936, \ 1615, \ 1415, \ 1352, \\ 1163, \ 1120, \ 1067, \ 1017, \ 908, \ 856, \ 732, \ 649. \ \mathsf{HRMS} \ \mathsf{calcd} \ \mathsf{for} \ \mathsf{C}_{16}\mathsf{H}_{22}\mathsf{O}_{3}\mathsf{F}_3 \ [\mathsf{M} \\ + \ \mathsf{H}]^{\dagger}: \ 319.1516, \ \mathsf{found} \ 319.1512. \end{split}$$

rac-(3R,5S,E)-3-Methyl-8-(m-tolyl)oct-7-ene-1,3,5-triol 4d

Prepared according to general procedure B using SmI₂ (6.00 mL, 0.60 mmol, 0.1 M in THF), (E)-6-oxo-1-(m-tolyl)hept-1-en-4-yl 2-bromoacetate 2d (25.4 mg, 0.075 mmol) and H_2O (0.27 mL, 15 mmol) to give the title compound as a colourless oil (18.2 mg, 0.068 mmol, 92%). ^1H NMR (400 MHz, CDCl3) δ 1.34 (s, 3 H, CH_3), 1.50 – 1.56 (m, 1 H, $C_{quat}CH_aH_bCH$), 1.73 (tq, J = 5.7, 3.6, 3.0 Hz, 2 H, CquatCH₂CH₂OH), 1.86 – 1.92 (m, 1 H, CquatCH_aH_bCH), 2.34 (s, 3 H, ArCH₃), 2.40 (td, J = 7.2, 1.4 Hz, 2 H, CH₂CH=CH), 3.21 (s, 1 H, OH), 3.42 (s, 1 H, OH), 3.91 (t, J = 5.6 Hz, 2 H, CH₂OH), 4.20 (dtd, J = 11.1, 6.2, 2.0 Hz, 1 H, CH), 4.36 (s, 1 H, OH), 6.20 (dt, J = 15.9, 7.3 Hz, 1 H, CH=CHAr), 6.45 (dt, J = 15.9, 1.4 Hz, 1 H, CH=CHAr), 7.01 – 7.06 (m, 1 H, ArCH), 7.14 – 7.23 (m, 3 H, ArCH). ¹³C NMR (101 MHz, CDCl₃) δ 21.5 (ArCH₃), 26.4 (CH₃), 42.2 (CH₂CH=CH), 43.7 (C_{quat}CH₂CH₂OH), 45.7 (C_{quat}CH₂CH), 59.7 (CH₂OH), 69.0 (CH), 74.5 (C_{quat}), 123.4 (ArCH), 125.5 (CH=CHAr), 127.0 (ArCH), 128.3 (ArCH), 128.6 (ArCH), 133.6 (CH=CHAr), 137.2 (ArC), 138.2 (ArC) ppm. IR v_{max} (neat/cm⁻¹): 3343, 2924, 2245, 1603, 1429, 1377, 1117, 1053, 966, 908, 857, 774, 732, 693, 648. HRMS calcd for C₁₆H₂₄O₃Na [M + Na]⁺: 287.1618, found 287.1605.

rac-(3R,5S,E)-8-(2-Chlorophenyl)-3-methyloct-7-ene-1,3,5-triol 4e

Prepared according to general procedure B using SmI_2 (6.00 mL, 0.60 mmol, 0.1 M in THF), (E)-1-(2-chlorophenyl)-6-oxohept-1-en-4-yl 2-bromoacetate 2e (26.9 mg, 0.075 mmol) and H_2O (0.27 mL, 15 mmol) to give the title compound as a colourless oil (18.9 mg, 0.066 mmol, 88%). ¹H NMR (500 MHz, CDCl₃) δ 1.35 (d, J = 2.0 Hz, 3 H, CH₃), 1.51 - 1.56 (m, 1 H, $C_{quat}CH_{a}H_{b}CH$), 1.70 - 1.80 (m, 2 H, $C_{quat}CH_{2}CH_{2}OH$), 1.84 - 1.91 (m, 1 H, C_{quat}CH_aH_bCH), 2.39 – 2.50 (m, 2 H, CH₂CH=CH), 3.18 (s, 1 H, OH), 3.64 (s, 1 H, OH), 3.92 (t, J = 5.9 Hz, 2 H, CH₂OH), 4.23 (dt, J = 11.9, 6.3 Hz, 1 H, CH), 4.38 (s, 1 H, OH), 6.15 - 6.26 (m, 1 H, CH=CHAr), 6.85 (d, J = 15.8 Hz, 1 H, CH=CHAr), 7.16 (t, J = 7.7 Hz, 1 H, ArCH), 7.21 (t, J = 7.5 Hz, 1 H, ArCH), 7.33 (d, J = 7.9 Hz, 1 H, ArCH), 7.52 (d, J = 7.7 Hz, 1 H, ArCH) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 26.4 (CH₃), 42.2 (CH₂CH=CH), 43.7 (C_{quat}CH₂CH₂OH), 45.7 (C_{quat}CH₂CH), 59.7 (CH₂OH), 68.9 (CH), 74.6 (C_{quat}), 126.9 (ArCH), 126.9 (ArCH), 128.5 (ArCH), 129.0 (CH=CHAr), 129.5 (ArCH), 129.8 (CH=CHAr), 132.8 (ArC), 135.4 (ArC) ppm. IR v_{max} (neat/cm⁻¹): 3345, 2928, 1648, 1469, 1439, 1377, 1115, 1055, 1033, 967, 908, 857, 750, 695. HRMS calcd for $C_{15}H_{21}O_{3}CINa [M + Na]^{+}: 307.1071$, found 307.1058.

Prepared according to general procedure B using Sml₂ (6.50 mL, 0.65 mmol, 0.1 M in THF), (E)-6-oxo-1-phenyloct-1-en-4-yl 2-bromoacetate 2f (27.7 mg, 0.08 mmol) and H₂O (0.29 mL, 16.3 mmol) to give the title compound as a colourless oil (13.3 mg, 0.05 mmol, 61%). ¹H NMR (400 MHz, CDCl₃) δ 0.84 $(t, J = 7.6 \text{ Hz}, 3 \text{ H}, CH_3), 1.55 - 1.67 \text{ (m, 2 H, 1 H from } C_{quat}CH_2CH, 1 \text{ H from}$ C_{auat}CH₂CH₂OH), 1.69 – 1.85 (m, 4 H, 2 H from CH₃CH₂, 1 H from C_{auat}CH₂CH, 1 H from C_{quat}CH₂CH₂OH), 2.40 (tt, J = 6.9, 1.6 Hz, 2 H, CH₂CH=CH), 3.21 (s, 1 H, OH), 3.45 (s, 1 H, OH), 3.79 - 3.97 (m, 2 H, CH₂OH), 4.06 - 4.18 (m, 1 H, CH), 4.34 (s, 1 H, OH), 6.21 (dt, J = 15.4, 7.3 Hz, 1 H, CH=CHAr), 6.48 (d, J = 15.8 Hz, 1 H, CH=CHAr), 7.19 – 7.25 (m, 1 H, ArCH), 7.30 (dd, J = 7.6, 7.6 Hz, 2 H, ArCH), 7.36 (d, J = 7.2 Hz, 2 H, ArCH) ppm. 13 C NMR (101 MHz, CDCl₃) δ 9.1 (CH₃), 31.5 (CH₃CH₂), 39.6 (C_{quat}CH₂CH₂OH), 42.2 (CH₂CH=CH, C_{quat}CH₂CH), 59.6 (CH₂OH), 68.7 (CH), 77.0 (C_{quat}), 125.7 (CH=CHAr), 126.3 (ArCH), 127.5 (ArCH), 128.7 (ArCH), 133.5 (CH=CHAr), 137.3 (ArC) ppm. IR v_{max} (neat/cm⁻¹): 3344, 3026, 2940, 1598, 1495, 1432, 1329, 1108, 1051, 966, 908, 852, 692, 648. HRMS calcd for $C_{16}H_{24}O_3Na [M + Na]^+$: 287.1618, found 287.1604.

rac-(3R,5S,E)-3-Isobutyl-8-phenyloct-7-ene-1,3,5-triol 4g

Prepared according to general procedure B using Sml₂ (5.50 mL, 0.55 mmol, 0.1 M in THF), (E)-8-methyl-6-oxo-1-phenylnon-1-en-4-yl 2-bromoacetate 2g (25.3 mg, 0.07 mmol) and H₂O (0.25 mL, 13.8 mmol) to give the title compound as a colourless oil (14.3 mg, 0.05 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ 0.94 (d, J = 6.4 Hz, 3 H, CH₃), 0.98 (d, J = 6.4 Hz, 3 H, CH₃) 1.52 - 1.64 (m, 3 H, (CH₃)₂CH, 1 H from C_{auat}CH₂CH₂OH, 1 H from $C_{auat}CH_2CH$), 1.65 – 1.73 (m, 2 H, (CH₃)₂CHCH₂), 1.80 – 1.99 (m, 2 H, 1 H from C_{quat}CH₂CH₂OH, 1 H from C_{quat}CH₂CH), 2.40 (ddt, J = 7.2, 5.8, 1.4 Hz, 2 H, CH₂CH=CH), 3.27 (d, J = 9.9 Hz, 1 H, OH), 3.44 (s, 1 H, OH), 3.80 - 4.01 (m, 2 H, CH₂OH), 4.18 (dt, J = 11.9, 6.4 Hz, 1 H, CH), 4.32 (s, 1 H, OH), 6.21 (dt, J = 15.9, 7.4 Hz, 1 H, CH=CHAr), 6.48 (d, J = 15.8 Hz, 1 H, CH=CHAr), 7.19 -7.25 (m, 1 H, ArCH), 7.30 (dd, J = 8.4, 6.7 Hz, 2 H, ArCH), 7.34 – 7.38 (m, 2 H, ArCH) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 24.5 (CH₃), 24.6 (CH₃), 25.1 ((CH₃)₂CHCH₂), 40.7 (C_{auat}CH₂CH₂OH), 42.3 (CH₂CH=CH), 43.9 (C_{auat}CH₂CH), 47.9 ((CH₃)₂CH), 59.7 (CH₂OH), 68.8 (CH), 77.0 (C_{quat}), 125.7 (CH=CHAr), 126.3 (ArCH), 127.5 (ArCH), 128.7 (ArCH), 133.6 (CH=CHAr), 137.2 (ArC). IR v_{max} (neat/cm⁻¹): 3335, 2953, 2247, 1431, 1081, 966, 907, 727, 693, 647. HRMS calcd for $C_{18}H_{28}O_{3}Na [M + Na]^{+}$: 315.1931, found 315.1915.

rac-(4*R*,6*S*)-6-Cinnamyl-4-hydroxy-4-methyltetrahydro-2H-pyran-2-one 3a

To a solution of Sml₂ (0.95 mL, 0.095 mmol, 0.1 M in THF), under N₂, at - 78 °C, (*E*)-6-oxo-1-phenylhept-1-en-4-yl 2-bromoacetate bromoacetate **2a** (12.4 mg, 0.038 mmol) in THF (0.5 mL) was added dropwise and the mixture stirred for 30 min. After that time, the reaction was allowed to slowly warm to room temperature before being quenched with air, followed by a saturated aqueous solution of Rochelle's salt (5 mL). The aqueous layer was extracted with Et₂O (3 × 5 mL) and the combined

organic layers were washed with brine (10 mL), dried over MgSO₄, concentrated *in vacuo* and purified by column chromatography eluting with EtOAc/hexane (50:50), to give title compound as a colourless oil (9.32 mg, 0.038 mmol, quantitative). ¹H NMR (500 MHz, CDCl₃) δ 1.38 (s, 3 H, CH₃), 1.49 (s, 1 H, OH), 1.63 – 1.96 (m, 2 H, CH₂CHCH₂CH=CHAr), 2.44 – 2.69 (m, 4 H, CH₂C(O), CH₂CH=CHAr), 4.82 (dtd, *J* = 11.9, 6.0, 3.0 Hz, 1 H, CH), 6.23 (dt, *J* = 15.8, 7.3 Hz, 1 H, CH=CHAr), 6.50 (d, *J* = 15.8 Hz, 1 H, CH=CHAr), 7.21 – 7.25 (m, 1 H, ArCH), 7.31 (dd, *J* = 8.5, 6.8 Hz, 2 H, ArCH), 7.36 (d, *J* = 7.4 Hz, 2 H, ArCH) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 30.5 (CH₃), 38.9 (CH₂CH=CHAr), 41.1 (CH₂CHCH₂CH=CHAr), 44.3 (CH₂C(O)), 68.6 (C_{quat}), 76.5 (CH), 124.0 (CH=CHAr), 126.3 (ArCH), 127.6 (ArCH), 128.7 (ArCH), 133.9 (CH=CHAr), 137.1 (ArC), 170.4 (C(O))ppm. IR v_{max} (neat/cm⁻¹): 3431, 2925, 2854, 1741, 1449, 1379, 1256, 1130, 1029, 969, 934, 817, 747, 695. HRMS calcd for C₁₅H₁₇O₃ [M - H]⁻: 245.1183, found 245.1185.

Supplementary Material

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/MS-number.

Acknowledgements

This work was supported by an Established Career Fellowship to D. J. P. (EP/M005062/1), and CONACyT, México (PhD Scholarship to M.H.G.-C. No. 510789).

Author Contribution Statement

M.H.G.-C. and D.J.P. conceived the study and co-wrote the manuscript. M.H.G-C. designed and performed experiments.

References

- J. Rohr, 'A New Role for Polyketides'. Angew. Chemie Int. Ed. 2000, 39, 2847–2849.
- C. Hertweck, 'The Biosynthetic Logic of Polyketide Diversity'. Angew. Chem. Int. Ed. 2009, 48, 4688–4716.
- [3] A. M. P. Koskinen, K. Karisalmi, 'Polyketide Stereotetrads in Natural Products'. Chem. Soc. Rev. 2005, 34, 677–690.
- [4] K. J. Weissman, P. F. Leadlay, 'Combinatorial Biosynthesis of Reduced Polyketides'. Nat. Rev. Microbiol. 2005, 3, 925–936.
- [5] A. M. Rimando, S. R. Baerson, 'Polyketides: Biosynthesis, Biological Activity, and Genetic Engineering'. American Chemical Society, 2006.
- [6] B. Schetter, R. Mahrwald, 'Modern Aldol Methods for the Total Synthesis of Polyketides'. Angew. Chem. Int. Ed. 2006, 45, 7506–7525.
- [7] R. W. Hoffmann, 'Stereoselective Syntheses of Building Blocks with Three Consecutive Stereogenic Centers: Important Precursors of Polyketide Natural Products'. Angew. Chem. Int. Ed. Engl. 1987, 26, 489–503.
- [8] I. Paterson, A. D. Findlay, 'Recent Advances in the Total Synthesis of Polyketide Natural Products as Promising Anticancer Agents'. *Aust. J. Chem.* 2009, *62*, 624–638.
- [9] M. Chen, M.; W. R. Roush, 'Highly Stereoselective Synthesis of Anti,Anti-Dipropionate Stereotriads: A Solution to the Long-Standing Problem of Challenging Mismatched Double Asymmetric Crotylboration Reactions'. J. Am. Chem. Soc. 2012, 134, 3925–3931.

- [10] A.-M. R. Dechert-Schmitt, D. C. Schmitt, X. Gao, T. Itoh, M. J. Krische, 'Polyketide Construction via Hydrohydroxyalkylation and Related Alcohol C– H Functionalizations: Reinventing the Chemistry of Carbonyl Addition'. *Nat. Prod. Rep.* 2014, 31, 504–513.
- [11] J. Feng, Z. A. Kasun, M. J. Krische, 'Enantioselective Alcohol C–H Functionalization for Polyketide Construction: Unlocking Redox-Economy and Site-Selectivity for Ideal Chemical Synthesis'. J. Am. Chem. Soc. 2016, 138, 5467–5478.
- [12] J. Li, D. Menche, 'Direct Methods for Stereoselective Polypropionate Synthesis: A Survey'. Synthesis 2009, 2009, 2293–2315.
- [13] D. J. Procter, R. A. Flowers, T. Skrydstrup, 'Organic Synthesis Using Samarium Diiodide'; The Royal Society of Chemistry, 2009.
- [14] M. Szostak, N. J. Fazakerley, D. Parmar, D. J. Procter, 'Cross-Coupling Reactions Using Samarium(II) Iodide'. *Chem. Rev.* 2014, 114, 5959–6039.
- [15] K. Gopalaiah, H. B. Kagan, 'Recent Developments in Samarium Diiodide Promoted Organic Reactions'. *Chem. Rec.* 2013, 13, 187–208.
- [16] M. Szostak, K. D. Collins, N. J. Fazakerley, M. Spain, D. J. Procter, 'A General Electron Transfer Reduction of Lactones Using Sml₂-H₂O'. Org. Biomol. Chem. 2012, 10, 5820–5824.
- [17] L. A. Duffy, H. Matsubara, D. J. Procter, 'A Ring Size-Selective Reduction of Lactones Using Sml₂ and H₂O'. J. Am. Chem. Soc. 2008, 130, 1136–1137.
- [18] M. Szostak, M. Spain, D. J. Procter, 'Electron Transfer Reduction of Unactivated Esters Using Sml₂-H₂O'. *Chem. Commun.* 2011, 47, 10254– 10256.
- [19] M. Szostak, M. Spain, D. J. Procter, 'Selective Synthesis of α,α-Dideuterio Alcohols by the Reduction of Carboxylic Acids Using Sml₂ and D₂O as Deuterium Source under SET Conditions'. Org. Lett. 2014, 16, 5052–5055.
- M. Szostak, B. Sautier, M. Spain, D. J. Procter, 'Electron Transfer Reduction of Nitriles Using Sml₂–Et₃N–H₂O: Synthetic Utility and Mechanism'. *Org. Lett.* 2014, *16*, 1092–1095.
- [21] M. Szostak, M. Spain, A. J. Eberhart, D. J. Procter, 'Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using Sml₂/Amine/H₂O under Mild Conditions'. J. Am. Chem. Soc. 2014, 136, 2268-2271.
- [22] X. Just-Baringo, D. J. Procter, 'Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades'. Acc. Chem. Res. 2015, 48, 1263–1275.
- [23] M. P. Plesniak, M. H. Garduño-Castro, P. Lenz, X. Just-Baringo, D. J. Procter, 'Samarium(II) Folding Cascades Involving Hydrogen Atom Transfer for the Synthesis of Complex Polycycles'. *Nat. Commun.* 2018, *9*, 4802.
- [24] D. Parmar, H. Matsubara, K. Price, M. Spain, D. J. Procter, 'Lactone Radical Cyclizations and Cyclization Cascades Mediated by Sml₂-H₂O'. J. Am. Chem. Soc. 2012, 134, 12751–12757.
- [25] D. Parmar, K. Price, M. Spain, H. Matsubara, P. A. Bradley, D. J. Procter, 'Reductive Cyclization Cascades of Lactones Using Sml₂-H₂O'. J. Am. Chem. Soc. 2011, 133, 2418–2420.
- [26] H.-M. Huang, D. J. Procter, 'Radical Heterocyclization and Heterocyclization Cascades Triggered by Electron Transfer to Amide-Type Carbonyl Compounds'. Angew. Chem. Int. Ed. 2017, 56, 14262–14266.
- [27] H.-M. Huang, J. J. W. McDouall, D. J. Procter, 'Radical Anions from Urea-Type Carbonyls: Radical Cyclizations and Cyclization Cascades'. Angew. Chem. Int. Ed. 2018, 57, 4995–4999.
- [28] H.-M. Huang, D. J. Procter, 'Dearomatizing Radical Cyclizations and Cyclization Cascades Triggered by Electron-Transfer Reduction of Amide-Type Carbonyls.' J. Am. Chem. Soc. 2017, 139, 1661–1667.

- [29] H.-M. Huang, D. J. Procter, 'Radical–Radical Cyclization Cascades of Barbiturates Triggered by Electron-Transfer Reduction of Amide-Type Carbonyls'. J. Am. Chem. Soc. 2016, 138, 7770–7775.
- [30] G. A. Molander, J. B. Etter, L. S. Harring, P. J. Thorel, 'Investigations on 1,2-, 1,3-, and 1,4-Asymmetric Induction in Intramolecular Reformatskii Reactions Promoted by Samarium(II) Iodide'. J. Am. Chem. Soc. 1991, 113, 8036–8045.
- [31] I. M. Rudkin, L. C. Miller, D. J. Procter, 'Samarium Enolates and Their Application in Organic Synthesis'. In *Organometallic Chemistry: Volume 34*; The Royal Society of Chemistry, 2008; Vol. 34, p. 19–45.
- P. R. Chopade, E. Prasad, R. A. Flowers, 'The Role of Proton Donors in Sml₂-Mediated Ketone Reduction: New Mechanistic Insights'. J. Am. Chem. Soc. 2004, 126, 44–45.
- [33] T. V. Chciuk, W. R. Anderson, R. A. Flowers, 'Interplay between Substrate and Proton Donor Coordination in Reductions of Carbonyls by Sml₂–Water Through Proton-Coupled Electron-Transfer'. J. Am. Chem. Soc. 2018, 140, 15342–15352.
- [34] T. V. Chciuk, W. R. Anderson, R. A. Flowers, 'Proton-Coupled Electron Transfer in the Reduction of Carbonyls by Samarium Diiodide–Water Complexes'. J. Am. Chem. Soc. 2016, 138, 8738–8741.
- [35] X. Zhao, L. Perrin, D. J. Procter, L. Maron, 'The Role of H₂O in the Electron Transfer-Activation of Substrates Using Sml₂: Insights from DFT'. *Dalt. Trans.* 2016, 45, 3706–3710.
- [36] M. Szostak, M. Spain, A. J. Eberhart, D. J. Procter, 'Mechanism of Sml₂/Amine/H₂O-Promoted Chemoselective Reductions of Carboxylic Acid Derivatives (Esters, Acids, and Amides) to Alcohols'. *J. Org. Chem.* 2014, 79, 11988–12003.
- [37] M. Szostak, M. Spain, D. J. Procter, 'Ketyl-Type Radicals from Cyclic and Acyclic Esters Are Stabilized by Sml₂(H₂O)_n: The Role of Sml₂(H₂O)_n in Post-Electron Transfer Steps'. J. Am. Chem. Soc. 2014, 136, 8459–8466.
- [38] M. Amiel-Levy, S. Hoz, 'Guidelines for the Use of Proton Donors in SmI₂ Reactions: Reduction of α-Cyanostilbene'. J. Am. Chem. Soc. 2009, 131, 8280–8284.
- [39] A. Shih-Yuan Lee, L.-S. Lin, 'Synthesis of Allyl Ketone via Lewis Acid Promoted Barbier-Type Reaction'. *Tetrahedron Lett.* 2000, 41, 8803–8806.
- [40] S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, 'Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts'. J. Am. Chem. Soc. 2000, 122, 8168–8179.
- [41] O. M. Ogba, N. C. Warner, D. J. O'Leary, R. H. Grubbs, 'Recent advances in ruthenium-based olefin metathesis'. *Chem. Soc. Rev.* 2018, 47, 4510-4544.

Twitter

Procter's diastereoselective hydroxyethylation of beta-hydroxyketones, mediated by Sml₂-H₂O, for the construction of 1,3,5-triols.